	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 185, 2 (2022)	23-Aug-2022

Parent: ¹⁴⁹Dy: E=0; $J^{\pi}=7/2^-$; $T_{1/2}=4.2 \text{ min } 2$; $Q(\varepsilon)=3795 \ 9$; $\%\varepsilon+\%\beta^+$ decay=100.0

¹⁴⁹Dy-J^{π},T_{1/2}: From ¹⁴⁹Dy Adopted Levels.

¹⁴⁹Dy-Q(ε): From 2021Wa16.

2019MeZX (also 1993MeZX,1992MeZX,1990MeZY): ¹⁴⁹Dy source was produced via Gd(³He,xn) with E(³He)=240 MeV and separated using Orsay ISOCELE II on-line mass separator. γ rays were detected with Ge detectors and conversion electrons were detected with a broad-range 2π -deflection magnetic electron selector combined with a Si(Li) spectrometer. Measured E γ , I γ , $\gamma\gamma$ -coin, E(ce), I(ce). Deduced levels, J^{π} , conversion coefficients, γ -ray multipolarities, decay branching ratios, log *ft*. Comparisons with shell-model calculations.

Others:

1990Sa32: γ , $\gamma\gamma$, $\gamma(t)$, Q(ε) (from $\beta^+\gamma$). 76 γ rays reported. Hahn-Meitner-Institut in Berlin.

1981ZuZZ: γ , $\gamma\gamma$. 52 γ rays reported. JINR.

1975To03: γ , $\gamma\gamma$. Only the most intense 11 γ rays reported. ORNL.

2003Li42: fully-ionized atoms of ¹⁴⁹Dy g.s. detected but no half-life measured. Predicted $T_{1/2}$ =40 min, since $\% \epsilon$ =0.

γ: 1978Ma19, 1974La28.

ce, γ ce(t): 1978Ma19.

β: 1985Al30, 1985Al13. *β* branches reported to the following levels: 300 (2%), 700 (1%), 900 (2.7%), 1100 (1.3%), 1840 (85%), 2500 (3.1%), 2800 (2.1%), 3000 (1.9%), 3300 (0.7%).

 $\beta^+\gamma$ coin: 1984Ve16.

Q(ε): 1993Al03 (total γ absorption), 1991Ke11 (β^+ spectra), 1990Sa32, 1984Al36, 1985Al30, 1985Al13.

 β -strength functions: 1985Al30 (also 1985Al13). Theory: 1984Al31.

T_{1/2}(¹⁴⁹Dy isotope): 1993Al03, 1975To03, 1974La28, 1973Bi06, 1959To27, 1958To27.

Total decay energy deposit of 3857 keV 67 calculated by RADLIST code is in general agreement with expected value of 3793 keV 9, indicating the completeness of the decay scheme.

¹⁴⁹Tb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	$1/2^{+}$	4.12 h 3	
35.75 8	11/2-	4.17 min 5	$\%\varepsilon + \%\beta^+ = 99.978$ 4; $\%\alpha = 0.022$ 4 Decay modes from the Adopted Levels.
100.75 7	3/2+	0.45 [#] ns 5	
206.91 7	$5/2^{+}$	$\leq 0.2^{\#}$ ns	
460.49 8	7/2+		
689.32 8	$7/2^{-}$		
741.64 7	5/2+		
754.92 9	5/2+		
825.12 9	9/2-		
837.16 9	5/2+		
840.71 11	$13/2^{-}$		
844.16 9	7/2+		
869.72 10	5/2+		J^{π} : $(7/2^+)$ in Table I of 2019MeZX could be a typo.
872.46 9	$(11/2)^{-}$		
952.89 8	3/2-		
970.45 9	7/2+		
982.05 9	$(9/2)^+$		
1049.24 14	$(5/2^+)$		
1088.55 10	5/2-		
1120.09 12	$(7/2)^+$		
1133.61 15	$(9/2,11/2)^+$		
1183.86 10	9/2-		

Continued on next page (footnotes at end of table)

¹⁴⁹Dy ε decay (4.2 min) 2019MeZX (continued)

¹⁴⁹Tb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
1189.09 10	(7/2)-	
1205.37 12	$(9/2)^+$	
1205.95 14	$(7/2,9/2)^{-}$	J^{n} : $(9/2^{-}, 11/2^{-})$ from 2019MeZX.
1250.68 10	5/2	
12/2./3 10	$(9/2)^{-}$	
1381.92 9	$(9/2)^{-}$	
1426 13 9	$9/2^{-}$	
1461.26.9	$(5/2,7/2)^{-}$	
1473.75 9	$(11/2)^{-}$	I^{π} : 11/2 ⁻ from shell-model prediction in 2019MeZX.
1487.59 15	$(7/2,9/2)^+$	· · · · / _ · · · · · · · · · · · · · ·
1492.75 12	$(7/2, 9/2, 11/2)^+$	
1508.52 10	$(7/2)^{-}$	
1631.88 20	$(3/2, 5/2)^{-}$	
1697.49 <i>11</i>	9/2-	
1728.36 8	5/2-	
1735.44 11	$(7/2)^{-}$	
1776.61 10	7/2-	
1804.1 3	$(5/2^+, 7/2^+, 9/2^+)$	
1841.63 8	9/2-	
1852.03 14	(1/2)	
18/0.88 /	$\frac{3}{2}$	
1003.00 0	(9/2) $(7/2^{-} 0/2^{-})$	
1923.13 17	(7/2, 3/2) $9/2^{-}$	
1986 44 20	$(3/2^{-} 5/2, 7/2^{-})$	I^{π} (3/2 ⁻ 5/2) in 2019MeZX
2014.73 14	$(9/2)^{-}$	
2026.32 10	$(7/2)^{-}$	
2065.37 7	7/2-	
2074.22 9	7/2-	
2117.14 20	$(5/2^-, 7/2^-)$	
2157.98 14	$(7/2)^{-}$	
2161.04 14	$(9/2)^{-}$	
2260.33 19	$(7/2^{-}, 9/2)$	
2352.30 19	$(1/2^{-}, 9/2)$	
2452.5 3	(9/2)	
2400.39 23 2516 33 24	$(3/2, 1/2, 9/2^{+})$	
2510.55 24	(1/2) $(5/2)$ $7/2^+)$	
2547.5 5	(3/2, 7/2) $(7/2^{-} 9/2)$	
2573 4 3	$(7/2^{-} 9/2)$	
2588.60 13	(5/2.7/2)	
2661.4 3	(9/2 ⁻)	

 † From a least-squares fit to $\gamma\text{-ray energies}.$

[±] From the Adopted Levels. Values from this study are as noted or given under comments if different. The adopted assignments are from shell-model predictions by 2019MeZX if no other arguments are given in the Adopted Levels.

[#] Adopted values from $(ce)\gamma(t)$ in 1978Ma19.

¹⁴⁹Dy ε decay (4.2 min) 2019MeZX (continued)

ε, β^+ radiations

E(decay)	E(level)	Iβ ⁺ #	$\mathrm{I}\varepsilon^{\#}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(1134 9)	2661.4		0.047 9	6.8 1	0.047 9	εK=0.8313 1; εL=0.13031 7; εM+=0.03835 3
(1206 9)	2588.60		0.02 1	7.2 2	0.02 1	εK=0.8320; εL=0.12978 7; εM+=0.03817 3
$(1222 \ 9)$	2573.4		0.041 12	6.9 1	0.041 12	εK=0.8321; εL=0.12968 6; εM+=0.03813 3
(1229 9)	2566.1		0.041 12	6.9 <i>1</i>	0.041 12	εK=0.8322; εL=0.12963 6; εM+=0.03812 2
(1248 9)	2547.5		0.069 15	6.7 1	0.069 15	εK=0.8323; εL=0.12951 6; εM+=0.03808 2
(1279 9)	2516.33		0.089 12	6.6 1	0.089 12	εK=0.8325; εL=0.12931 6; εM+=0.03801 2
(1308 9)	2486.59		0.084 23	6.7 1	0.084 23	εK=0.8327; εL=0.12912 6; εM+=0.03794 2
(1343 9)	2452.5		0.053 13	6.9 <i>1</i>	0.053 13	εK=0.8328; εL=0.12891 6; εM+=0.03787 2
(1443 9)	2352.30	0.000169 25	0.130 15	6.56 6	0.130 15	av E β =204.7 40; ε K=0.8327; ε L=0.12830 6; ε M+=0.03766 2
(1535 9)	2260.33	0.00099 22	0.34 7	6.2 1	0.34 7	av E β =245.2 40; ϵ K=0.8319 2; ϵ L=0.12770 7; ϵ M+=0.03747 2
(1634 9)	2161.04	0.0063 6	1.07 9	5.76 5	1.08 9	av Eβ=289.1 40; εK=0.8300 3; εL=0.12695 8; εM+=0.03723 3
(1637 9)	2157.98	0.0041 5	0.69 8	5.95 6	0.69 8	av Eβ=290.4 40; εK=0.8300 3; εL=0.12692 8; εM+=0.03722 3
(1678 9)	2117.14	0.00116 16	0.153 20	6.63 6	0.154 20	av E β =308.4 40; ε K=0.8288 3; ε L=0.12657 8; ε M+=0.03711 3
(1721 9)	2074.22	0.0166 12	1.72 9	5.60 <i>3</i>	1.74 9	av $E\beta$ =327.2 40; ε K=0.8273 4; ε L=0.12618 9; ε M+=0.03608 3
(1730 9)	2065.37	0.105 6	10.4 3	4.82 3	10.5 3	av $E\beta$ =331.1 40; ϵ K=0.8269 4; ϵ L=0.12609 9; ϵ M+=0.03696 3
(1769 9)	2026.32	0.0144 14	1.17 10	5.79 5	1.18 10	av $E\beta$ =348.3 40; ε K=0.8253 5; ε L=0.1257 1; ε M = -0.03683 3
(1780 9)	2014.73	0.0099 11	0.76 8	5.98 5	0.77 8	av E β =353.2 40; ε K=0.8247 5; ε L=0.1256 1;
(1809 9)	1986.44	0.0032 8	0.22 5	6.5 1	0.22 5	av $E\beta$ =365.7 40; ε K=0.8233 5; ε L=0.1253 1; ε M = -0.03670 4
(1842 9)	1953.13	0.068 3	3.92 7	5.30 2	3.99 7	av $E\beta$ =380.4 40; ε K=0.8214 6; ε L=0.1249 2; ε MI=-0.03658 4
(1867 9)	1928.15	0.0086 10	0.44 5	6.26 6	0.45 5	av $E\beta$ =391.3 40; ϵ K=0.8199 6; ϵ L=0.1245 2; sM±-0.03648 4
(1912 9)	1883.08	0.20 1	8.4 <i>3</i>	5.00 3	8.6 <i>3</i>	av E β =411.1 40; ϵ K=0.8169 7; ϵ L=0.12394 13; ϵ M+=0.03630 4
(1918 9)	1876.88	0.431 21	18.0 6	4.68 3	18.4 6	av $E\beta$ =413.8 40; ϵ K=0.8164 7; ϵ L=0.12386 13; ϵ M+=0.03628 4
(1943 9)	1852.03	0.012 1	0.44 4	6.30 5	0.45 4	av $E\beta$ =424.7 40; ϵ K=0.8146 7; ϵ L=0.12350 14; ϵ M+=0.03617 4
(1953 9)	1841.63	0.415 20	15.1 5	4.77 3	15.5 5	av E β =429.2 40; ϵ K=0.8138 8; ϵ L=0.12335 14; ϵ M+=0.03612 4
(1991 9)	1804.1	0.0037 9	0.12 3	6.9 <i>1</i>	0.12 3	av $E\beta$ =445.8 40; ϵ K=0.8106 8; ϵ L=0.12276 15; ϵ M+=0.03595 5
(2018 9)	1776.61	0.058 3	1.65 7	5.76 3	1.71 7	av E β =457.8 40; ϵ K=0.8082 9; ϵ L=0.12232 16; ϵ M+=0.03581 5
(2060 9)	1735.44	0.090 4	2.23 6	5.65 3	2.32 6	av Eβ=476.2 40; εK=0.8041 10; εL=0.12159 17; εM+=0.03559 5
(2067 9)	1728.36	0.32 2	7.8 4	5.11 3	8.1 4	av Eβ=479.1 40; εK=0.8034 10; εL=0.12147 17; εM+=0.03556 5
(2098 9)	1697.49	0.074 5	1.62 10	5.80 4	1.69 10	av E β =492.6 41; ε K=0.8002 10; ε L=0.12090 18; ε M+=0.03539 6
(2163 9)	1631.88	< 0.003	< 0.05	>7.4	< 0.05	av E β =521.5 40; ε K=0.7925 12; ε L=0.11960 19; ε M+=0.03500 6
(2286 9)	1508.52	0.068 7	0.86 8	6.15 5	0.93 9	av Eβ=576.0 40; εK=0.7758 14; εL=0.11681 22; εM+=0.03417 7
(2302 9)	1492.75	< 0.004	< 0.05	>7.4	< 0.05	av Eβ=582.9 40; εK=0.7734 14; εL=0.11642 23; εM+=0.03406 7

Continued on next page (footnotes at end of table)

¹⁴⁹Dy ε decay (4.2 min) 2019MeZX (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Ιβ ⁺ #	Iɛ#	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(2307 9)	1487.59	< 0.002	< 0.03	>7.7	< 0.03	av $E\beta$ =585.3 40; ε K=0.7726 14; ε L=0.11629 23;
(2321 9)	1473.75	< 0.004	< 0.05	>7.4	< 0.05	av Eβ=591.3 40; εK=0.7705 14; εL=0.11595 23; εM+=0.03392 7
(2334 9)	1461.26	0.026 7	0.29 8	6.6 1	0.32 9	av $E\beta$ =596.8 40; ε K=0.7686 15; ε L=0.11563 24; ε M+=0.03382 7
(2369 9)	1426.13	0.185 11	1.90 10	5.84 4	2.08 11	av Eβ=612.4 40; εK=0.7629 15; εL=0.11471 24; εM+=0.03355 8
(2374 9)	1420.55	0.103 8	1.05 8	6.10 4	1.15 9	av Eβ=614.8 40; εK=0.7620 15; εL=0.11456 25; εM+=0.03351 8
(2413 9)	1381.92	0.170 12	1.57 11	5.94 <i>4</i>	1.74 12	av Eβ=631.9 40; εK=0.7554 16; εL=0.1135 3; εM+=0.03320 8
(2522 9)	1272.73	0.029 9	0.21 6	6.9 1	0.24 7	av Eβ=680.4 40; εK=0.7353 18; εL=0.1103 3; εM+=0.03226 9
(2544 9)	1250.68	0.080 12	0.55 8	6.4 1	0.63 9	av Eβ=690.2 40; εK=0.7310 18; εL=0.1096 3; εM+=0.03205 9
(2589 9)	1205.95	0.080 21	0.50 13	6.5 1	0.58 15	av E β =710.1 40; ε K=0.7221 19; ε L=0.1082 3; ε M+=0.03164 9
(2590 [@] 9)	1205.37	0.03 3	0.19 16	6.9 4	0.22 19	av Eβ=710.4 40; εK=0.7219 19; εL=0.1082 3; εM+=0.03163 9
(2606 9)	1189.09	0.067 11	0.40 7	6.6 1	0.47 8	av Eβ=717.7 41; εK=0.7186 19; εL=0.1077 3; εM+=0.03148 9
(2611 9)	1183.86	0.078 12	0.46 7	6.54 7	0.54 8	av Eβ=719.9 41; εK=0.7175 19; εL=0.1075 3; εM+=0.03143 9
(2661 9)	1133.61	< 0.008	< 0.04	>7.6	< 0.05	av E β =742.5 41; ε K=0.7068 20; ε L=0.1058 3; ε M+=0.03094 9
(2675 [@] 9)	1120.09	< 0.03	< 0.2	>7.0	<0.2	av Eβ=748.4 41; εK=0.7039 20; εL=0.1054 3; εM+=0.03081 9
(2706 9)	1088.55	0.08 3	0.39 14	6.6 2	0.47 17	av Eβ=762.6 41; εK=0.6970 20; εL=0.1043 4; εM+=0.03049 10
(2746 9)	1049.24	0.02 1	0.07 3	7.4 2	0.09 4	av Eβ=780.1 41; εK=0.6882 21; εL=0.1029 4; εM+=0.03009 10
(2813 9)	982.05	<0.1	< 0.5	>6.6	<0.6	av Eβ=810.1 41; εK=0.6727 22; εL=0.1006 4; εM+=0.02939 10
(2825 9)	970.45	0.1 1	0.6 3	6.5 3	0.7 4	av Eβ=815.4 41; εK=0.6700 22; εL=0.1001 4; εM+=0.02926 10
(2842 [@] 9)	952.89	0.041 19	0.16 7	7.1 [‡] 2	0.20 9	av Eβ=823.2 41; εK=0.6658 22; εL=0.0995 4; εM+=0.02907 10
(2923 [@] 9)	872.46	0.08 6	0.26 19	6.9 [‡] 4	0.34 25	av $E\beta$ =859.3 41; ε K=0.6465 22; ε L=0.0965 4; ε M+=0.02820 10
(2925 9)	869.72	0.096 21	0.32 7	6.8 1	0.42 9	av $E\beta$ =860.5 41; ε K=0.6458 22; ε L=0.0964 4; ε M+=0.02817 10
(2951 9)	844.16	0.13 4	0.40 11	6.71 13	0.53 15	av E β =872.0 41; ε K=0.6396 23; ε L=0.0955 4; ε M+=0.02789 10
(2954 [@] 9)	840.71	< 0.02	< 0.06	>7.5	< 0.08	av $E\beta$ =873.5 41; ε K=0.6387 23; ε L=0.0953 4; ε M+=0.02785 10
(2958 9)	837.16	0.06 4	0.18 14	7.1 4	0.24 18	av $E\beta$ =875.1 41; ε K=0.6379 23; ε L=0.0952 4; ε M+=0.02781 10
(2970 9)	825.12	1.8 <i>I</i>	5.7 4	5.56 4	7.5 5	av $E\beta$ =880.6 41; ε K=0.6349 23; ε L=0.0947 4; ε M+=0.02768 10
(3040 9)	754.92	< 0.032	< 0.088	>7.4	< 0.12	av Eβ=912.2 41; εK=0.6174 23; εL=0.0921 4; εM+=0.02689 11
(3053 9)	741.64	0.2 1	0.5 3	6.6 3	0.7 4	av Eβ=918.1 <i>41</i> ; εK=0.6141 <i>23</i> ; εL=0.0916 <i>4</i> ; εM+=0.02675 <i>11</i>
(3106 9)	689.32	0.2 1	0.6 4	6.6 3	0.8 5	av Eβ=941.7 41; εK=0.6008 23; εL=0.0895 4; εM+=0.02616 11

Continued on next page (footnotes at end of table)

¹⁴⁹Dy ε decay (4.2 min) 2019MeZX (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Ιβ ⁺ #	Ie#	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(3335 9)	460.49	< 0.2	< 0.4	>6.8	<0.6	av Eβ=1045.3 41; εK=0.5426 23; εL=0.0807 4; εM+=0.02357 11
(3694 [@] 9)	100.75	< 0.9	<3	$>7.7^{1u}$	<4	av Eβ=1205.7 40; εK=0.6420 17; εL=0.0977 3; εM+=0.02862 8

 † Deduced by evaluators from I($\gamma\text{+ce})$ balance at each level.

