### <sup>128</sup>Te(<sup>27</sup>Al,6nγ):SD 1998Kh09

|                 | Hist                      | ory               |                        |
|-----------------|---------------------------|-------------------|------------------------|
| Туре            | Author                    | Citation          | Literature Cutoff Date |
| Full Evaluation | Balraj Singh and Jun Chen | NDS 185, 2 (2022) | 23-Aug-2022            |

Also includes  ${}^{124}$ Sn( ${}^{31}$ P,6n $\gamma$ ) from 2002By01.

1998Kh09: E=150 MeV <sup>27</sup>Al beam was produced from the 88-inch cyclotron at LBNL. Target was 1 mg/cm<sup>2</sup> <sup>128</sup>Te evaporated onto a 15 mg/cm<sup>2</sup> gold foil.  $\gamma$  rays were detected with the Gammasphere spectrometer with 95 operational Ge detectors. Measured  $\gamma$ ,  $\gamma\gamma$ -coin,  $\gamma\gamma\gamma$ -coin, Doppler-shift attenuation. Deduced levels, J, super- deformed (SD) band structures, quadrupole moments, configurations. Five SD bands deduced.

2002By01:  ${}^{124}$ Sn( ${}^{31}$ P,6n $\gamma$ ) E=167 MeV from the VIVITRON accelerator of the Institut de Recherches Subatomiques in Strasbourg.  $\gamma$  rays were detected with the EUROBALL IV array. Measured population of SD bands relative to that of levels in the first potential well.

All data are from 1998Kh09.

## <sup>149</sup>Tb Levels

 $\sigma$ (SD bands)/ $\sigma$ (normal bands)=2.0 3 (2002By01), interpreted as enhanced population in the reaction used.

