2 H(14 Be, 15 Be) 2013Sn02

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	J. Kelley	ENSDF	29-Sept-2014		

The authors populated a state in the neutron unbound ¹⁵Be nucleus and measured its decay energy. This constitutes the first positive observation of any level in ¹⁵Be.

- An $E(^{14}Be)=59$ MeV/nucleon beam, produced by fragmentation of a ^{18}O beam on a ^{9}Be target, impinged on a 435 mg/cm² deuterated polyethylene target. The produced ^{15}Be nuclei decayed in the target; levels decaying to the ^{14}Be ground state were characterized by measurement of the neutron momentum (in the MoNA array) and the ^{14}Be momentum (in the focal plane detectors of a large-gap dipole magnet). Neutrons and ^{14}Be particles were detected in coincidence mode. The kinematic reconstruction of the $^{14}Be+n$ relative energy yields a broad resonance at $E_{res}=1.8$ MeV *1* with $\Gamma=575$ keV 200. This level is identified as the lowest $J^{\pi}=5/2^+$ state of ^{15}Be .
- Two states are predicted in the low-energy region of ¹⁵Be; one with $J^{\pi}=3/2^+$ and another with $J^{\pi}=5/2^+$. The $J^{\pi}=3/2^+$ state is unbound by at least 1.54 MeV (2011Sp01) and is expected to decay to the $J^{\pi}=2^+$ first excited state of ¹⁴Be, which decays via ${}^{14}\text{Be}^* \rightarrow {}^{13}\text{Be}+n \rightarrow {}^{12}\text{Be}+2n$. Observation of the $J^{\pi}=3/2^+$ state will be difficult.

The predicted order of the $J^{\pi}=3/2^+$ and $5/2^+$ states is controversial. The present $J^{\pi}=5/2^+$ state is accepted as the ground state since it is the only level observed experimentally.

¹⁵Be Levels

E(level)	J^{π}	Г	Comments
0	$(5/2^+)$	0.58 MeV 20	%n≈100
			Observed in the ¹⁴ Be _{g.s.} +n relative energy spectrum at E_{rel} =1.8 MeV 1.