[‡] Too low for suggested J^{π} change. There may be other γ transitions feeding this level. [#] Absolute intensity per 100 decays. [@] Existence of this branch is questionable.

 $\gamma(^{149}\text{Tb})$

I γ normalization: Listed intensities of γ rays are per 100 decays.

6

 $I\gamma(\gamma^{\pm})=9.0.9$ (1981ZuZZ). This gives a total β^{+} branch of $\approx 4.5\%$ which is consistent with the present level scheme. The ce data given under comments are from 2019MeZX, unless otherwise noted.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.#	α^{c}	Comments
31.7 <i>3</i> 100.7 <i>1</i>	0.07 <i>3</i> 15.3 8	872.46 100.75	(11/2) ⁻ 3/2 ⁺	840.71 0.0	13/2 ⁻ 1/2 ⁺	M1	2.153 <i>31</i>	$\alpha(K)=1.815\ 26;\ \alpha(L)=0.265\ 4;\ \alpha(M)=0.0578\ 8$ $\alpha(N)=0.01336\ 19;\ \alpha(O)=0.002057\ 29;\ \alpha(P)=0.0001352\ 19$ $E_{\gamma},I_{\gamma}:\ others:\ 100.8\ 2,\ with\ I_{\gamma}=17.8\ (1990Sa32);\ 100.8\ I,\ with\ I_{\gamma}=14.9\ (1975To03);\ 100.8\ 4,\ with\ I_{\gamma}=14.8\ (1981ZuZZ).$ Mult.: $\alpha(K)\exp=1.80\ 20,\ \alpha(L)\exp=0.28\ 4\ (2019MeZX);\ from$
106.2 <i>1</i>	8.3 2	206.91	5/2+	100.75	3/2+	M1	1.849 26	$\begin{array}{l} \alpha(\text{K}) \exp(\alpha(\text{L}) \exp=5.5 \ 15, \ \delta(\text{E2}/\text{M1}) < 0.98 \ (1978\text{Ma19}). \\ \alpha(\text{K}) = 1.559 \ 22; \ \alpha(\text{L}) = 0.2271 \ 32; \ \alpha(\text{M}) = 0.0496 \ 7 \\ \alpha(\text{N}) = 0.01147 \ 16; \ \alpha(\text{O}) = 0.001766 \ 25; \ \alpha(\text{P}) = 0.0001161 \ 17 \\ \text{E}_{\gamma}, \text{I}_{\gamma}: \ \text{others:} \ 106.2 \ 2, \ \text{with} \ \text{I}_{\gamma} = 10.1 \ 7 \ (1990\text{Sa32}); \ 106.3 \ I, \ \text{with} \\ \text{I}_{\gamma} = 7.6 \ 4 \ (1975\text{To03}); \ 106.4 \ 4, \ \text{with} \ \text{I}_{\gamma} = 7.7 \ 7 \ (1981\text{ZuZZ}). \\ \text{Mult.:} \ \alpha(\text{K}) \exp=1.54 \ 16, \ \alpha(\text{L}) \exp=0.21 \ 5 \ (2019\text{MeZX}); \ \text{from} \end{array}$
131.2 2	0.052 9	1381.92	7/2-	1250.68	5/2-	M1	1.013 15	α (K)exp/ α (L)exp=5 2 (1978Ma19), δ (E2/M1)<1.4. α (K)=0.854 13; α (L)=0.1241 18; α (M)=0.0271 4 α (N)=0.00627 9; α (O)=0.000965 14; α (P)=6.36×10 ⁻⁵ 9 Multiple (K) erg = 1.0.2
135.7 1	0.148 10	825.12	9/2-	689.32	7/2-	M1	0.921 <i>13</i>	Mult.: $\alpha(\mathbf{K})\exp=1.05$. $\alpha(\mathbf{K})=0.777 \ 11; \ \alpha(\mathbf{L})=0.1127 \ 16; \ \alpha(\mathbf{M})=0.02463 \ 35$ $\alpha(\mathbf{N})=0.00569 \ 8; \ \alpha(\mathbf{O})=0.000877 \ 12; \ \alpha(\mathbf{P})=5.78\times10^{-5} \ 8$ $\mathbf{E}_{\mathbf{y}}, \mathbf{I}_{\mathbf{y}}: \text{ other: } 135.7 \ 5, \text{ with } \mathbf{I}_{\mathbf{y}}=0.18 \ 5 \ (1990\text{Sa32}).$
137.9 <i>1</i>	0.127 10	982.05	(9/2)+	844.16	7/2+	M1	0.880 12	Mult.: α (K)exp=1.05 20. α (K)=0.742 11; α (L)=0.1077 15; α (M)=0.02353 33 α (N)=0.00544 8; α (O)=0.000838 12; α (P)=5.52×10 ⁻⁵ 8 Mult.: α (K)exp=1.1 3.
148.4 2 188.5 <i>1</i>	0.178 <i>12</i> 0.183 <i>18</i>	1876.88 2065.37	5/2 ⁻ 7/2 ⁻	1728.36 1876.88	5/2 ⁻ 5/2 ⁻	M1	0.367 5	$\alpha(K)=0.310 \ 4; \ \alpha(L)=0.0448 \ 6; \ \alpha(M)=0.00977 \ 14 \ \alpha(N)=0.002259 \ 32; \ \alpha(O)=0.000348 \ 5; \ \alpha(P)=2.301\times10^{-5} \ 32 \ E_{\gamma}, I_{\gamma}: \ other: \ 188.3 \ 5, \ with \ I_{\gamma}=0.11 \ 7 \ (1990Sa32).$ Mult: $\alpha(K)=0.0259 \ 38 \ 8$
197.2 <i>3</i> 219.9 <i>3</i> 223.3 2	0.035 22 0.046 15 0.20 4	2074.22 1492.75 1205.37	7/2 ⁻ (7/2,9/2,11/2) ⁺ (9/2) ⁺	1876.88 1272.73 982.05	5/2 ⁻ (9/2) ⁺ (9/2) ⁺	(M1) ^{<i>a</i>}	0.2305 <i>33</i>	$\alpha(K)=0.1948\ 28;\ \alpha(L)=0.0280\ 4;\ \alpha(M)=0.00611\ 9$ $\alpha(N)=0.001413\ 20;\ \alpha(O)=0.0002179\ 31;\ \alpha(P)=1.442\times10^{-5}\ 21$ $E_{\gamma}:\ other:\ 223.7\ 5,\ with\ I_{\gamma}=0.29\ 7,\ placed\ from\ 2065\ level\ in\ 1990Sa32.$
223.6 2	0.12 3	1697.49	9/2-	1473.75	(11/2)-	(M1) ^{<i>a</i>}	0.2297 33	Mult.: $\alpha(K)\exp\approx 0.193\ 20.$ $\alpha(K)=0.1941\ 28;\ \alpha(L)=0.0279\ 4;\ \alpha(M)=0.00609\ 9$

						¹⁴⁹ Dy ε decay (4.	2 min)	2019MeZX (continued)	
						<u>γ</u>	(¹⁴⁹ Tb) (co	ntinued)		
	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	J_i^π	E_{f}	${ m J}_f^\pi$	Mult. [#]	δ#	α^{c}	Comments
	245.1 3	0.12 3	1876.88	5/2-	1631.88	(3/2,5/2) ⁻	M1		0.1789 26	$\begin{aligned} &\alpha(\text{N}) = 0.001408 \ 20; \ \alpha(\text{O}) = 0.0002171 \ 31; \\ &\alpha(\text{P}) = 1.437 \times 10^{-5} \ 20 \\ &\text{Mult.:} \ \alpha(\text{K}) = \text{c} = 0.193 \ 20. \\ &\alpha(\text{K}) = 0.1512 \ 22; \ \alpha(\text{L}) = 0.02169 \ 31; \ \alpha(\text{M}) = 0.00473 \\ &7 \end{aligned}$
	253.6.1	6 78 20	460.49	7/0+	206.91	5/2+	M1±F2	$0.5 \pm 3 - 4$	0 152 11	$\alpha(N)=0.001094 \ 16; \ \alpha(O)=0.0001688 \ 24; \ \alpha(P)=1.118\times10^{-5} \ 16$ Mult.: $\alpha(K)\exp=0.20 \ 5. \ \alpha(N)=0.0001547 \ 24;$
	233.0 1	0.78 20	400.49	172	200.91	5/2	M1+E2	0.5 +5-4	0.132 11	$\alpha(N)=0.00102752, \alpha(O)=0.000134724, \alpha(P)=9.1\times10^{-6}11$ $\alpha(K)=0.12612; \alpha(L)=0.02025; \alpha(M)=0.0044616$ $E_{\gamma},I_{\gamma}: \text{ others: } 253.62, \text{ with }I_{\gamma}=8.16 (1990Sa32); 253.41, \text{ with }I_{\gamma}=7.48 (1975To03); 253.34, \text{ with }I_{\gamma}=7.27 (1981ZuZZ).$
,	267.7 2	0.087 14	1473.75	(11/2)-	1205.95	(7/2,9/2) ⁻	M1,E2		0.115 26	$\begin{array}{l} \alpha(\mathbf{K}) = 0.033 \ 27; \ \alpha(\mathbf{L}) = 0.0175 \ 5; \ \alpha(\mathbf{M}) = 0.00392 \ 20 \\ \alpha(\mathbf{N}) = 0.00090 \ 4; \ \alpha(\mathbf{O}) = 0.0001311 \ 24; \\ \alpha(\mathbf{P}) = 6.4 \times 10^{-6} \ 24 \\ \end{array}$
7	293.4 2	0.079 14	1381.92	7/2-	1088.55	5/2-	(M1)		0.1103 <i>16</i>	$\begin{array}{l} \alpha(\mathbf{K}) = 0.033 \ 13; \ \alpha(\mathbf{L}) = 0.01331 \ 19; \ \alpha(\mathbf{M}) = 0.00290 \\ 4 \\ \alpha(\mathbf{N}) = 0.000671 \ 9; \ \alpha(\mathbf{O}) = 0.0001036 \ 15; \\ \alpha(\mathbf{P}) = 6.88 \times 10^{-6} \ 10 \\ \mathbf{Mult} : \ \alpha(\mathbf{K}) = 0.10 \ 5 \end{array}$
	297.7 <i>3</i> 337.1 2	0.22 <i>4</i> 0.11 <i>3</i>	1250.68 2065.37	5/2 ⁻ 7/2 ⁻	952.89 1728.36	3/2 ⁻ 5/2 ⁻				u(R)exp=0.10 3.
	346.3 2	0.15 3	1728.36	5/2-	1381.92	7/2-	M1		0.0710 <i>10</i>	$\alpha(K)=0.0601 \ 8; \ \alpha(L)=0.00854 \ 12; \ \alpha(M)=0.001861 \\ 26 \\ \alpha(N)=0.000430 \ 6; \ \alpha(O)=6.64\times10^{-5} \ 9; \\ \alpha(P)=4.42\times10^{-6} \ 6 \\ Mult.; \ \alpha(K)exp=0.09 \ 3.$
	348.9 <i>1</i>	0.252 14	1841.63	9/2-	1492.75	(7/2,9/2,11/2)+	E1		0.01141 <i>16</i>	$\alpha(N)=6.70\times10^{-5} \ 9; \ \alpha(O)=1.013\times10^{-5} \ 14; \alpha(P)=6.21\times10^{-7} \ 9 \alpha(K)=0.00970 \ 14; \ \alpha(L)=0.001345 \ 19; \alpha(M)=0.000292 \ 4 Multi- \alpha(K)=0.0014 $
	353.9 <i>3</i>	0.10 3	1841.63	9/2-	1487.59	(7/2,9/2)+	(E1)		0.01102 16	$\alpha(K) = 0.00937 \ 13; \ \alpha(L) = 0.001299 \ 18; \alpha(M) = 0.000282 \ 4 \alpha(N) = 6.47 \times 10^{-5} \ 9; \ \alpha(O) = 9.79 \times 10^{-6} \ 14; \alpha(P) = 6.00 \times 10^{-7} \ 8 Mult : \ \alpha(K) exp < 0.020$
	358.6 <i>3</i> 359.3 <i>3</i>	0.15 <i>3</i> 0.09 <i>4</i>	1183.86 1492.75	9/2 ⁻ (7/2,9/2,11/2) ⁺	825.12 1133.61	9/2 ⁻ (9/2,11/2) ⁺	(M1) ^{&}		0.0645	E _γ ,I _γ : other: 358.9 <i>5</i> , with Iγ=0.29 7 (1990Sa32). α (K)=0.0546 <i>8</i> ; α (L)=0.00774 <i>11</i> ; α (M)=0.001687

From ENSDF

¹⁴⁹₆₅Tb₈₄-7

					¹⁴⁹ Dy <i>e</i>	e decay (4.2	2 min) 20	019MeZX (continued)
						<u> </u>	¹⁴⁹ Tb) (cont	tinued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	α ^C	Comments
359.6 2	0.65 8	460.49	7/2+	100.75	3/2+	E2 [@]	0.0362 5	$\begin{array}{c} \hline 24 \\ \alpha(\mathrm{N})=0.000390 \ 6; \ \alpha(\mathrm{O})=6.02\times10^{-5} \ 9; \ \alpha(\mathrm{P})=4.01\times10^{-6} \ 6 \\ \alpha(\mathrm{N})=0.000321 \ 5; \ \alpha(\mathrm{O})=4.57\times10^{-5} \ 6; \ \alpha(\mathrm{P})=1.815\times10^{-6} \ 26 \\ \alpha(\mathrm{K})=0.0282 \ 4; \ \alpha(\mathrm{L})=0.00622 \ 9; \ \alpha(\mathrm{M})=0.001409 \ 20 \\ \mathrm{E}_{\gamma},\mathrm{I}_{\gamma}: \ \text{others:} \ 359.8 \ 5, \ \text{with} \ \mathrm{I}_{\gamma}=0.45 \ 9 \ (1990\mathrm{Sa32}); \ 359.4 \ 4, \ \text{with} \ \mathrm{I}_{\gamma}=0.59 \ 6 \\ (1981\mathrm{ZuZZ}, \ \mathrm{unplaced}). \\ \mathrm{Mult.:} \ \alpha(\mathrm{K})\mathrm{exp}{\approx}0.033 \ 3. \end{array}$
361.2 <i>3</i> 367.8 <i>1</i>	0.07 <i>3</i> 0.64 <i>2</i>	1205.37 1841.63	(9/2)+ 9/2 ⁻	844.16 1473.75	$7/2^+$ (11/2) ⁻	M1	0.0606 9	$\alpha(K)=0.0514\ 7;\ \alpha(L)=0.00728\ 10;\ \alpha(M)=0.001586\ 22$ $\alpha(N)=0.000367\ 5;\ \alpha(O)=5.66\times10^{-5}\ 8;\ \alpha(P)=3.77\times10^{-6}\ 5$ Mult : $\alpha(K)$ exp=0.056.6
372.6 2	0.047 16	1461.26	$(5/2,7/2)^{-}$	1088.55	5/2-			Mult. u(R)0Ap=0.000 0.
376.6 2	0.081 14	837.16	5/2+	460.49	7/2+	M1	0.0570 8	α (N)=0.000344 5; α (O)=5.32×10 ⁻⁵ 7; α (P)=3.55×10 ⁻⁶ 5 α (K)=0.0483 7; α (L)=0.00684 10; α (M)=0.001489 21 Mult.: α (K)exp=0.08 4.
380.8 2	0.313 16	1205.95	(7/2,9/2) ⁻	825.12	9/2-	M1	0.0554 8	$\alpha(K)=0.0469\ 7;\ \alpha(L)=0.00664\ 9;\ \alpha(M)=0.001446\ 20$ $\alpha(N)=0.000334\ 5;\ \alpha(O)=5.16\times10^{-5}\ 7;\ \alpha(P)=3.44\times10^{-6}\ 5$ $E_{\gamma},I_{\gamma}:\ other:\ 381.4\ 5,\ with\ I_{\gamma}=0.32\ 9\ (1990Sa32).$ Mult.: $\alpha(K)exp=0.057\ 8.$
399.4 2	0.117 14	1088.55	5/2-	689.32	7/2-			
409.4 <i>1</i> 415.5 <i>1</i>	0.139 23 0.365 21	1883.08 1876.88	(9/2) ⁻ 5/2 ⁻	1473.75 1461.26	$(11/2)^{-}$ $(5/2,7/2)^{-}$	M1	0.0441 6	$\alpha(K)=0.0374\ 5;\ \alpha(L)=0.00528\ 7;\ \alpha(M)=0.001149\ 16$ $\alpha(N)=0.000266\ 4;\ \alpha(O)=4.11\times10^{-5}\ 6;\ \alpha(P)=2.74\times10^{-6}\ 4$ Mult.: $\alpha(K)\exp=0.035\ 6.$
421.0 3	0.093 23	1841.63	9/2-	1420.55	(9/2)-			
422.0 <i>4</i> 457.0 <i>1</i>	0.046 <i>23</i> 0.159 <i>17</i>	1883.08 1883.08	$(9/2)^{-}$ $(9/2)^{-}$	1461.26 1426.13	(5/2,7/2) ⁻ 9/2 ⁻	M1	0.0345 5	$\alpha(K)=0.0293 \ 4; \ \alpha(L)=0.00412 \ 6; \ \alpha(M)=0.000896 \ 13$ $\alpha(N)=0.0002072 \ 29; \ \alpha(O)=3.20\times10^{-5} \ 4; \ \alpha(P)=2.141\times10^{-6} \ 30$ Mult.: $\alpha(K)$ exp=0.046 20.
477.8 2	0.24 3	1728.36	5/2-	1250.68	5/2-	M1 [@]	0.0308 4	$\alpha(K)=0.0261 \ 4; \ \alpha(L)=0.00367 \ 5; \ \alpha(M)=0.000798 \ 11$ $\alpha(N)=0.0001846 \ 26; \ \alpha(O)=2.85\times10^{-5} \ 4; \ \alpha(P)=1.909\times10^{-6} \ 27$ Mult.: $\alpha(K)\exp\approx0.030 \ 6.$
479.5 <i>4</i> 491.6 2	0.035 <i>12</i> 0.06 <i>3</i>	1953.13 1473.75	$9/2^{-}$ (11/2) ⁻	1473.75 982.05	$(11/2)^{-}$ $(9/2)^{+}$			
494.6 <i>I</i>	1.07 3	1183.86	9/2-	689.32	7/2-	M1 [@]	0.0282 4	$\alpha(K)=0.02391 \ 33; \ \alpha(L)=0.00335 \ 5; \ \alpha(M)=0.000730 \ 10$ $\alpha(N)=0.0001688 \ 24; \ \alpha(O)=2.61\times10^{-5} \ 4; \ \alpha(P)=1.747\times10^{-6} \ 24$ $E_{\gamma},I_{\gamma}: \text{ others: } 494.6 \ 5, \text{ with } I_{\gamma}=1.0 \ 3 \ (1990Sa32); \ 494.6 \ 4, \text{ with } I_{\gamma}=0.89 \ 9$ (1981ZuZZ, unplaced). Mult.: $\alpha(K)\exp=0.025 \ 3.$
495.0 <i>3</i>	0.05 3	1876.88	5/2-	1381.92	7/2-			
499.9 3	0.058 12	1189.09	$(7/2)^{-}$	689.32	7/2-	M1 (0)	0.0072. (
501.1 2	0.208 23	1883.08	(9/2)	1381.92	1/2	MI	0.02/3 4	$\alpha(\mathbf{K})=0.02313\ 32;\ \alpha(\mathbf{L})=0.00324\ 3;\ \alpha(\mathbf{M})=0.000706\ 10$