| E(level)                  | $J^{\pi}$ | E(level)                  | $J^{\pi}$ | E(level)                    | $J^{\pi}$ | E(level)                             | $J^{\pi \dagger}$ |
|---------------------------|-----------|---------------------------|-----------|-----------------------------|-----------|--------------------------------------|-------------------|
| x‡                        | J1        | 2890.7+y <sup>#</sup> 5   | J2+8      | 3454.9+z <sup>@</sup> 5     | J3+8      | 10622.9+u& 9                         | J4+20             |
| 740.1+x <sup>‡</sup> 2    | J1+2      | 3741.2+y <sup>#</sup> 6   | J2+10     | 4447.5+z <sup>@</sup> 6     | J3+10     | 11976.9+u <sup>&amp;</sup> <i>10</i> | J4+22             |
| 1534.8+x <sup>‡</sup> 3   | J1+4      | 4643.2+y <sup>#</sup> 6   | J2+12     | 5491.4+z <sup>@</sup> 7     | J3+12     | 13382.3+u <sup>&amp;</sup> <i>11</i> | J4+24             |
| 2381.9+x <sup>‡</sup> 5   | J1+6      | 5597.3+y <sup>#</sup> 7   | J2+14     | 6587.2+z <sup>@</sup> 7     | J3+14     | 14832.8+u& <i>11</i>                 | J4+26             |
| 3281.3+x <sup>‡</sup> 5   | J1+8      | 6603.6+y <sup>#</sup> 7   | J2+16     | 7735.6+z <sup>@</sup> 7     | J3+16     | v <sup>a</sup>                       | J5                |
| 4234.8+x <sup>‡</sup> 5   | J1 + 10   | 7662.4+y <sup>#</sup> 8   | J2+18     | 8935.6+z <sup>@</sup> 8     | J3+18     | 803.6+v <sup>a</sup> 4               | J5+2              |
| 5242.0+x <sup>‡</sup> 6   | J1+12     | 8774.1+y <sup>#</sup> 8   | J2+20     | 10187.6+z <sup>@</sup> 8    | J3+20     | 1657.0+v <sup>a</sup> 5              | J5+4              |
| 6302.7+x <sup>‡</sup> 7   | J1+14     | 9938.6+y <sup>#</sup> 8   | J2+22     | 11490.6+z <sup>@</sup> 9    | J3+22     | 2564.8+v <sup>a</sup> 6              | J5+6              |
| 7416.9+x <sup>‡</sup> 7   | J1+16     | 11156.5+y <sup>#</sup> 9  | J2+24     | 12847.3+z <sup>@</sup> 10   | J3+24     | 3523.1+v <sup>a</sup> 7              | J5+8              |
| 8586.1+x <sup>‡</sup> 8   | J1+18     | 12427.9+y <sup>#</sup> 9  | J2+26     | u&                          | J4        | 4532.8+v <sup>a</sup> 7              | J5+10             |
| 9810.7+x <sup>‡</sup> 8   | J1+20     | 13752.8+y <sup>#</sup> 9  | J2+28     | 824.0+u <sup>&amp;</sup>    | J4+2      | 5593.5+v <sup>a</sup> 7              | J5+12             |
| 11089.5+x <sup>‡</sup> 8  | J1+22     | 15131.5+y <sup>#</sup> 9  | J2+30     | 1701.4+u <sup>&amp;</sup> 5 | J4+4      | 6706.2+v <sup>a</sup> 8              | J5+14             |
| 12423.9+x <sup>‡</sup> 9  | J1+24     | 16565.0+y <sup>#</sup> 10 | J2+32     | 2633.3+u <sup>&amp;</sup> 6 | J4+6      | 7873.0+v <sup>a</sup> 8              | J5+16             |
| 13815.0+x <sup>‡</sup> 9  | J1+26     | 18052.7+y <sup>#</sup> 10 | J2+34     | 3619.0+u <sup>&amp;</sup> 7 | J4+8      | 9092.7+v <sup>a</sup> 9              | J5+18             |
| 15259.2+x <sup>‡</sup> 10 | J1+28     | 19594.6+y <sup>#</sup> 11 | J2+36     | 4656.6+u <sup>&amp;</sup> 7 | J4+10     | 10364.5+v <sup>a</sup> 10            | J5+20             |
| y#                        | J2        | z <sup>@</sup>            | J3        | 5744.9+u <sup>&amp;</sup> 8 | J4+12     | 11692.1+v <sup>a</sup> 11            | J5+22             |
| 646.2+y <sup>#</sup> 3    | J2+2      | 786.0+z <sup>@</sup> 3    | J3+2      | 6884.9+u <sup>&amp;</sup> 8 | J4+14     | 13075.3+v <sup>a</sup> 12            | J5+24             |
| 1343.6+y <sup>#</sup> 4   | J2+4      | 1623.3+z <sup>@</sup> 5   | J3+4      | 8077.9+u <sup>&amp;</sup> 8 | J4+16     |                                      |                   |
| 2091.7+y <sup>#</sup> 5   | J2+6      | 2513.9+z <sup>@</sup> 5   | J3+6      | 9322.9+u <sup>&amp;</sup> 9 | J4+18     |                                      |                   |

<sup>†</sup> Proposed by 1998Kh09 based on band assignments.

<sup>‡</sup> Band(A): SD-1 Band. Q(intrinsic)=15.3 2 (1998Kh09). Intruder configuration= $\pi 6^3 \otimes v7^1 \otimes (v1/2[651], \alpha = +1/2)^{-1}$  (1998Kh09).

<sup>#</sup> Band(B): SD-2 Band. Q(intrinsic)=15.8 +4-3 (1998Kh09). Intruder configuration= $\pi 6^3 \otimes v7^1 \otimes (v1/2[651], \alpha = -1/2 \text{ or } v/2[642], \alpha = -1/2)^{-1}$  (1998Kh09).

<sup>@</sup> Band(C): SD-3 Band. Q(intrinsic)=16.4 +3-4 (1998Kh09). Intruder configuration= $\pi 6^4 \otimes \pi 1/2[301]^{-1} \otimes v7^1 \otimes v1/2[651]^{-1}$  (1998Kh09).

& Band(D): SD-4 Band. Q(intrinsic)=16.0 + 6-5 (1998Kh09). Intruder configuration= $\pi 6^4 \otimes \pi 6_3^{-1} \otimes v 7^1 \otimes v 1/2[642]^{-1}$  (1998Kh09).

