²⁰Ne(³He,⁸Li):NSCL **1978Be26**

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. Kelley, T. Truong, C. G. Sheu	ENSDF	21-June-2016	

1978Be26:

The authors studied the level structure of ¹⁵F populated using the ²⁰Ne(³He, ⁸Li) reaction. The resulting excitation spectrum shows evidence for the ground and first excited states.

A beam of 74.5 MeV ³He ions impinged on 150-200 torr of enriched (99.95%) ²⁰Ne gas in cells that were located in the Enge spectrometer target chamber at Michigan State University. Data collected at 10° used a gas cell with 0.45 mg/cm² Mylar foil windows, while data collected at 9°, 11°, and 13° used a gas cell with a 2.2 mg/cm² Ni foil exit window. ⁸Li was detected in the focal plane of the spectrometer. The peaks were analyzed to obtain Q-values, mass excesses and widths.

The peaks were fitted by Gaussian shapes.

The authors also evaluated the IMME parameters for the A=15 T=3/2 analog states.

¹⁵F Levels

E(level)	\mathbf{J}^{π}	Γ	$E(p+^{14}O)_{cm}$ (keV)	Comments
0	1/2+	>900 keV	1.6×10 ³ 2	E(level): mass excess=16.9 MeV 2. The lack of a minimum between the ground and first excited states makes a mass excess determination difficult. Likewise, the lack of an angular momentum barrier for the $s_{1/2}$ state results in a large tail toward higher energies and complicates quantification of the width.
1.2×10 ³ 2	5/2+	240 keV <i>30</i>	2802 25	E(level): mass excess=18.088 MeV 25. The value for this resonance energy is sometimes not rigorously deduced; see for example 2005Fo10 who list E _{res} =2.8 MeV with 200 keV uncertainty. This value has been carried over into other analyses. The resonance energy is derivable with 25 keV resolution using the known p and ¹⁴ O mass excesses.