 ∞

					149 Dy ε deca	ay (4.2 min)	2019 N	MeZX (continu	ued)
						$\gamma(^{149}\text{Tb})$	(continue	ed)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	J_i^π	E_f	J_f^π	Mult. [#]	$\delta^{\#}$	α^{c}	Comments
									α (N)=0.0001632 23; α (O)=2.522×10 ⁻⁵ 35; α (P)=1.689×10 ⁻⁶ 24 Mult.: α (K)exp≈0.028 8.
501.8 <i>3</i> 505.5 <i>3</i>	0.056 <i>20</i> 0.139 <i>21</i>	1928.15 1487.59	(7/2 ⁻ ,9/2 ⁻) (7/2,9/2) ⁺	1426.13 982.05	9/2 ⁻ (9/2) ⁺	M1		0.0267 4	α (K)=0.02262 32; α (L)=0.00317 4; α (M)=0.000690 10 α (N)=0.0001596 22; α (O)=2.466×10 ⁻⁵ 35; α (P)=1.652×10 ⁻⁶ 23 Mult.: α (K)exp=0.037 18.
508.5 2	0.17 4	1461.26	(5/2,7/2) ⁻	952.89	3/2-	0			
509.9 2	0.70 17	970.45	7/2+	460.49	7/2+	M1 [@]		0.0261 4	$\alpha(K)=0.02212 \ 31; \ \alpha(L)=0.00310 \ 4; \ \alpha(M)=0.000675 \ 9$ $\alpha(N)=0.0001560 \ 22; \ \alpha(O)=2.411\times10^{-5} \ 34;$ $\alpha(P)=1.615\times10^{-6} \ 23$ Mult : $\alpha(K)=0.028 \ 10$
511.1 5	0.10 3	1492.75	(7/2,9/2,11/2)+	982.05	$(9/2)^+$				
517.1 3	0.09 4	1487.59	(7/2,9/2)+	970.45	7/2+	(M1) ^{<i>a</i>}		0.02517 35	$\alpha(K)=0.02135 \ 30; \ \alpha(L)=0.00299 \ 4; \ \alpha(M)=0.000651 \ 9$ $\alpha(N)=0.0001505 \ 21; \ \alpha(O)=2.326\times10^{-5} \ 33;$ $\alpha(P)=1.559\times10^{-6} \ 22$ Mult : $\alpha(K)$ evn $\approx 0.033 \ 15$
517.4 3	0.09 4	2026.32	(7/2) ⁻	1508.52	(7/2)-	(M1) ^{<i>a</i>}		0.02513 35	$\alpha(\mathbf{K})=0.02132\ 30;\ \alpha(\mathbf{L})=0.00299\ 4;\ \alpha(\mathbf{M})=0.000650\ 9$ $\alpha(\mathbf{N})=0.0001503\ 21;\ \alpha(\mathbf{O})=2.322\times10^{-5}\ 33;$ $\alpha(\mathbf{P})=1.556\times10^{-6}\ 22$ Mult: $\alpha(\mathbf{K})\approx0.0033\ 15$
521.6 <i>1</i>	0.24 2	982.05	(9/2)+	460.49	7/2+	M1		0.02462 <i>34</i>	α(K)=0.02089 29; α(L)=0.00292 4; α(M)=0.000636 9 α(N)=0.0001472 21; α(O)=2.274×10 ⁻⁵ 32; α(P)=1.524×10 ⁻⁶ 21 E _γ ,I _γ : other: 521.8 5, with Iγ=0.30 9 (1990Sa32). Mult: α(K)exp=0.028 10
526.6 <i>3</i>	0.069 14	1508.52	$(7/2)^{-}$	982.05	$(9/2)^+$				Mult. $u(\mathbf{K}) \exp[-0.026 \ 10]$.
534.7 1	1.0 2	741.64	5/2+	206.91	5/2+	M1(+E2)	0.4 4	0.0216 28	$\alpha(K)=0.0183\ 25;\ \alpha(L)=0.00261\ 25;\ \alpha(M)=0.00057\ 5$ $\alpha(N)=0.000132\ 12;\ \alpha(O)=2.02\times10^{-5}\ 20;\ \alpha(P)=1.33\times10^{-6}$ 19 E _{γ} ,I _{γ} : others: 534.8 5, with I γ =1.14 18 (1990Sa32); 534.7 4, with I γ =0.74 7 (1981ZuZZ). Mult $\delta_{12}\ \alpha(K)$ exp=0.018 2
537.8 2	0.085 19	1508.52	$(7/2)^{-}$	970.45	7/2+				Man,o. a(11)0Ap=0.010 2.
544.6 <i>3</i> 548.1 <i>1</i>	0.068 <i>16</i> 0.468 <i>19</i>	1728.36 1420.55	5/2 ⁻ (9/2) ⁻	1183.86 872.46	9/2 ⁻ (11/2) ⁻	M1		0.02171 <i>30</i>	$\alpha(K)=0.01842\ 26;\ \alpha(L)=0.00258\ 4;\ \alpha(M)=0.000560\ 8$ $\alpha(N)=0.0001296\ 18;\ \alpha(O)=2.003\times10^{-5}\ 28;$ $\alpha(P)=1.344\times10^{-6}\ 19$ $E_{\gamma}I_{\gamma}:\ other:\ 548.2\ 5,\ with\ I_{\gamma}=0.75\ 7\ (1990Sa32).$
553.6 <i>3</i>	0.07 3	2014.73	(9/2)-	1461.26	(5/2,7/2)-				man a(K)0AP-0.010 7.

					¹⁴⁹ D	y ε decay (4.2	2 min)	2019MeZX (0	continued)
						<u>γ(</u>	¹⁴⁹ Tb) (continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [#]	δ#	α^{c}	Comments
553.9 <i>3</i> 556.7 <i>2</i>	0.07 <i>3</i> 0.28 <i>4</i>	1426.13 1381.92	9/2 ⁻ 7/2 ⁻	872.46 825.12	(11/2) ⁻ 9/2 ⁻	(M1) ^a		0.02087 29	α (K)=0.01772 25; α (L)=0.002475 35; α (M)=0.000538 8 α (N)=0.0001245 17; α (O)=1.925×10 ⁻⁵ 27; α (P)=1.291×10 ⁻⁶ 18 E _y ,I _y : others: 556.9 5, with Iy=0.43 11 (1990Sa32); 556.8 4, with Iy=1.33 13 (1981ZuZZ, unplaced). What α (K)=0.010 5
556.8 2	0.21 4	2065.37	7/2-	1508.52	(7/2) ⁻	(M1) ^{<i>a</i>}		0.02086 29	$\alpha(\mathbf{K}) = 0.01771 \ 25; \ \alpha(\mathbf{L}) = 0.002474 \ 35; \ \alpha(\mathbf{M}) = 0.000538 \ 8 \\ \alpha(\mathbf{N}) = 0.0001244 \ 17; \ \alpha(\mathbf{O}) = 1.924 \times 10^{-5} \ 27; \ \alpha(\mathbf{P}) = 1.291 \times 10^{-6} \ 18 \\ \text{Mult}: \ \alpha(\mathbf{K}) = 0.0015 \ 5 \ 10^{-6} \ 10^{-5}$
561.4 <i>1</i>	0.289 21	1250.68	5/2-	689.32	7/2-	M1		0.02043 29	
565.3 2 568.9 1	0.091 <i>23</i> 0.284 <i>19</i>	2026.32 1841.63	(7/2) ⁻ 9/2 ⁻	1461.26 1272.73	$(5/2,7/2)^-$ $(9/2)^+$	E1		0.00370 5	α (K)=0.00316 4; α (L)=0.000427 6; α (M)=9.24×10 ⁻⁵ 13 α (N)=2.128×10 ⁻⁵ 30; α (O)=3.25×10 ⁻⁶ 5; α (P)=2.080×10 ⁻⁷ 29
576.4 2	0.255 18	1420.55	(9/2)-	844.16	7/2+	E1		0.00360 5	Mult.: $\alpha(K)\exp<0.007$. $\alpha(K)=0.00307 \ 4; \ \alpha(L)=0.000415 \ 6; \ \alpha(M)=8.98\times10^{-5} \ 13$ $\alpha(N)=2.067\times10^{-5} \ 29; \ \alpha(O)=3.16\times10^{-6} \ 4; \ \alpha(P)=2.023\times10^{-7} \ 28$ Mult.: $\alpha(K)\exp<0.005$
577.8 2	0.162 19	2065.37	7/2-	1487.59	(7/2,9/2)+	(E1)		0.00358 5	Mult.: $\alpha(K)\exp<0.005$. $\alpha(K)=0.00306\ 4;\ \alpha(L)=0.000413\ 6;\ \alpha(M)=8.93\times10^{-5}\ 13$ $\alpha(N)=2.056\times10^{-5}\ 29;\ \alpha(O)=3.14\times10^{-6}\ 4;\ \alpha(P)=2.013\times10^{-7}\ 28$ Mult.: $\alpha(K)\exp<0.013$ gives (E1.E2): E1 from level scheme.
588.6 <i>4</i> 600.2 <i>2</i>	0.06 <i>3</i> 0.11 <i>4</i>	2014.73 2026.32	(9/2) ⁻ (7/2) ⁻	1426.13 1426.13	9/2 ⁻ 9/2 ⁻	(M1) ^{<i>a</i>}		0.01727 24	$\alpha(K)=0.01466\ 21;\ \alpha(L)=0.002043\ 29;\ \alpha(M)=0.000444\ 6$ $\alpha(N)=0.0001028\ 14;\ \alpha(O)=1.589\times10^{-5}\ 22;\ \alpha(P)=1.067\times10^{-6}\ 15$
601.2 <i>3</i>	0.15 4	1426.13	9/2-	825.12	9/2-	(M1) ^{<i>a</i>}		0.01720 24	Mult.: $\alpha(K)\exp\approx 0.020 5$. $\alpha(K)=0.01460 21$; $\alpha(L)=0.002034 29$; $\alpha(M)=0.000442 6$ $\alpha(N)=0.0001023 14$; $\alpha(O)=1.582\times10^{-5} 22$; $\alpha(P)=1.063\times10^{-6} 15$ Mult.: $\alpha(K)\exp\approx 0.020 5$
601.2 <i>3</i>	0.17 4	1473.75	(11/2)-	872.46	(11/2)-	(M1) ^a		0.01720 24	Mult.: α (K)exp≈0.020 5. α (K)=0.01460 21; α (L)=0.002034 29; α (M)=0.000442 6 α (N)=0.0001023 14; α (O)=1.582×10 ⁻⁵ 22; α (P)=1.063×10 ⁻⁶ 15 Mult.: α (K)exp≈0.020 5.
633.2 <i>3</i> 635.6 <i>3</i> 636.3 <i>3</i>	0.09 <i>3</i> 0.31 <i>4</i> 0.37 <i>6</i>	1473.75 1841.63 1841.63	(11/2) ⁻ 9/2 ⁻ 9/2 ⁻	840.71 1205.95 1205.37	13/2 ⁻ (7/2,9/2) ⁻ (9/2) ⁺	[E1]		0.00292 4	Mult.: see comment for 636.3 γ . $\alpha(K)=0.002490\ 35;\ \alpha(L)=0.000335\ 5;\ \alpha(M)=7.24\times10^{-5}\ 10$ $\alpha(N)=1.667\times10^{-5}\ 23;\ \alpha(O)=2.55\times10^{-6}\ 4;\ \alpha(P)=1.646\times10^{-7}\ 23$ Mult.: $\alpha(K)$ exp=0.0104 10 gives M1 or E2, but inconsistent with level scheme. However, it would be consistent with the level
637.3 1	2.94 11	844.16	7/2+	206.91	5/2+	M1+E2 [@]	≈0.8	≈0.0122	scheme if the α (K)exp was for the 635.6 γ . α (K) \approx 0.0102; α (L) \approx 0.0015; α (M) \approx 0.00033 α (N) \approx 7.5 \times 10 ⁻⁵ ; α (O) \approx 1.15 \times 10 ⁻⁵ ; α (P) \approx 7.3 \times 10 ⁻⁷

 $^{149}_{65}{\rm Tb}_{84}\text{--}10$

						149 Dy ε deca	y (4.2 min)	2019MeZX (co	ntinued)
							$\gamma(^{149}\text{Tb})$ (co	ontinued)	
	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult. [#]	δ#	α ^c	Comments
	640.8 <i>1</i>	0.73 2	741.64	5/2+	100.75 3/2+	M1+E2	1.1 +4-3	0.0109 <i>11</i>	E _γ ,I _γ : others: 637.3 <i>3</i> , with Iγ=3.7 5 (1990Sa32); 637.2 <i>4</i> , with Iγ=3.0 <i>3</i> (1981ZuZZ). Mult.: α (K)exp≈0.0104 <i>10</i> . α (K)=0.0092 <i>10</i> ; α (L)=0.00137 <i>11</i> ; α (M)=0.000300 22 α (N)=6.9×10 ⁻⁵ 5; α (O)=1.05×10 ⁻⁵ 9; α (P)=6.5×10 ⁻⁷ 7 E _γ ,I _γ : other: 641.0 5, with Iγ=0.55 <i>13</i> (1990Sa32). Mult.,δ: α (K)exp=0.0091 8.
	648.0 <i>4</i> 648.7 <i>2</i>	0.035 <i>10</i> 0.16 <i>3</i>	2074.22 1473.75	7/2 ⁻ (11/2) ⁻	1426.13 9/2 ⁻ 825.12 9/2 ⁻	M1		0.01422 20	$\alpha(K)=0.01208 \ 17; \ \alpha(L)=0.001678 \ 24; \ \alpha(M)=0.000365 \ 5 \\ \alpha(N)=8.44\times10^{-5} \ 12; \ \alpha(O)=1.305\times10^{-5} \ 18; \ \alpha(P)=8.78\times10^{-7} \ 12 \\ Mult.: \ \alpha(K)exp=0.014 \ 3.$
	653.6 <i>1</i>	9.1 4	689.32	7/2-	35.75 11/2	- E2 [@]		0.00745 10	α(K)=0.00615 9; α(L)=0.001014 14; α(M)=0.0002244 31 α(N)=5.15×10-5 7; α(O)=7.67×10-6 11; α(P)=4.19×10-7 6 Eγ,Iγ: others: 653.7 4, with Iγ=9.5 8 (1990Sa32); 653.6 1, with Iγ=8.9 9 (1975To03); 653.2 4, with Iγ=8.9 9 (1981ZuZZ) for a composite line. Parent level not proposed in 1981ZuZZ; 653.2γ placed from 755 level. Mult.: α(K)exp≈0.0068 5.
11	654.1 2	0.81 12	754.92	5/2+	100.75 3/2+	(M1) ^{&}		0.01393 20	α(K)=0.01183 17; α(L)=0.001644 23; α(M)=0.000357 5 α(N)=8.26×10-5 12; α(O)=1.278×10-5 18; α(P)=8.60×10-7 12 Eγ,Iγ: other: 653.7 4, with Iγ=1.62 22 (1990Sa32); 653.2 4, with Iγ=8.9 9 (1981ZuZZ) for a composite line. See also 653.6γ from 689 level. Mult.: α(K)exp≈0.0068 5 gives (M1,E2); M1 preferred by level scheme.
	657.8 2 662.8 <i>1</i>	0.089 <i>16</i> 0.531 <i>16</i>	1841.63 869.72	9/2 ⁻ 5/2 ⁺	1183.86 9/2 ⁻ 206.91 5/2 ⁺	M1+E2	0.65 25	0.0116 10	$\alpha(\text{K})=0.0098 \ 9; \ \alpha(\text{L})=0.00141 \ 10; \ \alpha(\text{M})=0.000307 \ 21 \ \alpha(\text{N})=7.1\times10^{-5} \ 5; \ \alpha(\text{O})=1.09\times10^{-5} \ 8; \ \alpha(\text{P})=7.1\times10^{-7} \ 7 \ \text{E}_{\gamma}, \text{I}_{\gamma}: \text{ other: } 662.9 \ 5, \text{ with } \text{I}_{\gamma}=0.50 \ 13 \ (1990\text{Sa32}).$
	683.3 <i>3</i>	0.16 4	1508.52	(7/2)-	825.12 9/2-	(M1) ^{<i>a</i>}		0.01249 18	Mult., α (K)exp=0.0098 8. α (K)=0.01062 15; α (L)=0.001473 21; α (M)=0.000320 4 α (N)=7.40×10 ⁻⁵ 10; α (O)=1.145×10 ⁻⁵ 16; α (P)=7.71×10 ⁻⁷ 11 Mult : α (K)exp=0.013 2
	683.7 <i>3</i>	0.13 4	2065.37	7/2-	1381.92 7/2-	(M1) ^{<i>a</i>}		0.01248 18	$\alpha(K) = 0.01060 \ 15; \ \alpha(L) = 0.001470 \ 21; \ \alpha(M) = 0.000320 \ 4$ $\alpha(N) = 7.39 \times 10^{-5} \ 10; \ \alpha(O) = 1.143 \times 10^{-5} \ 16; \ \alpha(P) = 7.70 \times 10^{-7} \ 11$ Mult : $\alpha(K) \exp 0.013 \ 2$.
	692.7 <i>1</i>	0.822 14	1381.92	7/2-	689.32 7/2-	M1+E2 [@]	≈0.7	≈0.0102	$\alpha(K) \approx 0.0087; \ \alpha(L) \approx 0.00124; \ \alpha(M) \approx 0.00027$ $\alpha(N) \approx 6.3 \times 10^{-5}; \ \alpha(O) \approx 9.6 \times 10^{-6}; \ \alpha(P) \approx 6.2 \times 10^{-7}$ $E_{\gamma}I_{\gamma}: \text{ others: } 692.6 5, \text{ with } I_{\gamma} = 0.46 \ 16 \ (1990Sa32); \ 692.9 \ 4, \text{ with } I_{\gamma} = 0.74 \ 7 \ (1981ZuZZ, \text{ unplaced}).$ Mult $\delta_{\gamma} = \alpha(K) \exp \approx 0.0087, \ 8$
	693.0 <i>3</i>	0.035 12	1876.88	5/2-	1183.86 9/2-				man.,v. a(1)exp~0.0007 0.