<sup>a</sup> Band(E): SD-5 Band. Band from 1998Kh09.

| <sup>128</sup> Te( <sup>27</sup> Al, $6n\gamma$ ):SD | 1998Kh09 (continued) |
|------------------------------------------------------|----------------------|
|------------------------------------------------------|----------------------|

| ( <sup>149</sup> Tb) |
|----------------------|
|----------------------|

| Eγ              | $I_{\gamma}^{\dagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$          | $\mathbf{J}_f^{\pi}$   |
|-----------------|------------------------|------------------------|----------------------|----------------|------------------------|
| 646.2.3         | 0.31.5                 | 646.2+v                | J2+2                 | v              | J2                     |
| 697.4 2         | 0.97 3                 | 1343.6 + v             | J2+4                 | 646.2+v        | J2+2                   |
| 740.1 2         | 0.42 4                 | 740.1 + x              | $J_{1+2}$            | x              | J1                     |
| 748.2.2         | 1.00 2                 | 2091.7 + v             | J2+6                 | 1343.6+v       | J2+4                   |
| 786.0.3         | 0.75 6                 | 786.0+z                | $J_{3+2}$            | Z              | 13                     |
| 794.7 2         | 0.65 4                 | 1534.8 + x             | J1+4                 | 740.1 + x      | J1+2                   |
| 799.0 2         | 1.02.2                 | 2890.7 + v             | 12+8                 | 2091.7+v       | I2+6                   |
| 803.7 4         |                        | 803.6+v                | J5+2                 | v              | J5                     |
| 824 0           | 0 57 1                 | 824 0±11               | I/1+2                | 11             | I/                     |
| 837 / 3         | 0.07 7                 | $1623.3\pm7$           | J++∠<br>I3⊥/         | u<br>786 0⊥7   | J <del>4</del><br>I3⊥2 |
| 84713           | 1 00 9                 | $2381.9 \pm x$         | 11+6                 | $1534.8 \pm x$ | $11 \pm 4$             |
| 850 5 3         | 1.00 2                 | $3741.2 \pm v$         | $12 \pm 10$          | $2890.7 \pm v$ | 12+8                   |
| 853 4 3         | 1.05 2                 | 1657.0+y               | 15+4                 | 803 6+v        | 15+2                   |
| 877 4 4         | 0.93.7                 | $1701.4 \pm 100$       | $J_{4+4}$            | 824 0+11       | 14+2                   |
| 890.6.2         | 1.02.4                 | 2513.9+7               | 13+6                 | 1623.3+7       | 13+4                   |
| 899.4.2         | 1.02 + 1.02 9          | 32813+x                | 11+8                 | 2381.9 + x     | 11+6                   |
| 902.0.2         | 1.05.3                 | 4643.2+y               | $I_{2+12}$           | 3741.2+v       | $I_{2+10}$             |
| 907.8.3         | 1.05 5                 | $2564.8 \pm v$         | 15+6                 | 1657.0+y       | 15+4                   |
| 931.9.4         | 1 00 4                 | 2633 3+11              | I4+6                 | 1701 4+11      | I4+4                   |
| 941.0.2         | 1.00 4                 | 3454.9+z               | J3+8                 | 2513.9+z       | J3+6                   |
| 953 5 2         | 1 01 8                 | 42348 + x              | 11+10                | 32813+x        | I1+8                   |
| 954 1 3         | 1.03.2                 | 5597.3 + v             | $I_{2+14}$           | 4643 2+v       | $I_{2+12}$             |
| 958.3.2         | 1.00 2                 | 3523.1+y               | 15+8                 | 2564.8 + y     | 15+6                   |
| 985.7.3         | 1.00 4                 | 3619.0+11              | J4+8                 | 2633.3+11      | J4+6                   |
| 992.7.3         | 1.01 4                 | 4447.5 + z             | $J_{3+10}$           | 3454.9+z       | 13+8                   |
| 1006.3.2        | 0.98 2                 | 6603.6+v               | $J_{2+16}$           | 5597.3+v       | $J_{2+14}$             |
