History			
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. Kelley	ENSDF	29-Sept-2014

The present work was motivated by a study of the ¹⁶Be_{g.s.} decay mechanism, which could be expected to 1-n or 2-n decay, depending on the ¹⁵Be mass.

A beam of 55 MeV/A ¹⁷C ions impinged on a 470 mg/cm² ⁹Be target at the NSCL MoNA/Sweeper dipole magnet target position. Following 2p removal events in the ⁹Be target, the experiment was configured to measure the momenta of ¹⁴Be ions using the sweeper dipole magnet and the momenta of neutrons using the MoNA neutron array. No peaks were observed in the kinematic reconstruction of ¹⁴Be + neutron events. The authors discuss the possible case where ¹⁵Be decays to the ¹⁴Be*(1.54 MeV) state, which is known to decay to ¹²Be+2n. However, the statistics were not sufficient to analyze the ¹²Be+3n events. It is suggested that ¹⁵Be must be unbound by 1.54 MeV for this decay to occur.