						$\gamma(^{149})$	⁹ Tb) (continue	d)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	$\delta^{\#}$	α^{c}	Comments
697.0 5 699.3 2 706.4 3 708.0 3 721.5 1	0.05 <i>3</i> 0.127 <i>14</i> 0.071 <i>14</i> 0.086 <i>14</i> 0.257 <i>16</i>	2157.98 1883.08 1461.26 1841.63 1841.63	(7/2) ⁻ (9/2) ⁻ (5/2,7/2) ⁻ 9/2 ⁻ 9/2 ⁻	1461.26 1183.86 754.92 1133.61 1120.09	$(5/2,7/2)^{-}$ 9/2 ⁻ 5/2 ⁺ (9/2,11/2) ⁺ (7/2) ⁺	E1		2.25×10 ⁻³ 3	$\alpha(K)=0.001922\ 27;\ \alpha(L)=0.000257\ 4;$ $\alpha(M)=5.55\times10^{-5}\ 8$ $\alpha(N)=1\ 279\times10^{-5}\ 18;\ \alpha(O)=1\ 959\times10^{-6}\ 27;$
728.6 1	0.331 16	1189.09	(7/2)-	460.49	7/2+	E1		2.20×10 ⁻³ 3	$\alpha(N)=1.270\times10^{-7} I8$ Mult.: $\alpha(K)=0.00184 \ 26; \ \alpha(L)=0.0002516 \ 35;$ $\alpha(M)=5.44\times10^{-5} \ 8; \ \alpha(O)=1.920\times10^{-6} \ 27;$
731.6 2	0.197 <i>16</i>	2157.98	(7/2)-	1426.13	9/2-	M1		0.01055 15	$\alpha(P)=1.251\times10^{-7.18}$ Mult.: $\alpha(K)\exp<0.0035$. $\alpha(K)=0.00897$ 13; $\alpha(L)=0.001241$ 17; $\alpha(M)=0.000270$ 4 $\alpha(N)=6.24\times10^{-5}$ 9; $\alpha(O)=9.65\times10^{-6}$ 14;
736.4 1	2.40 7	837.16	5/2+	100.75	3/2+	M1 [@]		0.01038 <i>15</i>	$\alpha(P)=6.50\times10^{-7} 9$ Mult.: $\alpha(K)\exp=0.010 2$. $\alpha(K)=0.00882 12$; $\alpha(L)=0.001221 17$; $\alpha(M)=0.000265 4$ $\alpha(N)=6.14\times10^{-5} 9$; $\alpha(O)=9.49\times10^{-6} 13$; $\alpha(P)=6.40\times10^{-7} 9$
736.8 2	0.48 6	1426.13	9/2-	689.32	7/2-				$E_{\gamma,I_{\gamma}}$: others: 736.4 <i>3</i> , with Iγ=2.6 <i>3</i> (1990Sa32); 736.5 <i>l</i> , with Iγ=2.9 <i>5</i> (1975To03) for a composite line; 736.6 <i>4</i> , with Iγ=2.8 <i>3</i> (1981ZuZZ). Mult.: α(K)exp≈0.0089 <i>7</i> .
741.7 1	2.40 20	741.64	5/2+	0.0	1/2+	E2		0.00555 8	$\alpha(K)=0.00461\ 6;\ \alpha(L)=0.000730\ 10;$ $\alpha(M)=0.0001609\ 23$ $\alpha(N)=3.70\times10^{-5}\ 5;\ \alpha(O)=5.54\times10^{-6}\ 8;$ $\alpha(P)=3.16\times10^{-7}\ 4$ $E_{\gamma},I_{\gamma}:\ others:\ 741.8\ 3,\ with\ I_{\gamma}=2.53\ 18$ (1990Sa32);\ 741.7\ 1,\ I_{\gamma}=2.6\ 4\ (1975To03);\ 741.9
745.0 2	0.26 3	1205.37	(9/2)+	460.49	7/2+	M1+E2	1.3 +41-7	0.0072 17	4, with $17=2.5.5$ (19612022). Mult.: $\alpha(K) \exp=0.0050.5$. $\alpha(K)=0.0061.15$; $\alpha(L)=0.00089.17$; $\alpha(M)=0.00020.4$ $\alpha(N)=4.5\times10^{-5}.8$; $\alpha(O)=6.9\times10^{-6}.14$; $\alpha(P)=4.3\times10^{-7}.11$
753.2 2	0.28 3	1841.63	9/2-	1088.55	5/2-	(E2)		0.00536 8	Mult., δ : α (K)exp=0.0060 <i>13</i> . α (K)=0.00446 <i>6</i> ; α (L)=0.000702 <i>10</i> ;

From ENSDF

 $^{149}_{65}{
m Tb}_{84}$ -12

						¹⁴⁹ I	Oy ε decay ((4.2 min)	2019MeZX (co	ontinued)
								$\gamma(^{149}\text{Tb})$ (co	ontinued)	
	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ#	α^{c}	Comments
	754.8 2	0.55 3	754.92	5/2+	0.0	1/2+	E2		0.00533 7	$ \begin{array}{c} \alpha(\mathrm{M}) = 0.0001547 \ 22 \\ \alpha(\mathrm{N}) = 3.55 \times 10^{-5} \ 5; \ \alpha(\mathrm{O}) = 5.33 \times 10^{-6} \ 7; \ \alpha(\mathrm{P}) = 3.06 \times 10^{-7} \ 4 \\ \mathrm{Mult.:} \ \alpha(\mathrm{K}) \mathrm{exp} = 0.0029 \ 15 \ \mathrm{gives} \ \mathrm{E1}, \mathrm{E2}; \ \mathrm{E2} \ \mathrm{from} \ \mathrm{level} \ \mathrm{scheme.} \\ \alpha(\mathrm{K}) = 0.00444 \ 6; \ \alpha(\mathrm{L}) = 0.000698 \ 10; \ \alpha(\mathrm{M}) = 0.0001538 \ 22 \\ \alpha(\mathrm{N}) = 3.54 \times 10^{-5} \ 5; \ \alpha(\mathrm{O}) = 5.31 \times 10^{-6} \ 7; \ \alpha(\mathrm{P}) = 3.05 \times 10^{-7} \ 4 \\ \mathrm{E}_{\gamma}, \mathrm{I}_{\gamma}: \ \mathrm{others:} \ 754.5 \ 5, \ \mathrm{with} \ \mathrm{I}_{\gamma} = 1.19 \ 9 \ (1990\mathrm{Sa32}, \ \mathrm{probably} \\ \mathrm{doublet}); \ 754.8 \ 4, \ \mathrm{with} \ \mathrm{I}_{\gamma} = 0.59 \ 6 \ (1981\mathrm{ZuZZ}). \end{array} $
	763.6 1	0.48 2	970.45	7/2+	206.91	5/2+	M1		0.00950 <i>13</i>	Mult.: $\alpha(K)\exp=0.0052 \ 9.$ $\alpha(K)=0.00807 \ 11; \ \alpha(L)=0.001115 \ 16; \ \alpha(M)=0.0002424 \ 34$ $\alpha(N)=5.60\times10^{-5} \ 8; \ \alpha(O)=8.67\times10^{-6} \ 12; \ \alpha(P)=5.85\times10^{-7} \ 8$ $E_{\gamma},I_{\gamma}: \text{ other: } 763.4 \ 5, \text{ with } I_{\gamma}=0.37 \ 11 \ (19908a32).$ Mult.: $\alpha(K)\exp=0.0080 \ 5.$
	769.0 <i>3</i>	0.64 4	869.72	5/2+	100.75	3/2+	M1 [@]		0.00933 13	$\alpha(K)=0.00793 \ 11; \ \alpha(L)=0.001096 \ 15; \ \alpha(M)=0.0002381 \ 33$ $\alpha(N)=5.51\times10^{-5} \ 8; \ \alpha(O)=8.52\times10^{-6} \ 12; \ \alpha(P)=5.75\times10^{-7} \ 8$ Mult.: $\alpha(K)\exp\approx0.0079 \ 6.$
	769.3 2	0.10 3	1953.13	9/2-	1183.86	9/2-	(M1) ^{&}		0.00932 13	$\alpha(K)=0.00793 \ 11; \ \alpha(L)=0.001095 \ 15; \ \alpha(M)=0.0002379 \ 33 \ \alpha(N)=5.50\times10^{-5} \ 8; \ \alpha(O)=8.51\times10^{-6} \ 12; \ \alpha(P)=5.74\times10^{-7} \ 8$
13	771.8 <i>3</i> 775.1 2	0.16 <i>4</i> 2.7 <i>3</i>	1461.26 982.05	(5/2,7/2) ⁻ (9/2) ⁺	689.32 206.91	7/2 ⁻ 5/2 ⁺	E2		0.00502 7	$\alpha(K) = 0.00419 \ 6; \ \alpha(L) = 0.000654 \ 9; \ \alpha(M) = 0.0001438 \ 20$ $\alpha(K) = 3.31 \times 10^{-5} \ 5; \ \alpha(O) = 4.97 \times 10^{-6} \ 7; \ \alpha(P) = 2.87 \times 10^{-7} \ 4$ $E_{\gamma}I_{\gamma}: \ \text{other:} \ 775.4 \ 3, \ \text{with} \ I_{\gamma} = 6.4 \ 5 \ (1990Sa32); \ 775.3 \ 1, \ \text{with} \ I_{\gamma} = 5.2 \ 5 \ (1975To03); \ 775.4 \ 4, \ \text{with} \ I_{\gamma} = 5.2 \ 6 \ (1981ZuZZ); \ \text{all} \ \text{the three intensities seem too high.}$ Mult: $\alpha(K) = 0.0047 \ 7.$
	784.0 <i>5</i> 788.3 <i>3</i>	0.035 <i>12</i> 0.14 <i>4</i>	1473.75 1876.88	$(11/2)^{-}$ 5/2 ⁻	689.32 1088.55	7/2 ⁻ 5/2 ⁻				
	789.4 1	11.58 40	825.12	9/2-	35.75	11/2-	M1 [@]		0.00875 12	$\alpha(K)=0.00744 \ 10; \ \alpha(L)=0.001027 \ 14; \ \alpha(M)=0.0002231 \ 31 \ \alpha(N)=5.16\times10^{-5} \ 7; \ \alpha(O)=7.98\times10^{-6} \ 11; \ \alpha(P)=5.39\times10^{-7} \ 8 \ E_{\gamma}, I_{\gamma}: \ others: \ 789.4 \ 2, \ with \ I_{\gamma}=13.9 \ 10 \ (1990Sa32); \ 789.4 \ 1, \ I_{\gamma}=9.7 \ 10 \ (1975003); \ 789.5 \ 4, \ with \ I_{\gamma}=9.6 \ 10 \ (1981ZuZZ, \ unplaced).$ Mult: $\alpha(K)=p\approx0.0079 \ 5.$
	794.5 <i>3</i> 805.0 <i>1</i>	0.21 <i>5</i> 0.54 <i>3</i>	1883.08 840.71	(9/2) ⁻ 13/2 ⁻	1088.55 35.75	5/2 ⁻ 11/2 ⁻	M1+E2	0.8 +4-3	0.0069 8	$\alpha(K)=0.0058$ 7; $\alpha(L)=0.00083$ 8; $\alpha(M)=0.000181$ 17 $\alpha(N)=4.2\times10^{-5}$ 4; $\alpha(O)=6.4\times10^{-6}$ 6; $\alpha(P)=4.2\times10^{-7}$ 5
	812.2 <i>1</i>	0.248 21	1272.73	(9/2)+	460.49	7/2+	M1		0.00816 11	Mult., δ : α (K)exp=0.0059 δ . α (K)=0.00694 10 ; α (L)=0.000957 13 ; α (M)=0.0002079 29 α (N)=4.81×10 ⁻⁵ 7; α (O)=7.44×10 ⁻⁶ 10 ; α (P)=5.02×10 ⁻⁷ 7 Mult: α (K)exp=0.0067 δ
	819.3 <i>3</i>	0.15 4	1508.52	(7/2)-	689.32	7/2-	(M1) ^a		0.00799 11	with: $\alpha(K) \exp=0.0067 \ s.$ $\alpha(K) = 0.00679 \ 10; \ \alpha(L) = 0.000937 \ 13; \ \alpha(M) = 0.0002035 \ 29$ $\alpha(N) = 4.71 \times 10^{-5} \ 7; \ \alpha(O) = 7.28 \times 10^{-6} \ 10; \ \alpha(P) = 4.92 \times 10^{-7} \ 7$ Mult: $\alpha(K) \exp=0.0063 \ 25$ for 819.3+819.6 doublet gives M1(+E2), $\delta < 1.5$.

From ENSDF

					¹⁴⁹ Dy	ε decay (4.2	min)	2019MeZX (con	tinued)
						$\gamma(1^2)$	¹⁹ Tb) (c	ontinued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	J_i^π	\mathbf{E}_{f}	J_f^π	Mult. [#]	$\delta^{\texttt{\#}}$	α^{c}	Comments
819.6 <i>3</i>	0.08 3	1953.13	9/2-	1133.61	(9/2,11/2)+	[E1] ^{<i>a</i>}		1.74×10 ⁻³ 2	α(K)=0.001491 21; α(L)=0.0001980 28; α(M)=4.28×10-5 6 α(N)=9.86×10-6 14; α(O)=1.513×10-6 21; α(P)=9.93×10-8 14 Mult.: α(K)exp=0.0063 25 for 819.3+819.6 doublet gives M1(+E2), δ<1.5, but E1 required from level scheme.
823.6 <i>4</i> 825.4 <i>5</i> 827.6 <i>2</i>	0.10 <i>4</i> 0.02 <i>1</i> 0.135 <i>19</i>	1776.61 1697.49 1876.88	7/2 ⁻ 9/2 ⁻ 5/2 ⁻	952.89 872.46 1049.24	3/2 ⁻ (11/2) ⁻ (5/2 ⁺)				
836.7 1	4.84 7	872.46	(11/2)-	35.75	11/2-	M1+E2 [@]	≈1.1	≈0.0058	$\alpha(K) \approx 0.0049; \ \alpha(L) \approx 0.00070; \ \alpha(M) \approx 0.000153$ $\alpha(N) \approx 3.5 \times 10^{-5}; \ \alpha(O) \approx 5.4 \times 10^{-6}; \ \alpha(P) \approx 3.5 \times 10^{-7}$ $E_{\gamma}, I_{\gamma}: \text{ other: } 836.7 \ 3, \text{ with } I_{\gamma} = 5.3 \ 4 \ (1990\text{Sa32}).$ Mult.: $\alpha(K) \exp \approx 0.0048 \ 4.$
837.1 <i>3</i> 842.3 <i>3</i>	0.30 6	837.16 1049.24	$5/2^+$ (5/2 ⁺)	0.0 206.91	$\frac{1}{2^+}$ 5/2 ⁺				E_{γ}, I_{γ} : other: 836.8 4, with $I_{\gamma}=3.7$ 4 (1981ZuZZ).
852.2 3	0.15 5	952.89	3/2-	100.75	3/2+	E1		1.62×10 ⁻³ 2	α (K)=0.001382 <i>19</i> ; α (L)=0.0001831 <i>26</i> ; α (M)=3.96×10 ⁻⁵ <i>6</i> α (N)=9.12×10 ⁻⁶ <i>13</i> ; α (O)=1.400×10 ⁻⁶ <i>20</i> ; α (P)=9.21×10 ⁻⁸ <i>13</i> Mult.: α (K)exp<0.002.
857.0 <i>3</i>	0.08 3	1697.49	9/2 ⁻	840.71	13/2-				
859.6 4 859.7 2	0.08 3 1.04 <i>12</i>	2065.37 1841.63	7/2 9/2 ⁻	982.05	(7/2,9/2) (9/2) ⁺	(E1) ^a		1.59×10 ⁻³ 2	$\alpha(K)=0.001359 \ I9; \ \alpha(L)=0.0001800 \ 25; \ \alpha(M)=3.89\times10^{-5} \ 5 \ \alpha(N)=8.96\times10^{-6} \ I3; \ \alpha(O)=1.376\times10^{-6} \ I9; \ \alpha(P)=9.06\times10^{-8} \ I3 \ E_{\gamma}, I_{\gamma}: \text{ others: } 859.5 \ 5, \text{ with } I_{\gamma}=1.07 \ I8 \ (1990Sa32); \ 860.4$
									4, with $1\gamma = 1.77$ 19 (1981ZuZZ); for a composite line. Mult.: $\alpha(K) \exp \approx 0.0016$ 2.
860.1 2	0.75 13	2065.37	7/2-	1205.37	(9/2)+	(E1) ^{<i>a</i>}		1.59×10 ⁻³ 2	$\alpha(K)=0.001357 \ 19; \ \alpha(L)=0.0001798 \ 25; \ \alpha(M)=3.88\times10^{-5} \ 5 \ \alpha(N)=8.95\times10^{-6} \ 13; \ \alpha(O)=1.375\times10^{-6} \ 19; \ \alpha(P)=9.05\times10^{-8} \ 13 \ Mult.: \ \alpha(K)exp\approx0.0016 \ 2. \ E_{\gamma}, I_{\gamma}: \ 1990Sa32 \ and \ 1981ZuZZ \ report \ composite \ line \ at \ 859.5 \ and \ 860.4 \ respectively$
863.5 4	0.05 2	1735.44	$(7/2)^{-}$	872.46	(11/2)-	_			0.57.5 and 000.1, respectively.
869.7 2	3.13 7	970.45	7/2+	100.75	3/2+	E2 [@]		0.00389 <i>5</i>	$\alpha(K)=0.00326 5; \alpha(L)=0.000494 7; \alpha(M)=0.0001084 15$ $\alpha(N)=2.494\times10^{-5} 35; \alpha(O)=3.77\times10^{-6} 5;$ $\alpha(P)=2.248\times10^{-7} 3I$ $E_{\gamma}I_{\gamma}$: others: 869.6 3, with $I\gamma=2.7 3$ (1990Sa32); 870.4 4, with $I\gamma=3.1 3$ (1981ZuZZ) for a composite line. Mult.: $\alpha(K)$ exp=0.0038 7.
870.0 4	0.17 4	869.72	5/2+	0.0	1/2+	Ø		2	
871.2 2	2.08 21	1841.63	9/2-	970.45	7/2+	E1 [@]		1.55×10 ⁻³ 2	α (K)=0.001324 <i>19</i> ; α (L)=0.0001753 <i>25</i> ; α (M)=3.79×10 ⁻⁵ <i>5</i>