| 1007.2.2        | 0.98.8                 | 5242.0+x               | $J_{1+12}$           | 4234.8+x       | $J_{1+10}$             |
| 1009.7 2        |                        | 4532.8+v               | J5+10                | 3523.1+v       | J5+8                   |
| 1037.6 2        | 1.07 5                 | 4656.6+u               | J4+10                | 3619.0+u       | J4+8                   |
| 1043.9 2        | 1.00 4                 | 5491.4+z               | J3+12                | 4447.5+z       | J3+10                  |
| 1058.8 2        | 1.00 2                 | 7662.4+y               | J2+18                | 6603.6+y       | J2+16                  |
| 1060.7 3        | 1.00 8                 | 6302.7+x               | J1+14                | 5242.0+x       | J1+12                  |
| 1060.7 2        |                        | 5593.5+v               | J5+12                | 4532.8+v       | J5+10                  |
| 1088.3 <i>3</i> | 1.04 4                 | 5744.9+u               | J4+12                | 4656.6+u       | J4+10                  |
| 1095.8 2        | 1.00 4                 | 6587.2+z               | J3+14                | 5491.4+z       | J3+12                  |
| 1111.7 2        | 1.02 2                 | 8774.1+y               | J2+20                | 7662.4+y       | J2+18                  |
| 1112.7 3        |                        | 6706.2+v               | J5+14                | 5593.5+v       | J5+12                  |
| 1114.2 2        | 1.02 7                 | 7416.9+x               | J1+16                | 6302.7+x       | J1+14                  |
| 1140.0 2        | 1.02 3                 | 6884.9+u               | J4+14                | 5744.9+u       | J4+12                  |
| 1148.4 2        | 1.00 4                 | 7735.6+z               | J3+16                | 6587.2+z       | J3+14                  |
| 1164.5 3        | 0.96 2                 | 9938.6+y               | J2+22                | 8774.1+y       | J2+20                  |
| 1166.8 <i>3</i> |                        | 7873.0+v               | J5+16                | 6706.2+v       | J5+14                  |
| 1169.2 3        | 0.95 7                 | 8586.1+x               | J1+18                | 7416.9+x       | J1+16                  |
| 1193.0 2        | 1.00 3                 | 8077.9+u               | J4+16                | 6884.9+u       | J4+14                  |
| 1200.0 3        | 0.98 6                 | 8935.6+z               | J3+18                | 7735.6+z       | J3+16                  |
| 1217.9 2        | 0.94 2                 | 11156.5+y              | J2+24                | 9938.6+y       | J2+22                  |
| 1219.7 4        |                        | 9092.7+v               | J5+18                | 7873.0+v       | J5+16                  |
| 1224.6 2        | 0.77 6                 | 9810.7+x               | J1+20                | 8586.1+x       | J1+18                  |
| 1245.0 3        | 0.98 4                 | 9322.9+u               | J4+18                | 8077.9+u       | J4+16                  |
| 1252.0 2        | 0.87 5                 | 10187.6+z              | J3+20                | 8935.6+z       | J3+18                  |
| 1271.4 2        | 0.82 2                 | 12427.9+y              | J2+26                | 11156.5+y      | J2+24                  |
| 1271.8 4        |                        | 10364.5+v              | J5+20                | 9092.7+v       | J5+18                  |
| 1278.8 <i>3</i> | 0.68 5                 | 11089.5+x              | J1+22                | 9810.7+x       | J1+20                  |
| 1300.0 3        | 0.79 6                 | 10622.9+u              | J4+20                | 9322.9+u       | J4+18                  |
| 1303.0 3        | 0.65 5                 | 11490.6+z              | J3+22                | 10187.6+z      | J3+20                  |
| 1324.9 2        | 0.60 2                 | 13752.8+y              | J2+28                | 12427.9+y      | J2+26                  |