 $^{149}_{65}{
m Tb}_{84}$ -14

					¹⁴⁹ D	y ε decay (4.2 n	nin)	2019MeZX (con	tinued)
						$\gamma(^{149})$	Tb) (co	ntinued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ#	α^{c}	Comments
									$\begin{aligned} &\alpha(\text{N})=8.73\times10^{-6}\ 12;\ \alpha(\text{O})=1.341\times10^{-6}\ 19;\\ &\alpha(\text{P})=8.83\times10^{-8}\ 12\\ \text{E}_{\gamma},\text{I}_{\gamma}:\ \text{other:}\ 871.5\ 3,\ \text{with}\ \text{I}_{\gamma}=3.2\ 4\ (1990\text{Sa32}).\\ \text{Mult.:}\ &\alpha(\text{K})\text{exp}\approx0.0019\ 4.\\ \text{I}_{\gamma}:\ \text{I}_{\gamma}=2.8\ 3\ (1990\text{Sa32}),\ 3.2\ (1981\text{ZuZZ})\ \text{for a composite}\\ &\text{line.} \end{aligned}$
872.4 <i>3</i> 876.2 <i>3</i> 877.1 <i>4</i>	0.35 <i>6</i> 0.21 <i>4</i> 0.035 <i>12</i>	1697.49 2065.37 1631.88	9/2 ⁻ 7/2 ⁻ (3/2,5/2) ⁻	825.12 1189.09 754.92	9/2 ⁻ (7/2) ⁻ 5/2 ⁺	&			
881.4 2	0.35 3	2065.37	7/2-	1183.86	9/2-	M1		0.00669	α (K)=0.00569 8; α (L)=0.000782 11; α (M)=0.0001699 24 α (N)=3.93×10 ⁻⁵ 6; α (O)=6.08×10 ⁻⁶ 9; α (P)=4.11×10 ⁻⁷ 6 Mult : α (K)exp=0.0074 16
901.0 1	0.313 19	1883.08	(9/2) ⁻	982.05	(9/2)+	(E1)		1.45×10 ⁻³ 2	$\alpha(K) = 0.001241 \ 17; \ \alpha(L) = 0.0001641 \ 23; \ \alpha(M) = 3.54 \times 10^{-5} \\ 5 \\ \alpha(N) = 8.17 \times 10^{-6} \ 11; \ \alpha(O) = 1.255 \times 10^{-6} \ 18; \\ \alpha(P) = 8.29 \times 10^{-8} \ 12 \\ E_{\gamma}, I_{\gamma}: \text{ other: } 900.9 \ 5, \text{ with } I_{\gamma} = 0.23 \ 9 \ (1990\text{Sa32}).$
906.7 2	0.20 4	1876.88	5/2-	970.45	7/2+	(E1)		1.43×10 ⁻³ 2	Mult.: α (K)exp<0.0023. α (K)=0.001227 <i>17</i> ; α (L)=0.0001621 <i>23</i> ; α (M)=3.50×10 ⁻⁵ 5 α (N)=8.07×10 ⁻⁶ <i>11</i> ; α (O)=1.240×10 ⁻⁶ <i>17</i> ; α (P)=8.19×10 ⁻⁸ <i>11</i> E_{γ} , I_{γ} : others: 906.9 5, with I γ =0.41 <i>11</i> (1990Sa32); 906.2 <i>4</i> , with I γ =0.30 3 (1981ZuZZ).
910.3 <i>4</i> 912.8 <i>3</i>	0.08 <i>3</i> 0.86 <i>16</i>	1735.44 1883.08	$(7/2)^{-}$ $(9/2)^{-}$	825.12 970.45	9/2- 7/2 ⁺	[E1] ^a		1.41×10 ⁻³ 2	Mult.: $\alpha(K) \exp < 0.003$. $\alpha(K) = 0.001211 \ 17; \ \alpha(L) = 0.0001600 \ 22; \ \alpha(M) = 3.46 \times 10^{-5}$
913.2 3	0.53 16	1120.09	(7/2)+	206.91	5/2+	(E2(+M1)) ^{<i>a</i>}	>1.2	0.0040 5	5 α (N)=7.97×10 ⁻⁶ 11; α (O)=1.224×10 ⁻⁶ 17; α (P)=8.09×10 ⁻⁸ 11 E _γ ,I _γ : other: 912.9 5, with Iγ=0.68 13 (1990Sa32). Mult.: α (K)exp≈0.0033 6 for 912.8+913.2 doublet gives E2(+M1), δ >1.2, but E1 required by level scheme. α (K)=0.0034 5; α (L)=0.00050 6: α (M)=0.000109 12
					-/-	(())			$\begin{aligned} \alpha(N) &= 2.50 \times 10^{-5} \ 28; \ \alpha(O) &= 3.8 \times 10^{-6} \ 5; \ \alpha(P) &= 2.4 \times 10^{-7} \ 4 \\ E_{\gamma}, I_{\gamma}: \text{ others: } 913.1 \ 5, \text{ with } I_{\gamma} &= 0.95 \ 16 \ (1990Sa32); \ 913.1 \\ 4, \text{ with } I_{\gamma} &= 0.59 \ 6 \ (1981ZuZZ). \\ \text{Mult.: } \alpha(K) &= \infty 0.0033 \ 6 \ \text{for } 913.2 + 912.8 \ \text{doublet gives} \\ E2(+M1), \ \delta &> 1.2; \end{aligned}$
921.0 5 924.0 <i>I</i>	<0.1 0.406 <i>19</i>	1381.92 1876.88	5/2 ⁻	460.49 952.89	3/2 ⁺	M1		0.00596 8	$\alpha(K)=0.00507\ 7;\ \alpha(L)=0.000697\ 10;\ \alpha(M)=0.0001513\ 21$ $\alpha(N)=3.50\times10^{-5}\ 5;\ \alpha(O)=5.42\times10^{-6}\ 8;\ \alpha(P)=3.66\times10^{-7}\ 5$ Mult: $\alpha(K)=0.0053\ 6$
937.8 2	0.087 21	2026.32	$(7/2)^{-}$	1088.55	5/2-	(M1)		0.00575 8	$\alpha(K)=0.00490$ 7; $\alpha(L)=0.000672$ 9; $\alpha(M)=0.0001459$ 20

					1	49 Dy ε dec	ay (4.2 min)	2019MeZX (continued)
							$\gamma(^{149}\text{Tb})$ (co	ontinued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{c}	Comments
					<u> </u>			$\alpha(N)=3.37\times10^{-5}$ 5; $\alpha(O)=5.22\times10^{-6}$ 7; $\alpha(P)=3.54\times10^{-7}$ 5
945.4 2	0.233 21	2065.37	$7/2^{-}$	1120.09	$(7/2)^+$	E1	1.32×10 ⁻³ 2	$\alpha(N) = 7.44 \times 10^{-6} \ 10; \ \alpha(O) = 1.144 \times 10^{-6} \ 16; \ \alpha(P) = 7.57 \times 10^{-8} \ 11$
								$\alpha(K)=0.001133 \ 16; \ \alpha(L)=0.0001495 \ 21; \ \alpha(M)=3.23\times 10^{-5} \ 5$
								E_{γ},I_{γ} : other: 945.5 5, with I_{γ} =0.23 7 (1990Sa32). Mult : $\alpha(K)$ exp=0.0013 5
952.9 <i>1</i>	0.97 2	952.89	$3/2^{-}$	0.0	$1/2^{+}$	E1	$1.30 \times 10^{-3} 2$	$\alpha(K) = 0.001116 \ 16; \ \alpha(L) = 0.0001472 \ 21; \ \alpha(M) = 3.18 \times 10^{-5} \ 4$
								$\alpha(N)=7.33\times10^{-6}\ 10;\ \alpha(O)=1.127\times10^{-6}\ 16;\ \alpha(P)=7.46\times10^{-8}\ 10$
060.0.2	0.12 4	1420 55	$(0/2)^{-}$	460.40	7/2+	E 1	$1.20\times10^{-3}.2$	Mult.: $\alpha(K) \exp = 0.0015 \ 2.$
900.0 5	0.12 4	1420.33	(9/2)	400.49	1/2	БI	1.29×10 2	$\alpha(\mathbf{N})=0.00110113; \ \alpha(\mathbf{L})=0.000145120; \ \alpha(\mathbf{M})=3.15\times10^{-4}4$ $\alpha(\mathbf{N})=7.22\times10^{-6}10; \ \alpha(\mathbf{O})=1.111\times10^{-6}16; \ \alpha(\mathbf{P})=7.36\times10^{-8}10$
								E_{γ} , I_{γ} : other: 960.2 5, with I_{γ} =0.16 5 (1990Sa32).
060 4 3	0.06.2	19/1 62	0/2-	872 16	$(11/2)^{-}$			Mult.: α (K)exp<0.0011.
909.4 3 972.2 <i>3</i>	0.00 2	2161.04	$(9/2)^{-}$	1189.09	(11/2) $(7/2)^{-}$	(E2) ^{<i>a</i>}	0.00307 4	$\alpha(K)=0.00258$ 4; $\alpha(L)=0.000381$ 5; $\alpha(M)=8.34\times10^{-5}$ 12
								α (N)=1.921×10 ⁻⁵ 27; α (O)=2.92×10 ⁻⁶ 4; α (P)=1.783×10 ⁻⁷ 25
								Mult.: α (K)exp=0.0020 4 for 972.2+973.4974.5 triplet gives E2 or E1, the
973.4 2	0.39 6	1728.36	5/2-	754.92	5/2+	(E1) ^{<i>a</i>}	1.25×10^{-3} 2	$\alpha(K)=0.001073 \ 15; \ \alpha(L)=0.0001413 \ 20; \ \alpha(M)=3.05\times10^{-5} \ 4$
			,		,	< <i>/</i>		$\alpha(N)=7.03\times10^{-6}$ 10; $\alpha(O)=1.082\times10^{-6}$ 15; $\alpha(P)=7.17\times10^{-8}$ 10
								E_{γ},I_{γ} : other: 973.5 5, with $I_{\gamma}=0.48$ 13 (1990Sa32).
								the latter within 2σ uncertainty; E1 required from level scheme.
974.5 <i>4</i>	0.08 3	2157.98	$(7/2)^{-}$	1183.86	9/2-	(E2) ^{&}	0.00306 4	$\alpha(K)=0.00257 4; \alpha(L)=0.000379 5; \alpha(M)=8.30\times10^{-5} 12$
								α (N)=1.910×10 ⁻⁵ 27; α (O)=2.90×10 ⁻⁶ 4; α (P)=1.775×10 ⁻⁷ 25
								Mult.: $\alpha(K)\exp=0.0020$ 4 for 973.4+972.2+974.5 triplet gives E2 or E1, the latter within 2α uncertainty
982.2 2	0.12 2	1189.09	$(7/2)^{-}$	206.91	5/2+	[E1]	1.23×10 ⁻³ 2	$\alpha(K)=0.001055 \ 15; \ \alpha(L)=0.0001389 \ 19; \ \alpha(M)=3.00\times10^{-5} \ 4$
								α (N)=6.91×10 ⁻⁶ 10; α (O)=1.063×10 ⁻⁶ 15; α (P)=7.05×10 ⁻⁸ 10
								Mult.: $\alpha(K)\exp=0.0028$ 14 gives D or E2; E1 preferred by level scheme. (F2) given in Table 1 of 2019MeZX could be a typo
986.0 4	0.08 3	2074.22	7/2-	1088.55	5/2-			(E2) given in factor i of 2017 meZix could be a typo.
986.8 2	0.65 6	1728.36	5/2-	741.64	5/2+	E1	$1.22 \times 10^{-3} 2$	α (K)=0.001045 <i>15</i> ; α (L)=0.0001377 <i>19</i> ; α (M)=2.97×10 ⁻⁵ <i>4</i>
								$\alpha(N)=6.85\times10^{-6}$ 10; $\alpha(O)=1.054\times10^{-6}$ 15; $\alpha(P)=6.99\times10^{-6}$ 10 F. L: other: 986.2.5 with $I_{22}=0.73$ 14 (1990Sa22)
								Mult: $\alpha(K) \exp[-1.0E-3.3]$.
987.8 2	1.30 14	1088.55	5/2-	100.75	3/2+	E1	$1.22 \times 10^{-3} 2$	$\alpha(K)=0.001043 \ 15; \ \alpha(L)=0.0001374 \ 19; \ \alpha(M)=2.97\times10^{-5} \ 4$
								$\alpha(N)=6.84 \times 10^{-6} \ log(\Omega)=1.052 \times 10^{-6} \ log(\Omega)=6.98 \times 10^{-8} \ log(\Omega)=0.0012 \ d\Omega$
997.5 <i>1</i>	1.16 8	1841.63	9/2-	844.16	7/2+	E1 [@]	1.20×10^{-3} 2	$\alpha(K)=0.001025 \ 14; \ \alpha(L)=0.0001349 \ 19; \ \alpha(M)=2.91\times10^{-5} \ 4$
			- / -		.,=			$\alpha(N) = 6.71 \times 10^{-6} 0; \alpha(O) = 1.022 \times 10^{-6} 14; \alpha(D) = 6.85 \times 10^{-8} 10$

				14	⁹ Dy ε decay	(4.2 min)	2019MeZX (continued)
						$\gamma(^{149}\text{Tb})$	(continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E_i (level)	J_i^π	E_f	J_f^π	Mult. [#]	α ^c	Comments
								E_{γ}, I_{γ} : others: 997.6 <i>3</i> , with I_{γ} =1.71 <i>25</i> (1990Sa32); 997.3 <i>4</i> , with I_{γ} =0.74 <i>7</i> (1981ZuZZ). Mult.: α (K)exp=0.0012 <i>2</i> .
998.6 <i>3</i> 1000.8 <i>4</i> 1001.2 <i>4</i> 1008.3 <i>3</i>	0.19 <i>3</i> 0.023 <i>12</i> 0.035 <i>12</i> 0.22 <i>4</i>	1205.37 1461.26 1841.63 1697.49	(9/2) ⁺ (5/2,7/2) ⁻ 9/2 ⁻ 9/2 ⁻	206.91 460.49 840.71 689.32	5/2 ⁺ 7/2 ⁺ 13/2 ⁻ 7/2 ⁻			
1010.6 <i>1</i>	2.30 21	1883.08	(9/2) ⁻	872.46	(11/2) ⁻	M1 [@]	0.00481 7	$\begin{array}{l} \alpha(\mathrm{N}) = 2.81 \times 10^{-5} \ 4; \ \alpha(\mathrm{O}) = 4.35 \times 10^{-6} \ 6; \ \alpha(\mathrm{P}) = 2.95 \times 10^{-7} \ 4 \\ \alpha(\mathrm{K}) = 0.00409 \ 6; \ \alpha(\mathrm{L}) = 0.000560 \ 8; \ \alpha(\mathrm{M}) = 0.0001215 \ 17 \\ \mathrm{E}_{\gamma}, \mathrm{I}_{\gamma}: \ \text{others:} \ 1010.7 \ 3, \ \text{with} \ \mathrm{I}_{\gamma} = 2.69 \ 20 \ (1990\mathrm{Sa32}); \ 1010.3 \\ 4, \ \text{with} \ \mathrm{I}_{\gamma} = 2.21 \ 22 \ (1981\mathrm{ZuZZ}, \ \mathrm{unplaced}). \\ \mathrm{Mult.:} \ \alpha(\mathrm{K}) \mathrm{exp} \approx 0.0042 \ 3. \end{array}$
1016.5 <i>4</i> 1027.1 <i>3</i> 1032.6 <i>3</i> 1033.2 <i>4</i> 1034.9 <i>3</i>	0.11 <i>3</i> 0.08 <i>3</i> 0.07 <i>2</i> 0.023 <i>12</i> 0.093 <i>22</i>	1841.63 2161.04 2014.73 1986.44 1776.61	9/2 ⁻ (9/2) ⁻ (9/2) ⁻ (3/2 ⁻ ,5/2,7/2 ⁻) 7/2 ⁻	825.12 1133.61 982.05 952.89 741.64	9/2 ⁻ (9/2,11/2) ⁺ (9/2) ⁺ 3/2 ⁻ 5/2 ⁺			
1039.1 2	0.89 7	1728.36	5/2-	689.32	7/2-	(E2) ^{<i>a</i>}	0.00267 4	$\alpha(K)=0.002254 \ 32; \ \alpha(L)=0.000328 \ 5; \ \alpha(M)=7.17\times10^{-5} \ 10$ $\alpha(N)=1.652\times10^{-5} \ 23; \ \alpha(O)=2.513\times10^{-6} \ 35;$ $\alpha(P)=1.557\times10^{-7} \ 22$ Mult.: $\alpha(K)exp\approx0.00215 \ 20 \ for \ 1039.1+1039.8 \ doublet$ suggests dominant E2. E. L.: line is unresolved in 1990Sa32 and 1981ZuZZ
1039.8 2	1.63 12	1876.88	5/2-	837.16	5/2+	[E1] ^a	1.11×10 ⁻³ 2	$ α(K)=0.000949 \ 13; \ α(L)=0.0001247 \ 17; \ α(M)=2.69×10-5 \ 4 α(N)=6.20×10-6 \ 9; \ α(O)=9.55×10-7 \ 13; \ α(P)=6.35×10-8 \ 9 Eγ,Iγ: others: Eγ=1040.1 \ 3, Iγ=3.05 \ 23 \ (1990Sa32); Eγ=1039.4 \ 4, Iγ=2.5 \ 3 \ (1981ZuZZ) \ for a composite line. Mult.: \ α(K)exp≈0.00215 \ 20 \ for \ 1039.1+1039.8 \ doublet suggests \ dominant E2, \ but level scheme requires E1.$
1042.1 4	0.035 12	1883.08	$(9/2)^{-}$	840.71	13/2-			
1043.7 2	0.35 6	1250.68	5/2-	206.91	5/2+	(E1) [@]	1.10×10 ⁻³ 2	$\alpha(K)=0.000942 \ 13; \ \alpha(L)=0.0001238 \ 17; \ \alpha(M)=2.67\times 10^{-5} \ 4 \ \alpha(N)=6.16\times 10^{-6} \ 9; \ \alpha(O)=9.48\times 10^{-7} \ 13; \ \alpha(P)=6.31\times 10^{-8} \ 9 \ Mult.: \ \alpha(K)exp\approx 0.0020 \ 7 \ suggests \ E2 \ or \ E1 \ (within \ 1.5\sigma); \ E1 \ from \ level \ scheme.$
1044.3 <i>3</i> 1046.2 <i>3</i> 1049.2 <i>2</i> 1056 <i>J</i>	0.06 <i>3</i> 0.086 <i>12</i> 0.13 <i>2</i> 0.023 <i>12</i>	2026.32 1735.44 1049.24 2026.32	$(7/2)^{-}$ $(7/2)^{-}$ $(5/2^{+})$ $(7/2)^{-}$	982.05 689.32 0.0 970.45	$(9/2)^+$ $7/2^-$ $1/2^+$ $7/2^+$			
1057.9 1	1.89 3	1883.08	(9/2)-	825.12	9/2-	M1	0.00431 6	$\alpha(K)=0.00367 5; \alpha(L)=0.000501 7; \alpha(M)=0.0001088 15$ $\alpha(N)=2.515\times10^{-5} 35; \alpha(O)=3.89\times10^{-6} 5; \alpha(P)=2.64\times10^{-7} 4$ $E_{\gamma},I_{\gamma}:$ others: 1058.0 5, with I γ =1.91 14 (1990Sa32); 1057.7 4, with I γ =1.62 16 (1981ZuZZ, unplaced). Mult.: $\alpha(K)$ exp=0.0041 4.
1080.6 <i>1</i>	0.975 19	1953.13	9/2-	872.46	$(11/2)^{-}$	M1	0.00409 6	$\alpha(K)=0.003495; \alpha(L)=0.0004767; \alpha(M)=0.000103314$

					¹⁴⁹ Dy ε	decay (4.2	min) 2019M	eZX (continued)
						$\gamma(1)$	⁴⁹ Tb) (continued	<u>1)</u>
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	α^{C}	Comments
								α (N)=2.389×10 ⁻⁵ 33; α (O)=3.70×10 ⁻⁶ 5; α (P)=2.510×10 ⁻⁷ 35 E _{γ} ,I _{γ} : others: 1080.4 5, with I γ =1.02 9 (1990Sa32); 1078.9 4, with I γ =1.18 12 (1981ZuZZ). Mult.: α (K)exp=0.0038 4.
1083.4 [‡] 2	0.72 [‡] 2	2065.37	7/2-	982.05	(9/2)+	(E1)	1.03×10 ⁻³ 1	$\alpha(K)=0.000880 \ 12; \ \alpha(L)=0.0001154 \ 16; \ \alpha(M)=2.491\times10^{-5} \ 35 \ \alpha(N)=5.74\times10^{-6} \ 8; \ \alpha(O)=8.84\times10^{-7} \ 12; \ \alpha(P)=5.89\times10^{-8} \ 8 \ E_{\gamma}, I_{\gamma}: \ other: \ 1083.2 \ 5, \ with \ I_{\gamma}=0.71 \ 13 \ (1990Sa32).$ Mult.: $\alpha(K)exp=0.0015 \ 5.$
1084 <i>I</i> 1087.3 <i>2</i>	<0.02 0.420 <i>19</i>	1928.15 1776.61	(7/2 ⁻ ,9/2 ⁻) 7/2 ⁻	844.16 689.32	7/2 ⁺ 7/2 ⁻	M1	0.00403 6	$\alpha(K)=0.00343 5; \alpha(L)=0.000469 7; \alpha(M)=0.0001018 14$ $\alpha(N)=2.353\times10^{-5} 33; \alpha(O)=3.65\times10^{-6} 5; \alpha(P)=2.473\times10^{-7} 35$ E_{γ},I_{γ} : other: 1087.3 5, with $I_{\gamma}=0.50 13$ (1990Sa32). Mult.: $\alpha(K)\exp=0.0039 4$.
1092.3 5	0.05 3	2074.22	$7/2^{-}$	982.05	$(9/2)^+$			
1095.0 2	0.317 16	2065.37	7/2-	970.45	7/2+	E1	$1.01 \times 10^{-3} l$	α (K)=0.000863 <i>12</i> ; α (L)=0.0001132 <i>16</i> ; α (M)=2.441×10 ⁻⁵ <i>34</i> α (N)=5.63×10 ⁻⁶ <i>8</i> ; α (O)=8.67×10 ⁻⁷ <i>12</i> ; α (P)=5.78×10 ⁻⁸ <i>8</i> E _{γ} ,I _{γ} : other: 1095.2 <i>5</i> , with I γ =0.30 <i>7</i> (1990Sa32). Mult.: α (K)exp<0.0013.
1097.8 2	0.32 2	1133.61	(9/2,11/2)+	35.75	11/2-	E1	1.00×10 ⁻³ 1	$\alpha(K)=0.000859\ 12;\ \alpha(L)=0.0001126\ 16;\ \alpha(M)=2.430\times10^{-5}\ 34$ $\alpha(N)=5.60\times10^{-6}\ 8;\ \alpha(O)=8.63\times10^{-7}\ 12;\ \alpha(P)=5.75\times10^{-8}\ 8$ Mult.: $\alpha(K)$ exp<0.0013.
1103.2 <i>3</i>	0.170 20	1928.15	$(7/2^{-}, 9/2^{-})$	825.12	9/2-			
1109.2 3	0.162 18	1953.13	9/2-	844.16	7/2+			
1110.4 4	0.045 13	1852.03	$(7/2)^{-}$	741.64	$5/2^+$	F 1	0.000067.14	
1121.9 1	0.819 21	18/6.88	5/2	/54.92	5/21	EI	0.000967 14	$\alpha = 0.00096774; \alpha(K) = 0.00082672; \alpha(L) = 0.000108275; \alpha(M) = 2.224 \times 10^{-5}22$
								$\alpha(M) = 2.534 \times 10^{-5} 55$ $\alpha(N) = 5.38 \times 10^{-6} 8; \ \alpha(O) = 8.29 \times 10^{-7} 12; \ \alpha(P) = 5.53 \times 10^{-8} 8;$ $\alpha(IPF) = 3.74 \times 10^{-6} 5$
1100.0.2	0.005.16	1052.12	0/2-	005.10	0/2-			E_{γ} , I_{γ} : other: 1121.5 <i>4</i> , with I_{γ} =0.44 <i>5</i> (1981ZuZZ), unplaced. Mult.: α(K)exp=0.0011 <i>3</i> .
1128.0 3	0.085 16	1953.13	9/2 5/2 ⁻	825.12	9/2 5/2 ⁺	F1	0 000040 13	$\alpha = 0.000049.13; \alpha(K) = 0.000808.11; \alpha(L) = 0.0001059.15;$
1155.2 1	1.00 9	1070.00	5/2	/41.04	5/2	LI	0.000949 15	$\alpha(M) = 2.284 \times 10^{-5} 32$ $\alpha(M) = 5.27 \times 10^{-6} 7; \alpha(M) = 8.11 \times 10^{-7} 11; \alpha(M) = 5.42 \times 10^{-8} 8;$
								$\alpha(\text{IPF}) = 5.59 \times 10^{-6} 8$
								E_{γ} , I_{γ} : others: 1135.5 5, with I_{γ} =0.52 <i>13</i> (1990Sa32) is in severe disagreement; 1134.7 4 (1981ZuZZ).
1142.2 3	0.162 17	2014.73	(9/2)-	872.46	(11/2)-	M1	0.00359 5	Mult.: $\alpha(K)\exp=1.0E-3$ 3. $\alpha(K)=0.00306$ 4; $\alpha(L)=0.000417$ 6; $\alpha(M)=9.04\times10^{-5}$ 13 $\alpha(N)=2.090\times10^{-5}$ 29: $\alpha(O)=3.24\times10^{-6}$ 5: $\alpha(P)=2.198\times10^{-7}$
								<i>31</i> ; α (IPF)=1.450×10 ⁻⁶ 24 E _{γ} ,I _{γ} : other: 1142.6 5, with I γ =0.18 5 (1990Sa32). Mult.: α (K)exp=0.0037 9.

						<u>)</u>	γ(¹⁴⁹ Tb) (continu	ied)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [#]	α^{c}	Comments
1148.2 3	0.14 2	1183.86	9/2-	35.75	11/2-	M1	0.00354 5	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00302 \ 4; \ \alpha(\mathrm{L}) = 0.000411 \ 6; \ \alpha(\mathrm{M}) = 8.92 \times 10^{-5} \ 13 \\ &\alpha(\mathrm{N}) = 2.063 \times 10^{-5} \ 29; \ \alpha(\mathrm{O}) = 3.20 \times 10^{-6} \ 4; \ \alpha(\mathrm{P}) = 2.171 \times 10^{-7} \ 30; \\ &\alpha(\mathrm{IPF}) = 1.738 \times 10^{-6} \ 29 \end{aligned}$
1150.0 <i>3</i>	0.113 13	1250.68	5/2-	100.75	3/2+	E1	0.000930 <i>13</i>	Mult.: $\alpha(K)\exp=0.0034 \ II.$ $\alpha=0.000930 \ I3; \ \alpha(K)=0.000790 \ II; \ \alpha(L)=0.0001034 \ I4;$ $\alpha(M)=2.230\times10^{-5} \ 3I$ $\alpha(N)=5.14\times10^{-6} \ 7; \ \alpha(O)=7.92\times10^{-7} \ II; \ \alpha(P)=5.29\times10^{-8} \ 7;$
1152.3 2	0.37 3	1841.63	9/2-	689.32	7/2-	(M1) ^{<i>a</i>}	0.00351 5	α (IPF)=8.38×10 ⁻⁶ <i>13</i> Mult.: α (K)exp<0.0011. α (K)=0.00299 <i>4</i> ; α (L)=0.000408 <i>6</i> ; α (M)=8.85×10 ⁻⁵ <i>12</i> α (N)=2.046×10 ⁻⁵ <i>29</i> ; α (O)=3.17×10 ⁻⁶ <i>4</i> ; α (P)=2.153×10 ⁻⁷ <i>30</i> ; α (IPF)=1.959×10 ⁻⁶ <i>30</i>
1153.3 2	0.39 <i>3</i>	1189.09	(7/2)-	35.75	11/2-	(E2) ^a	2.16×10 ⁻³ 3	E _γ , I_{γ} : others: 1152.3 5, with Iγ=0.43 16 (1990Sa32); 1252.3 4, with Iγ=0.74 7 (1981ZuZZ, unplaced) for a composite line. Mult.: α(K)exp≈0.0023 3. α(K)=0.001828 26; α(L)=0.000261 4; α(M)=5.69×10 ⁻⁵ 8 α(N)=1.312×10 ⁻⁵ 18; α(O)=2.003×10 ⁻⁶ 28; α(P)=1.264×10 ⁻⁷ 18; α(IPF)=1.776×10 ⁻⁶ 27 E _γ , I_{γ} : other: 1152.3 4, with Iγ=0.74 7 (1981ZuZZ) for a
1162.6 2	0.075 18	1852.03	(7/2)-	689.32	7/2-	M1	0.00344 5	composite line, unplaced. Mult.: $\alpha(K)\exp\approx0.0023 \ 3$. $\alpha(K)=0.00293 \ 4$; $\alpha(L)=0.000399 \ 6$; $\alpha(M)=8.66\times10^{-5} \ 12$ $\alpha(N)=2.002\times10^{-5} \ 28$; $\alpha(O)=3.10\times10^{-6} \ 4$; $\alpha(P)=2.107\times10^{-7} \ 30$; $\alpha(IPF)=2.60\times10^{-6} \ 4$
1169.5 <i>3</i>	0.57 9	1205.37	(9/2)+	35.75	11/2-	[E1] ^{<i>a</i>}	0.000907 13	Mult.: $\alpha(K) \exp=0.0050 \ 25.$ $\alpha=0.000907 \ 13; \ \alpha(K)=0.000766 \ 11; \ \alpha(L)=0.0001002 \ 14;$ $\alpha(M)=2.162 \times 10^{-5} \ 30$
1170.1 <i>3</i>	0.73 13	1205.95	(7/2,9/2)-	35.75	11/2-	(M1,E2) ^{<i>a</i>}	0.0027 6	$\alpha(N)=4.99 \times 10^{-6}$ 7; $\alpha(O)=7.68 \times 10^{-7}$ 11; $\alpha(P)=5.14 \times 10^{-8}$ 7; $\alpha(IPF)=1.338 \times 10^{-5}$ 21 Mult.: $\alpha(K)\exp \approx 0.0017$ 3 for 1169.5+1170.1 doublet suggests M1,E2, but level scheme requires E1. $\alpha(N)=1.62 \times 10^{-5}$ 35; $\alpha(O)=2.5 \times 10^{-6}$ 6; $\alpha(P)=1.7 \times 10^{-7}$ 4; $\alpha(IPF)=2.98 \times 10^{-6}$ 19 $\alpha(K)=0.0023$ 6; $\alpha(L)=0.00032$ 7; $\alpha(M)=7.0 \times 10^{-5}$ 15 Mult.: $\alpha(K)\exp \approx 0.0017$ 3 for 1169.5+1170.1 doublet suggests M1 E2 consistent with that expected from level scheme
1173.9 <i>4</i> 1174.9 <i>1</i>	0.14 <i>4</i> 0.87 7	2014.73 1381.92	(9/2) ⁻ 7/2 ⁻	840.71 206.91	13/2 ⁻ 5/2 ⁺	E1 [@]	0.000902 13	$I_{\gamma}=0.04 \ 3 \ \text{for a } 1170.9\gamma \ (1990\text{Sa32}).$ $E_{\gamma}: \ \text{other:} \ 1170.95 \ \text{with} \ I_{\gamma}=0.05 \ 4 \ \text{from } 1990\text{Sa32}.$ $\alpha=0.000902 \ 13; \ \alpha(\text{K})=0.000760 \ 11; \ \alpha(\text{L})=9.94\times10^{-5} \ 14;$ $\alpha(\text{M})=2.144\times10^{-5} \ 30$

From ENSDF

					14	⁴⁹ Dy ε decay (4	.2 min) 2019	MeZX (continued)
						<u> </u>	(¹⁴⁹ Tb) (continu	ued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger b}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{c}	Comments
1187.5 2	0.382 23	1876.88	5/2-	689.32	7/2-	M1	0.00328 5	$\alpha(\text{IPF})=1.504\times10^{-5} \ 21$ E _{\(\eta\)} , I _{\(\eta\)} : others: 1175.2 5, with I\(\eta\)=0.98 18 (1990Sa32); 1174.3 4, with I\(\eta\)=1.18 12 (1981ZuZZ). Mult.: \(\alpha(K)\)=\(\alpha)=0.00379 5; \(\alpha(M))=8.23\times10^{-5} 12 \) \(\alpha(K))=1.903\times10^{-5} 27; \(\alpha(O))=2.95\times10^{-6} 4; \(\alpha(P))=2.003\times10^{-7} 28; \) \(\alpha(PE))=4 75\times10^{-6} 7 \)
1188.9 <i>3</i>	0.243 24	2026.32	(7/2)-	837.16	5/2+	(E1) ^{<i>a</i>}	0.000888 12	E_{γ} , I_{γ} : others: 1187.7 5, with I_{γ} =0.46 18 (1990Sa32); 1189.0 4, with I_{γ} =0.89 9 (1981ZuZZ) for a composite line. Mult.: α (K)exp=0.0029 4. α =0.000888 12; α (K)=0.000744 10; α (L)=9.73×10 ⁻⁵ 14; α (M)=2.098×10 ⁻⁵ 29 α (N)=4.84×10 ⁻⁶ 7; α (O)=7.46×10 ⁻⁷ 10; α (P)=4.99×10 ⁻⁸ 7; α (D)=-1.087×10 ⁻⁵ 30
1189.6 <i>3</i>	0.150 23	2014.73	(9/2)-	825.12	9/2-	(M1+E2) ^a	0.0026 6	
1193.7 2	0.234 17	1883.08	(9/2)-	689.32	7/2-	M1	0.00324 5	With $17=0.89.9$ (19812d22) for a composite line. Mult.: $\alpha(K)\exp\approx0.0013.4$. $\alpha(K)=0.00275.4$; $\alpha(L)=0.000375.5$; $\alpha(M)=8.13\times10^{-5}.11$ $\alpha(N)=1.879\times10^{-5}.26$; $\alpha(O)=2.91\times10^{-6}.4$; $\alpha(P)=1.979\times10^{-7}.28$; $\alpha(IPF)=5.41\times10^{-6}.8$ F. L: others: 1103.7.5, with $I_{N}=0.23.11$ (1000Sc32): 1104.2.4
1195.6 2	0.68 2	2065.37	7/2-	869.72	5/2+	E1	0.000882 12	E _γ , I_{7} : others: 1195.7.5, with I_{7} =0.25 <i>T1</i> (19908352); 1194.2.4, with I_{7} =1.03 <i>10</i> (1981ZuZZ) for a composite line. Mult.: α (K)exp=0.0036 <i>12</i> . α =0.000882 <i>12</i> ; α (K)=0.000737 <i>10</i> ; α (L)=9.63×10 ⁻⁵ <i>13</i> ; α (M)=2.076×10 ⁻⁵ <i>29</i> α (N)=4.79×10 ⁻⁶ 7; α (O)=7.38×10 ⁻⁷ <i>10</i> ; α (P)=4.94×10 ⁻⁸ 7; α (IPF)=2.242×10 ⁻⁵ <i>32</i> F. L: others: 1195.7.5 with I_{7} =0.68 <i>I6</i> (19908a32): 1194.2.4
1201.3 ^d 3	0.06 ^{<i>d</i>} 2	2026.32	(7/2)-	825.12	9/2-	(M1)	0.00319 4	with Iy=1.03 10 (1981ZuZZ, unplaced) for a composite line. Mult.: $\alpha(K)exp=7.0\times10^{-4}$ 20. $\alpha(K)=0.00271$ 4; $\alpha(L)=0.000369$ 5; $\alpha(M)=8.00\times10^{-5}$ 11 $\alpha(N)=1.851\times10^{-5}$ 26; $\alpha(O)=2.87\times10^{-6}$ 4; $\alpha(P)=1.949\times10^{-7}$ 27; $\alpha(IPF)=6.29\times10^{-6}$ 10 Mult : $\alpha(K)exp=0.0029$ 9
1201.8 ^d 3	0.06 ^{<i>d</i>} 2	2074.22	7/2-	872.46	(11/2)-	(E2) ^{<i>a</i>}	2.00×10 ⁻³ 3	α(K)=0.001685 24; α(L)=0.0002391 34; α(M)=5.21×10-5 7 α(N)=1.201×10-5 17; α(O)=1.835×10-6 26; α(P)=1.165×10-7 16; α(IPF)=5.61×10-6 8 Mult.: α(K)exp≈0.0029 9 gives (M1,E2); E2 from level scheme.

				149 Dy ε	decay (4.2	min) 2019M	eZX (continued)
					$\gamma(1)$	⁴⁹ Tb) (continued	<u>I)</u>
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	J_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	α^{c}	Comments
1204.5 2	0.134 <i>19</i>	2074.22	7/2-	869.72 5/2+	(E1)	0.000874 12	Mult.: (M1) given in Table I of 2019MeZX could be a typo, since the final $J^{\pi}=9/2^{-}$ for 872 level is incorrect, which should be $11/2^{-}$ instead, as given earlier in Table I for that level. $\alpha=0.000874 \ 12; \ \alpha(K)=0.000727 \ 10; \ \alpha(L)=9.50\times10^{-5} \ 13; \ \alpha(M)=2.048\times10^{-5} \ 29$
1221.2 <i>I</i>	0.552 21	2065.37	7/2-	844.16 7/2+	E1	0.000861 12	$\alpha(N)=4.73\times10^{-6} 7; \ \alpha(O)=7.28\times10^{-7} \ 10; \ \alpha(P)=4.88\times10^{-8} \ 7; \ \alpha(IPF)=2.60\times10^{-5} \ 4$ Mult.: $\alpha(K)\exp=0.0012 \ 7. \ \alpha=0.000861 \ 12; \ \alpha(K)=0.000709 \ 10; \ \alpha(L)=9.26\times10^{-5} \ 13; \ \alpha(L)=9.26\times10^{-5} \ 13; \ \alpha(L)=1.008\times10^{-5} \ 2.8$
							$\alpha(M) = 1.998 \times 10^{-5} 28$ $\alpha(N) = 4.61 \times 10^{-6} 6; \ \alpha(O) = 7.10 \times 10^{-7} \ 10; \ \alpha(P) = 4.76 \times 10^{-8} \ 7; \ \alpha(IPF) = 3.32 \times 10^{-5} \ 5$ $E_{\gamma}, I_{\gamma}: \text{ others: } 1221.3 \ 5, \text{ with } I_{\gamma} = 0.75 \ 16 \ (1990Sa32); \ 1220.0 \ 4, \text{ with } I_{\gamma} = 0.89 \ 9 \ (1981ZuZZ, unplaced).$
1228.2 <i>1</i>	0.472 20	2065.37	7/2-	837.16 5/2+	E1	0.000855 12	Mult.: $\alpha(\mathbf{K})\exp[-7.0\times10^{-7}20]$ $\alpha=0.000855\ I2;\ \alpha(\mathbf{K})=0.000702\ I0;\ \alpha(\mathbf{L})=9.17\times10^{-5}\ I3;$ $\alpha(\mathbf{M})=1.977\times10^{-5}\ 28$ $\alpha(\mathbf{N})=4.56\times10^{-6}\ 6;\ \alpha(\mathbf{O})=7.03\times10^{-7}\ I0;\ \alpha(\mathbf{P})=4.71\times10^{-8}\ 7;$ $\alpha(\mathbf{IPF})=3.63\times10^{-5}\ 5$
1231.5 <i>3</i>	0.085 20	1986.44	(3/2 ⁻ ,5/2,7/2 ⁻)	754.92 5/2+			E _γ ,I _γ : others: 1228.4 <i>5</i> , with Iγ=0.59 <i>14</i> (1990Sa32); 1227.5 <i>4</i> , with Iγ=0.74 7 (1981ZuZZ). Mult.: α (K)exp=1.0E-3 <i>3</i> .
1236.9 2	0.22 5	2074.22	7/2-	837.16 5/2+	(E1) ^{<i>a</i>}	0.000849 12	$ \begin{array}{l} \alpha = 0.000849 \ 12; \ \alpha(\text{K}) = 0.000694 \ 10; \ \alpha(\text{L}) = 9.05 \times 10^{-5} \ 13; \\ \alpha(\text{M}) = 1.952 \times 10^{-5} \ 27 \\ \alpha(\text{N}) = 4.50 \times 10^{-6} \ 6; \ \alpha(\text{O}) = 6.94 \times 10^{-7} \ 10; \ \alpha(\text{P}) = 4.65 \times 10^{-8} \ 7; \\ \alpha(\text{IPF}) = 4.03 \times 10^{-5} \ 6 \end{array} $
1007.1.0	0.22	1070 70	(0.12) +	25.75 11/2-		0.000040.10	E_{γ} , I_{γ} : other: 1237.3 5, with I_{γ} =0.23 9 (1990Sa32); 1235.9 4, with I_{γ} =0.59 6 (1981ZuZZ, unplaced) for a composite line. Mult.: α(K)exp≈1.0E-3 4.
1237.1 2	0.32 6	1272.73	(9/2)'	35.75 11/2	(E1) ⁴⁴	0.000849 12	$\alpha = 0.000849 \ 12; \ \alpha(K) = 0.000693 \ 10; \ \alpha(L) = 9.05 \times 10^{-5} \ 13; \alpha(M) = 1.952 \times 10^{-5} \ 27 \alpha(N) = 4.50 \times 10^{-6} \ 6; \ \alpha(O) = 6.94 \times 10^{-7} \ 10; \ \alpha(P) = 4.65 \times 10^{-8} \ 7; \alpha(IPF) = 4.04 \times 10^{-5} \ 6 Mult.: \ \alpha(K) exp \approx 1.0E - 3 \ 4. E_{\gamma}, I_{\gamma}: \ other: \ 1235.9 \ 4, \ with \ I_{\gamma} = 0.59 \ 6 \ (1981ZuZZ) \ for \ a \ composite line , unplaced$
1239.0 4	0.05 2	1928.15	(7/2 ⁻ ,9/2 ⁻)	689.32 7/2-	(M1) ^{&}	0.00297 4	$\alpha(K)=0.002521 \ 35; \ \alpha(L)=0.000343 \ 5; \ \alpha(M)=7.43\times10^{-5} \ 10$ $\alpha(N)=1.719\times10^{-5} \ 24; \ \alpha(O)=2.66\times10^{-6} \ 4; \ \alpha(P)=1.811\times10^{-7} \ 25;$ $\alpha(IPF)=1.153\times10^{-5} \ 17$ Mult : $\alpha(K)=0.0035 \ 12$
1240.1 <i>3</i>	0.13 3	2065.37	7/2-	825.12 9/2-	M1 [@]	0.00296 4	$\alpha(K)=0.002515\ 35;\ \alpha(L)=0.000342\ 5;\ \alpha(M)=7.42\times10^{-5}\ 10$

				149	Dy ε deca	y (4.2 mir	n) 2019MeZ	K (continued)
						γ (¹⁴⁹ Tl	b) (continued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger b}$	E_i (level)	J_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [#]	ac	Comments
^x 1246.8 <i>4</i> 1248.9 <i>3</i>	0.30 7 0.035 <i>12</i>	2074.22	7/2-	825.12	9/2-			α (N)=1.715×10 ⁻⁵ 24; α (O)=2.66×10 ⁻⁶ 4; α (P)=1.807×10 ⁻⁷ 25; α (IPF)=1.170×10 ⁻⁵ 17 Mult.: α (K)exp≈0.0035 12. E_{γ} , I_{γ} : from 1981ZuZZ only.
1254.3 [‡] 2	0.49 [‡] 3	1461.26	(5/2,7/2) ⁻	206.91	5/2+	E1	0.000838 12	$\begin{aligned} &\alpha = 0.000838 \ 12; \ \alpha(\text{K}) = 0.000677 \ 9; \ \alpha(\text{L}) = 8.83 \times 10^{-5} \ 12; \\ &\alpha(\text{M}) = 1.903 \times 10^{-5} \ 27 \\ &\alpha(\text{N}) = 4.39 \times 10^{-6} \ 6; \ \alpha(\text{O}) = 6.77 \times 10^{-7} \ 9; \ \alpha(\text{P}) = 4.54 \times 10^{-8} \ 6; \\ &\alpha(\text{IPF}) = 4.85 \times 10^{-5} \ 7 \\ &\text{E}_{\gamma}, I_{\gamma}: \text{ others: } 1254.5 \ 5, \text{ with } I_{\gamma} = 0.75 \ 14 \ (1990\text{Sa32}); \ 1253.5 \ 4, \text{ with } \\ &I_{\gamma} = 0.89 \ 9 \ (1981\text{ZuZZ}). \end{aligned}$ Mult.: $\alpha(\text{K}) \exp = 6.0 \times 10^{-4} \ 20. \end{aligned}$
1263.8 <i>1</i>	0.85 3	1953.13	9/2-	689.32	7/2-	M1	0.00284 4	$\begin{aligned} &\alpha(\text{K}) = 0.002406 \ 34; \ \alpha(\text{L}) = 0.000327 \ 5; \ \alpha(\text{M}) = 7.09 \times 10^{-5} \ 10 \\ &\alpha(\text{N}) = 1.639 \times 10^{-5} \ 23; \ \alpha(\text{O}) = 2.54 \times 10^{-6} \ 4; \ \alpha(\text{P}) = 1.728 \times 10^{-7} \ 24; \\ &\alpha(\text{IPF}) = 1.560 \times 10^{-5} \ 22 \\ &\text{E}_{\gamma}, I_{\gamma}: \text{ others: } 1263.4 \ 5, \text{ with } I_{\gamma} = 0.64 \ 7 \ (1990\text{Sa32}); \ 1263.8 \ 4, \text{ with } \\ &I_{\gamma} = 1.03 \ 10 \ (1981\text{ZuZZ}, \text{ unplaced}). \\ &\text{Mult.: } \ \alpha(\text{K}) \text{exp} = 0.0025 \ 3. \end{aligned}$
1274.9 [‡] <i>1</i>	2.00 [‡] 3	1735.44	(7/2) ⁻	460.49	7/2+	E1	0.000825 12	$ \begin{array}{l} \alpha = 0.000825 \ I2; \ \alpha(\mathrm{K}) = 0.000658 \ 9; \ \alpha(\mathrm{L}) = 8.57 \times 10^{-5} \ I2; \\ \alpha(\mathrm{M}) = 1.848 \times 10^{-5} \ 26 \\ \alpha(\mathrm{N}) = 4.26 \times 10^{-6} \ 6; \ \alpha(\mathrm{O}) = 6.58 \times 10^{-7} \ 9; \ \alpha(\mathrm{P}) = 4.41 \times 10^{-8} \ 6; \\ \alpha(\mathrm{IPF}) = 5.84 \times 10^{-5} \ 8 \\ \mathrm{E}_{\gamma}, \mathrm{I}_{\gamma}: \ \text{other:} \ 1274.7 \ 5, \ \text{with} \ \mathrm{I}_{\gamma} = 2.6 \ 4 \ (1990\mathrm{Sa32}); \ 1274.4 \ 3, \ \mathrm{I}_{\gamma} = 2.7 \\ 6 \ (1975\mathrm{To03}); \ 1274.5 \ 4, \ \text{with} \ \mathrm{I}_{\gamma} = 2.7 \ 3 \ (1981\mathrm{ZuZZ}). \\ \mathrm{Mult.:} \ \alpha(\mathrm{K}) \mathrm{exp} = 8.0 \times 10^{-4} \ I0. \end{array} $
1278.5 <i>3</i> 1284.7 <i>3</i>	0.13 <i>4</i> 0.06 <i>2</i>	2260.33 2026.32	(7/2 ⁻ ,9/2) (7/2) ⁻	982.05 741.64	(9/2) ⁺ 5/2 ⁺			
1288.5 ^d 3	0.12 ^{<i>d</i>} 4	2157.98	(7/2)-	869.72	5/2+	[E1] ^{<i>a</i>}	0.000818 11	$\begin{aligned} &\alpha = 0.000818 \ 11; \ \alpha(\text{K}) = 0.000645 \ 9; \ \alpha(\text{L}) = 8.41 \times 10^{-5} \ 12; \\ &\alpha(\text{M}) = 1.814 \times 10^{-5} \ 25 \\ &\alpha(\text{N}) = 4.18 \times 10^{-6} \ 6; \ \alpha(\text{O}) = 6.45 \times 10^{-7} \ 9; \ \alpha(\text{P}) = 4.33 \times 10^{-8} \ 6; \\ &\alpha(\text{IPF}) = 6.51 \times 10^{-5} \ 9 \\ &\text{Mult.:} \ \alpha(\text{K}) \exp \approx 0.0020 \ 5. \end{aligned}$
1288.5 ^d 3	0.12 ^d 4	2161.04	(9/2)-	872.46	(11/2)-	(M1) ^a	0.00272 4	$\begin{aligned} &\alpha(\text{K}) = 0.002299 \ 32; \ \alpha(\text{L}) = 0.000312 \ 4; \ \alpha(\text{M}) = 6.77 \times 10^{-5} \ 9 \\ &\alpha(\text{N}) = 1.565 \times 10^{-5} \ 22; \ \alpha(\text{O}) = 2.425 \times 10^{-6} \ 34; \ \alpha(\text{P}) = 1.650 \times 10^{-7} \ 23; \\ &\alpha(\text{IPF}) = 2.011 \times 10^{-5} \ 29 \\ &\text{Mult.:} \ \alpha(\text{K}) \exp \approx 0.0020 \ 5. \end{aligned}$
1297.2 <i>4</i> 1301.6 <i>1</i>	0.046 <i>19</i> 0.75 <i>3</i>	1986.44 1508.52	(3/2 ⁻ ,5/2,7/2 ⁻) (7/2) ⁻	689.32 206.91	//2 ⁻ 5/2 ⁺	E1	0.000811 11	$ \begin{array}{l} \alpha = 0.000811 \ 11; \ \alpha(\mathrm{K}) = 0.000634 \ 9; \ \alpha(\mathrm{L}) = 8.26 \times 10^{-5} \ 12; \\ \alpha(\mathrm{M}) = 1.781 \times 10^{-5} \ 25 \\ \alpha(\mathrm{N}) = 4.11 \times 10^{-6} \ 6; \ \alpha(\mathrm{O}) = 6.34 \times 10^{-7} \ 9; \ \alpha(\mathrm{P}) = 4.26 \times 10^{-8} \ 6; \\ \alpha(\mathrm{IPF}) = 7.18 \times 10^{-5} \ 10 \end{array} $

 $^{149}_{65}{
m Tb}_{84}$ -22

				149	Dy ε de	cay (4.2 mir	n) 2019MeZX	K (continued)
						$\gamma(^{149}\text{Te})$	o) (continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	${ m J}^{\pi}_i$	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{c}	Comments
1316.1 <i>1</i>	0.73 3	1776.61	7/2-	460.49	7/2+	E1	0.000805 11	E _γ ,I _γ : others: 1301.8 5, with Iγ=0.98 20 (1990Sa32); 1301.2 4, with Iγ=0.59 6 (1981ZuZZ). Mult.: α (K)exp=7.1×10 ⁻⁴ 15. α =0.000805 11; α (K)=0.000622 9; α (L)=8.10×10 ⁻⁵ 11; α (M)=1.746×10 ⁻⁵ 24 α (N)=4.03×10 ⁻⁶ 6; α (O)=6.21×10 ⁻⁷ 9; α (P)=4.18×10 ⁻⁸ 6; α (IPF)=7.97×10 ⁻⁵ 11 E _γ ,I _γ : others: 1316.3 5, with Iγ=0.62 14 (1990Sa32); 1314.6 4, with Iγ=0.74 6 (1981ZuZZ).
1220 4 4	0.002.16	2161.04	$(0/2)^{-}$	940 71	12/2-			Mult.: $\alpha(K) \exp = 8.5 \times 10^{-4} 25$.
1320.4 4 1323.7 <i>1</i>	0.093 <i>1</i> 6 1.07 6	2161.04 2065.37	(9/2) 7/2 ⁻	840.71 741.64	13/2 5/2 ⁺	E1 [@]	0.000802 11	α =0.000802 <i>11</i> ; α (K)=0.000616 <i>9</i> ; α (L)=8.02×10 ⁻⁵ <i>11</i> ; α (M)=1.728×10 ⁻⁵ 24 α (N)=3.99×10 ⁻⁶ 6; α (O)=6.15×10 ⁻⁷ 9; α (P)=4.13×10 ⁻⁸ 6; α (IPF)=8.40×10 ⁻⁵ <i>12</i> E _γ ,I _γ : other: 1323.8 5, with Iγ=1.28 5 (1990Sa32). Mult: α (K)evp~7.7×10 ⁻⁴ 15
1325.0 4	0.07 2	2014.73	(9/2)-	689.32	7/2-			$\mathbf{u}(\mathbf{x}) = \mathbf{v}(\mathbf{x}) + v$
1332.9 4	0.05 2	2157.98	(7/2)-	825.12	9/2-			5
1343.6 3	0.069 17	1804.1	(5/2+,7/2+,9/2+)	460.49	7/2+	(M1,E2)	0.0021 4	$\alpha(N)=1.18\times10^{-5} 23; \ \alpha(O)=1.8\times10^{-6} 4; \ \alpha(P)=1.22\times10^{-7} 28; \ \alpha(IPF)=3.07\times10^{-5} 20 \alpha(K)=0.0017 4; \ \alpha(L)=0.00024 5; \ \alpha(M)=5.1\times10^{-5} 10 Mult: \ \alpha(K)exp=0.002 1$
1346.3 <i>3</i>	0.069 17	1381.92	7/2-	35.75	11/2-	(E2)	1.62×10 ⁻³ 2	$\alpha(K)=0.001351 \ 19; \ \alpha(L)=0.0001885 \ 26; \ \alpha(M)=4.10\times10^{-5} \ 6$ $\alpha(N)=9.45\times10^{-6} \ 13; \ \alpha(O)=1.449\times10^{-6} \ 20; \ \alpha(P)=9.34\times10^{-8} \ 13; \ \alpha(IPF)=2.93\times10^{-5} \ 4$ Mult.: (M1,E2) from $\alpha(K)\exp=0.002 \ I$; E3 is possible but less likely, and pure M3 is ruled out; E2 from level scheme
1376.0 <i>1</i>	0.647 21	2065.37	7/2-	689.32	7/2-	M1	2.35×10 ⁻³ 3	$\alpha(K)=0.001971\ 28;\ \alpha(L)=0.000267\ 4;\ \alpha(M)=5.79\times10^{-5}\ 8$ $\alpha(N)=1.339\times10^{-5}\ 19;\ \alpha(O)=2.075\times10^{-6}\ 29;$ $\alpha(P)=1.413\times10^{-7}\ 20;\ \alpha(IPF)=4.17\times10^{-5}\ 6$ $E_{\gamma,I_{\gamma}}:\ others:\ 1376.0\ 5,\ with\ I_{\gamma}=0.68\ 23\ (1990Sa32);$ $1375.8\ 4,\ with\ I_{\gamma}=0.89\ 9\ (1981ZuZZ,\ unplaced).$ Mult : $\alpha(K)=0.0025\ 5$
1381.3 <i>3</i>	0.14 3	1841.63	9/2-	460.49	7/2+			
1384.7 ^e 3	0.39 ^e 7	1420.55	(9/2)-	35.75	11/2-	(M1) ^{<i>a</i>}	2.32×10 ⁻³ 3	$\begin{split} &\alpha(\text{K}){=}0.001942\ 27;\ \alpha(\text{L}){=}0.000263\ 4;\ \alpha(\text{M}){=}5.70{\times}10^{-5}\ 8\\ &\alpha(\text{N}){=}1.319{\times}10^{-5}\ 18;\ \alpha(\text{O}){=}2.044{\times}10^{-6}\ 29;\\ &\alpha(\text{P}){=}1.393{\times}10^{-7}\ 20;\ \alpha(\text{IPF}){=}4.43{\times}10^{-5}\ 6\\ &\text{E}_{\gamma},\text{I}_{\gamma}:\ \text{other:}\ 1385.0\ 4,\ \text{with}\ \text{I}_{\gamma}{=}0.89\ 9\ (1981\text{ZuZZ})\ \text{for a composite line, unplaced.}\\ &\text{Mult.:}\ \alpha(\text{K})\text{exp}{\approx}0.0020\ 3. \end{split}$

				¹⁴⁹ Dy ε	decay (4.2 min)	2019MeZX	(continued)
					$\gamma(^{149}\text{Tb})$	(continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E_i (level)	J_i^π	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	α^{c}	Comments
1384.7 ^{ef} 3	0.19 ^e 5	2074.22	7/2-	689.32 7/2-	(M1) ^a	2.32×10 ⁻³ 3	α(K)=0.001942 27; α(L)=0.000263 4; α(M)=5.70×10-5 8 α(N)=1.319×10-5 18; α(O)=2.044×10-6 29; α(P)=1.393×10-7 20; α(IPF)=4.43×10-5 6 Eγ,Iγ: others: 1384.9 5, with Iγ=0.23 11 (1990Sa32); 1385.0 4, with Iγ=0.89 9 (1981ZuZZ, unplaced) for a composite line. Mult.: α(K)exp≈0.0020 3.
1387.9 <i>3</i>	0.08 4	2260.33	(7/2 ⁻ ,9/2)	872.46 (11/2)-		2	
1390.3 <i>I</i>	2.00 3	1426.13	9/2-	35.75 11/2-	M1	2.30×10 ⁻³ 3	$\alpha(K)=0.001924\ 27;\ \alpha(L)=0.000261\ 4;\ \alpha(M)=5.65\times10^{-5}\ 8$ $\alpha(N)=1.307\times10^{-5}\ 18;\ \alpha(O)=2.025\times10^{-6}\ 28;$ $\alpha(P)=1.379\times10^{-7}\ 19;\ \alpha(IPF)=4.60\times10^{-5}\ 6$ $E_{\gamma},I_{\gamma}:\ other:\ 1389.6\ 4,\ with\ I_{\gamma}=2.21\ 22\ (1981ZuZZ).$ Mult: $\alpha(K)$ exp=0.0020 2.
1391.9 4	0.05 2	1852.03	$(7/2)^{-}$	460.49 7/2+			
1416.4 2	0.267 21	1876.88	5/2-	460.49 7/2+	E1	0.000782 11	$\alpha = 0.000782 \ 11; \ \alpha(K) = 0.000548 \ 8; \ \alpha(L) = 7.12 \times 10^{-5} \ 10; \\ \alpha(M) = 1.534 \times 10^{-5} \ 21 \\ \alpha(N) = 3.54 \times 10^{-6} \ 5; \ \alpha(O) = 5.46 \times 10^{-7} \ 8; \ \alpha(P) = 3.68 \times 10^{-8} \\ 5; \ \alpha(IPF) = 0.0001437 \ 20 \\ Mult : \ \alpha(K) \exp < 6.0 \times 10^{-4}]$
1422.6 1	1.89 3	1883.08	(9/2)-	460.49 7/2+	E1	0.000782 11	$\alpha = 0.000782 \ 11; \ \alpha(K) = 0.000544 \ 8; \ \alpha(L) = 7.06 \times 10^{-5} \ 10; \alpha(M) = 1.522 \times 10^{-5} \ 21 \alpha(N) = 3.51 \times 10^{-6} \ 5; \ \alpha(O) = 5.42 \times 10^{-7} \ 8; \ \alpha(P) = 3.65 \times 10^{-8} 5; \ \alpha(IPF) = 0.0001480 \ 21 E_{\gamma}, I_{\gamma}: \ others: \ 1422.7 \ 5, \ with \ I_{\gamma} = 2.7 \ 4 \ (1990Sa32); \ 1422.1 4, \ with \ I_{\gamma} = 3.1 \ 3 \ (1981ZuZZ). Mult: \ \alpha(K) exp = 6.0 \times 10^{-4} \ 10.$
1425.1 4	0.06 2	2117.14	(3/2, 5/2) $(5/2^{-}, 7/2^{-})$	$206.91 \ 5/2^{-1}$ 689.32 $7/2^{-1}$			
1428.0 5	0.017 9	2516.33	$(7/2^{-})$	1088.55 5/2-			
1438.0 2	0.34 3	1473.75	(11/2) ⁻	35.75 11/2-	M1	2.15×10 ⁻³ 3	$\begin{array}{l} \alpha(\mathrm{K}) = 0.001778 \ 25; \ \alpha(\mathrm{L}) = 0.0002407 \ 34; \ \alpha(\mathrm{M}) = 5.22 \times 10^{-5} \\ 7 \\ \alpha(\mathrm{N}) = 1.207 \times 10^{-5} \ 17; \ \alpha(\mathrm{O}) = 1.870 \times 10^{-6} \ 26; \\ \alpha(\mathrm{P}) = 1.275 \times 10^{-7} \ 18; \ \alpha(\mathrm{IPF}) = 6.17 \times 10^{-5} \ 9 \end{array}$
1467.6 <i>3</i>	0.14 3	1928.15	(7/2 ⁻ ,9/2 ⁻)	460.49 7/2+	(E1) ^{<i>a</i>}	0.000780 11	Mult.: α (K)exp=0.0022 4. α =0.000780 11; α (K)=0.000516 7; α (L)=6.69×10 ⁻⁵ 9; α (M)=1.442×10 ⁻⁵ 20 α (N)=3.33×10 ⁻⁶ 5; α (O)=5.14×10 ⁻⁷ 7; α (P)=3.47×10 ⁻⁸ 5; α (IPF)=0.0001794 25 Mult.: α (K)exp=0×10 ⁻⁴ 4 for 1467 (+14697 do 14))
1468.7 <i>3</i>	0.13 3	2157.98	(7/2)-	689.32 7/2-	(M1+E2) ^{<i>a</i>}	0.00173 33	suggests D or E2; E1 from level scheme. $\alpha(K)=0.00142\ 28;\ \alpha(L)=0.00019\ 4;\ \alpha(M)=4.2\times10^{-5}\ 8$

mments $\times 10^{-6} 28; \alpha(P)=1.00\times 10^{-7} 21;$ 1467.6+1468.7 doublet suggests scheme.)2280 32; $\alpha(M)=4.94\times 10^{-5} 7$ 771×10 ⁻⁶ 25; $\alpha(P)=1.207\times 10^{-7}$
mments $\times 10^{-6} 28; \ \alpha(P) = 1.00 \times 10^{-7} 21;$ 1467.6+1468.7 doublet suggests scheme.)2280 32; $\alpha(M) = 4.94 \times 10^{-5} 7$ 771×10 ⁻⁶ 25; $\alpha(P) = 1.207 \times 10^{-7}$
×10 ⁻⁶ 28; α (P)=1.00×10 ⁻⁷ 21; 1467.6+1468.7 doublet suggests scheme.)2280 32; α (M)=4.94×10 ⁻⁵ 7 771×10 ⁻⁶ 25; α (P)=1.207×10 ⁻⁷
$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $
$\times 10^{-7}$ 7; α (P)=3.26 $\times 10^{-8}$ 5;
5 7; α (L)=6.29×10 ⁻⁵ 9; γ =3.9 5 (1990Sa32); 1520.9 4,
2 6; $\alpha(L)=5.99\times10^{-5}$ 8;
$\times 10^{-7}$ 6; α (P)=3.11 $\times 10^{-8}$ 4;
0 6; α (L)=5.96×10 ⁻⁵ 8;
$\times 10^{-7} 6$; α (P)=3.10 $\times 10^{-8} 4$;
-0.57 15 (19903a52).
$0.6: \alpha(L) = 5.60 \times 10^{-5} 8$
$\times 10^{-7}$ 6; α (P)=2.96 $\times 10^{-8}$ 4;
4 6; $\alpha(L)=5.61\times10^{-5}$ 8; $\times10^{-7}$ 6: $\alpha(P)=2.92\times10^{-8}$ 4:
3: 3: 7 5: 5: 5: 5: 4: 7: 3 1

				1	⁴⁹ Dy ε de	cay (4.2 mi	n) 2019M	eZX (continued	0
						γ (¹⁴⁹ T	b) (continued	1)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{c}	Comments
1645.1 2	0.233 14	1852.03	(7/2)-	206.91	5/2+	E1		0.000806 11	$\alpha(\text{IPF})=0.000297 \ 4$ Mult.: $\alpha(\text{K})\exp=4.5\times10^{-4} \ 4$. $\alpha=0.000806 \ 11; \ \alpha(\text{K})=0.000426 \ 6;$ $\alpha(\text{L})=5.51\times10^{-5} \ 8; \ \alpha(\text{M})=1.186\times10^{-5} \ 17$ $\alpha(\text{N})=2.74\times10^{-6} \ 4; \ \alpha(\Omega)=4.23\times10^{-7} \ 6;$
1661.7 <i>1</i>	0.87 <i>3</i>	1697.49	9/2-	35.75	11/2-	M1+E2	0.8 4	0.00147 11	$\alpha(P) = 2.86 \times 10^{-8} 4; \ \alpha(IPF) = 0.000310 4$ Mult.: $\alpha(K) \exp = 4.0 \times 10^{-4} 20.$ $\alpha(K) = 0.00113 9; \ \alpha(L) = 0.000153 12;$ $\alpha(M) = 3.31 \times 10^{-5} 27$ $\alpha(N) = 7.7 \times 10^{-6} 6; \ \alpha(O) = 1.18 \times 10^{-6} 10;$ $\alpha(P) = 8.0 \times 10^{-8} 7; \ \alpha(IPF) = 0.000147 6$
1670.0 <i>1</i>	0.63 <i>3</i>	1876.88	5/2-	206.91	5/2+	E1		0.000813 11	$\begin{aligned} & \text{Li}_{\gamma}(1) = 0.00117 \text{ for } 0.00117 \text{ for } 0.000117 \text{ for } 0.000114 \text{ for } 0.0000118 \text{ for } 0.00000118 \text{ for } 0.00000118 \text{ for } 0.00000118 \text{ for } 0.00000118 \text{ for } 0.0000000000000000000000000000000000$
1697.4 <i>3</i> 1699.6 <i>4</i>	0.058 <i>13</i> 0.07 <i>2</i>	2157.98 1735.44	(7/2) ⁻ (7/2) ⁻	460.49 35.75	7/2+ 11/2 ⁻				(1990Sa32); 1671.0 4, with $I\gamma$ =0.70 70 (1981ZuZZ). Mult.: α (K)exp=4.5×10 ⁻⁴ 8.
1700.7 <i>4</i> 1740.9 <i>3</i>	0.06 2 0.088 <i>15</i>	2161.04 1776.61	(9/2) ⁻ 7/2 ⁻	460.49 35.75	7/2 ⁺ 11/2 ⁻	[E2]		1.14×10 ⁻³ 2	$\alpha(K)=0.000833 \ 12; \ \alpha(L)=0.0001129 \ 16; \ \alpha(M)=2.445\times10^{-5} \ 34 \ \alpha(N)=5.64\times10^{-6} \ 8; \ \alpha(O)=8.60\times10^{-7} \ 12;$
1776.2 1	11.66.50	1876.88	5/2-	100.75	3/2+	E1		0.000845 12	$\alpha(N)=5.04\times10^{-8}$ s; $\alpha(O)=8.09\times10^{-12}$; $\alpha(P)=5.76\times10^{-8}$ s; $\alpha(IPF)=0.0001676$ 24 Mult.: $\alpha(K)\exp=1.0E-3$ 6 gives M1, E2 or E3; E2 from level scheme. $\alpha=0.000845$ 12; $\alpha(K)=0.000375$ 5;
			-,-		-/-				$\alpha(L)=4.84\times10^{-5} 7; \ \alpha(M)=1.043\times10^{-5} 15$ $\alpha(N)=2.406\times10^{-6} 34; \ \alpha(O)=3.72\times10^{-7} 5;$ $\alpha(P)=2.525\times10^{-8} 35; \ \alpha(IPF)=0.000408 6$ E _y ,I _y : others: 1776.5 5, with Iy=11.7 8 (1990Sa32); 1776.5 2, Iy=11.7 18 (1975To03); 1776.2 4, with Iy=11.7 12 (1981ZuZZ). Mult : \alpha(K)exp=3.8×10^{-4} 3
1779.8 <i>4</i> 1789.0 <i>4</i> 1805.8 <i>1</i>	0.07 <i>3</i> 0.032 <i>7</i> 7.69 <i>40</i>	1986.44 2661.4 1841.63	(3/2 ⁻ ,5/2,7/2 ⁻) (9/2 ⁻) 9/2 ⁻	206.91 872.46 35.75	5/2 ⁺ (11/2) ⁻ 11/2 ⁻	M1+E2	1.1 +8-5	0.00127 10	$\alpha(K)=0.00090 \ 8; \ \alpha(L)=0.000122 \ 10;$

					¹⁴⁹ Dy a	ε decay (4.2	min)	2019MeZX (co	ntinued)
						$\gamma(^{14}$	⁹ Tb) (co	ontinued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ#	α^{c}	Comments
					<u> </u>		_		$\begin{aligned} \alpha(M) &= 2.63 \times 10^{-5} \ 23 \\ \alpha(N) &= 6.1 \times 10^{-6} \ 5; \ \alpha(O) &= 9.4 \times 10^{-7} \ 8; \ \alpha(P) &= 6.3 \times 10^{-8} \ 6; \\ \alpha(IPF) &= 0.000211 \ 9 \\ E_{\gamma}, I_{\gamma}: \ \text{others:} \ 1806.0 \ 5, \ \text{with} \ I_{\gamma} &= 7.6 \ 6 \ (1990\text{Sa32}); \\ 1806.2 \ 3, \ I_{\gamma} &= 9.5 \ 14 \ (1975\text{To}03); \ 1806.2 \ 4, \ \text{with} \\ I_{\gamma} &= 9.4 \ 10 \ (1981\text{ZuZZ}, \ \text{unplaced}). \\ \text{Mult.}, \delta: \ \alpha(K) &= 9.0 \times 10^{-4} \ 6. \end{aligned}$
1816.4 <i>4</i> 1819.3 <i>3</i> 1847.3 <i>2</i>	0.05 2 0.20 4 0.19 2	1852.03 2026.32 1883.08	$(7/2)^{-}$ $(7/2)^{-}$ $(9/2)^{-}$	35.75 206.91 35.75	$11/2^{-}$ $5/2^{+}$ $11/2^{-}$				
1858.4 <i>I</i>	0.80 2	2065.37	7/2-	206.91	5/2+	E1		0.000875 12	$\alpha = 0.000875 \ 12; \ \alpha(K) = 0.000349 \ 5; \ \alpha(L) = 4.49 \times 10^{-5} \ 6; \\ \alpha(M) = 9.67 \times 10^{-6} \ 14 \\ \alpha(N) = 2.232 \times 10^{-6} \ 31; \ \alpha(O) = 3.45 \times 10^{-7} \ 5; \\ \alpha(P) = 2.346 \times 10^{-8} \ 33; \ \alpha(IPF) = 0.000469 \ 7 \\ E_{\gamma}, I_{\gamma}: \ \text{other:} \ 1858.6 \ 5, \ \text{with} \ I_{\gamma} = 1.18 \ 22 \ (1990\text{Sa32}). \\ \text{Mult} : \ \alpha(K) = 4 \times 10^{-4} \ 12 \\ \end{array}$
1867.3 <i>1</i>	0.68 2	2074.22	7/2-	206.91	5/2+	E1		0.000878 12	$\alpha = 0.000878 \ 12; \ \alpha(K) = 0.000346 \ 5; \ \alpha(L) = 4.46 \times 10^{-5} \ 6; \alpha(M) = 9.60 \times 10^{-6} \ 13 \alpha(N) = 2.215 \times 10^{-6} \ 31; \ \alpha(O) = 3.42 \times 10^{-7} \ 5; \alpha(P) = 2.328 \times 10^{-8} \ 33; \ \alpha(IPF) = 0.000476 \ 7 E_{\gamma}, I_{\gamma}: \ other: \ 1867.5 \ 5, \ with \ I_{\gamma} = 0.57 \ 14 \ (1990Sa32). Mult.: \ \alpha(K) exp = 2.9 \times 10^{-4} \ 8.$
1891.8 <i>3</i> 1892 4 <i>4</i>	0.043 6	2352.30	$(7/2^{-}, 9/2)$ $(7/2^{-}, 9/2^{-})$	460.49	$7/2^+$ 11/2 ⁻				
1910.2 2	0.131 15	2117.14	(5/2 ⁻ ,7/2 ⁻)	206.91	5/2+	(E1)		0.000895 13	$\alpha(N)=2.134\times10^{-6} \ 30; \ \alpha(O)=3.30\times10^{-7} \ 5; \\ \alpha(P)=2.245\times10^{-8} \ 31; \ \alpha(IPF)=0.000507 \ 7 \\ \alpha=0.000895 \ 13; \ \alpha(K)=0.000334 \ 5; \ \alpha(L)=4.29\times10^{-5} \ 6; \\ \alpha(M)=9.24\times10^{-6} \ 13 \\ Mult.; \ \alpha(K)exp=4.0\times10^{-4} \ 20.$
1917.4 <i>1</i>	1.64 2	1953.13	9/2-	35.75	11/2-	E2(+M1)	>1.3	0.00112 6	
1979.5 <i>4</i> 2026.2 <i>4</i> 2029.6 <i>1</i>	0.046 <i>11</i> 0.05 2 2.58 20	2014.73 2486.59 2065.37	(9/2) ⁻ (5/2,7/2,9/2 ⁺) 7/2 ⁻	35.75 460.49 35.75	11/2 ⁻ 7/2 ⁺ 11/2 ⁻	E2		1.04×10 ⁻³ I	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000628 \ 9; \ \alpha(\mathbf{L}) = 8.41 \times 10^{-5} \ 12; \\ &\alpha(\mathbf{M}) = 1.819 \times 10^{-5} \ 25 \\ &\alpha(\mathbf{N}) = 4.20 \times 10^{-6} \ 6; \ \alpha(\mathbf{O}) = 6.48 \times 10^{-7} \ 9; \end{aligned}$

				¹⁴⁹ D y	ε decay (4.	2 min) 2019	MeZX (continued)			
γ ⁽¹⁴⁹ Tb) (continued)										
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E_i (level)	J^{π}_i	$E_f J_f^{\pi}$	Mult. [#]	α^{c}	Comments			
2038.5 2	0.252 12	2074.22	7/2-	35.75 11/2-	E2	1.03×10 ⁻³ 1	α (P)=4.34×10 ⁻⁸ 6; α (IPF)=0.000300 4 Mult.: α (K)exp=6.1×10 ⁻⁴ 5. E _y ,I _y : other: 2030.3 4, with Iy=2.36 24 (1981ZuZZ), unplaced. α (K)=0.000623 9; α (L)=8.34×10 ⁻⁵ 12; α (M)=1.804×10 ⁻⁵ 25 α (N)=4.17×10 ⁻⁶ 6; α (O)=6.43×10 ⁻⁷ 9; α (P)=4.31×10 ⁻⁸ 6; α (IPF)=0.000304 4			
2087.3 <i>5</i> 2105.4 <i>4</i> 2113.0 <i>4</i>	0.012 6 0.029 10 0.029 10	2547.5 2566.1 2573.4	$(5/2,7/2^+)$ $(7/2^-,9/2)$ $(7/2^-,9/2)$	460.49 7/2 ⁺ 460.49 7/2 ⁺ 460.49 7/2 ⁺			Mult.: $\alpha(K) \exp = 6.6 \times 10^{-4}$ 13.			
2125.3 3 2128.1 1 2224.3 3 2279.6 3 2309.3 3 2316.4 3 2340.5 5 2416.7 3 2446.5 4 2480.6 5 2530.5 4 2537.6 4 2625.6 4	$\begin{array}{c} 0.17 \ 3 \\ 0.02 \ 1 \\ 0.13 \ 3 \\ 0.034 \ 10 \\ 0.058 \ 6 \\ 0.043 \ 9 \\ 0.030 \ 12 \\ 0.036 \ 7 \\ 0.027 \ 6 \\ 0.014 \ 4 \\ 0.012 \ 5 \\ 0.012 \ 5 \\ 0.015 \ 5 \end{array}$	2161.04 2588.60 2260.33 2486.59 2516.33 2352.30 2547.5 2452.5 2547.5 2516.33 2566.1 2573.4 2661.4	$\begin{array}{c} (9/2)^- \\ (5/2,7/2) \\ (7/2^-,9/2) \\ (5/2,7/2,9/2^+) \\ (7/2^-) \\ (7/2^-,9/2) \\ (5/2,7/2^+) \\ (9/2^-) \\ (5/2,7/2^+) \\ (7/2^-) \\ (7/2^-,9/2) \\ (7/2^-,9/2) \\ (9/2^-) \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	D,E2		Mult.: <i>α</i> (K)exp=4.0×10 ⁻⁴ 20.			

[†] All values are taken from the most complete study by 2019MeZX for internal consistency, unless otherwise noted. Values are also available from 1990Sa32 for 76 transitions, but are much less complete than those in 2019MeZX; they are given under comments where available, with intensities being renormalized by the evaluators relative to $I\gamma(1776.2\gamma)=11.66$ in 2019MeZX from original values relative to $I\gamma(100.7\gamma)=100$. The $I\gamma(100.7\gamma)$ is not chosen as the normalization reference due to the poorly-known efficiency curve within the low energy range. Values from 1981ZuZZ are considered as preliminary and are not listed.

[‡] Transition observed only in coincidence spectra (2019MeZX).

[#] From the Adopted Gammas. Assignments are from or supported by ce data in 2019MeZX, which are given under comments where available. For Mult=M1+E2 only available from ¹⁴⁹Dy ε decay (4.2 m), adopted δ is deduced by the evaluators from α (K)exp and/or α (L)exp using the BrIccMixing code.

[@] ce data for strongest component of a complex Tb line (2019MeZX).

[&] ce data for weak component of a complex Tb line (2019MeZX).

^{*a*} ce data for component of a complex Tb line (2019MeZX).

^b Absolute intensity per 100 decays.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Multiply placed with undivided intensity.

¹⁴⁹Dy ε decay (4.2 min) 2019MeZX (continued)

 $\gamma(^{149}\text{Tb})$ (continued)

^e Multiply placed with intensity suitably divided.

^{*f*} Placement of transition in the level scheme is uncertain. ^{*x*} γ ray not placed in level scheme.

Log ft

6.8

7.2

6.9

6.9

6.7

6.6

6.7

6.9

6.56

6.2

5.76

5.95

6.6

5.84

6.6 6.54

>7.6

> 6.6

6.9

6.8

>7.5

5.56

6.6

>6.8

 $> 7.7^{1u}$

6.6

¹⁴⁹Dy ε decay (4.2 min) 2019MeZX

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given

¹⁴⁹Dy ε decay (4.2 min) 2019MeZX

Decay Scheme (continued)

Legend

¹⁴⁹Dy ε decay (4.2 min) 2019MeZX

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Decay Scheme (continued)

 $^{149}_{65}{\rm Tb}_{84}$

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{149}_{65}{\rm Tb}_{84}$

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays
& Multiply placed: undivided intensity given
@ Multiply placed: intensity suitably divided

¹⁴⁹Dy ε decay (4.2 min) 2019MeZX

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given

¹⁴⁹Dy ε decay (4.2 min) 2019MeZX

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

¹⁴⁹₆₅Tb₈₄

39