Continued on next page (footnotes at end of table)

#### <sup>128</sup>Te(<sup>27</sup>Al,6nγ):SD 1998Kh09 (continued)

| $\gamma(11)$ (continued) | Tb) (continued) | ١ |
|--------------------------|-----------------|---|
|--------------------------|-----------------|---|

| Eγ              | $I_{\gamma}^{\dagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$ J'       | π<br>f |
|-----------------|------------------------|------------------------|----------------------|----------------|--------|
| 1327.6 5        |                        | 11692.1+v              | J5+22                | 10364.5+v J5+2 | 20     |
| 1334.4 <i>3</i> | 0.49 5                 | 12423.9+x              | J1+24                | 11089.5+x J1+2 | 22     |
| 1354.0 <i>3</i> | 0.51 4                 | 11976.9+u              | J4+22                | 10622.9+u J4+2 | 20     |
| 1356.7 4        | 0.32 5                 | 12847.3+z              | J3+24                | 11490.6+z J3+2 | 22     |
| 1378.7 2        | 0.54 2                 | 15131.5+y              | J2+30                | 13752.8+y J2+2 | 28     |
| 1383.2 5        |                        | 13075.3+v              | J5+24                | 11692.1+v J5+2 | 22     |
| 1391.1 <i>3</i> | 0.41 3                 | 13815.0+x              | J1+26                | 12423.9+x J1+2 | 24     |
| 1405.4 <i>4</i> | 0.43 5                 | 13382.3+u              | J4+24                | 11976.9+u J4+2 | 22     |
| 1433.5 <i>3</i> | 0.29 2                 | 16565.0+y              | J2+32                | 15131.5+y J2+3 | 30     |
| 1444.2 <i>4</i> | 0.13 1                 | 15259.2+x              | J1+28                | 13815.0+x J1+2 | 26     |
| 1450.5 <i>4</i> | 0.33 5                 | 14832.8+u              | J4+26                | 13382.3+u J4+2 | 24     |
| 1487.7 <i>3</i> | 0.21 3                 | 18052.7+y              | J2+34                | 16565.0+y J2+3 | 32     |
| 1541.9 <i>4</i> | 0.10 2                 | 19594.6+y              | J2+36                | 18052.7+y J2+3 | 34     |

<sup>†</sup> Relative intensities within each band (1998Kh09).
<sup>‡</sup> Placement of transition in the level scheme is uncertain.

<sup>128</sup>Te(<sup>27</sup>Al,6nγ):SD 1998Kh09

<u>Level Scheme</u> Intensities: Relative  $I_{\gamma}$ 



| <br>$I_{\gamma} < 2\% \times I_{\gamma}^{max}$  |
|-------------------------------------------------|
| <br>$I_{\gamma} < 10\% \times I_{\gamma}^{max}$ |
| <br>$I_{\gamma} > 10\% \times I_{\gamma}^{max}$ |
| <br>$\gamma$ Decay (Uncertain)                  |
|                                                 |
|                                                 |

|                      | <u></u>                                 |                  |
|----------------------|-----------------------------------------|------------------|
| J5+24                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  | 13075.3+v        |
| J5+22                |                                         | 11692.1+v        |
| J5+20                |                                         | 10364.5+v        |
| 15+18                |                                         | 9092 7+v         |
| 15.10                |                                         | 7872.01          |
| <u>J5+10</u>         |                                         | <u></u>          |
| <u>J5+14</u>         | ★                                       | 6706.2+v         |
| <u>J5+12</u>         | <b>★</b>                                | <u> </u>         |
| <u>J5+10</u><br>J5+0 | ★ `?                                    | 4532.8+v         |
| <u>J5+8</u>          | <b>∀ ~~</b>                             | 3523.1+v         |
| <u>J5+0</u>          |                                         | 2564.8+V         |
| J5+2                 |                                         | 803.6+v          |
| J5                   |                                         | v                |
| J4+26                |                                         | <u>14832.8+u</u> |
| J4+24                |                                         | 13382.3+u        |
| J4+22                |                                         | 11976.9+u        |
| J4+20                |                                         | 10622.9+u        |
| J4+18                | · · · · · · · · · · · · · · · · · · ·   | 9322.9+u         |
| J4+16                |                                         | 8077.9+u         |
| J4+14                |                                         | 6884.9+u         |
| J4+12                |                                         | 5744.9+u         |
| J4+10                |                                         | 4656.6+u         |
| J4+8                 |                                         | 3619.0+u         |
| I4+6                 |                                         | 2633 3+11        |
| J4+4                 |                                         | 1701.4+u         |
| J4+2                 |                                         | 824.0+u          |
| <u>J4</u><br>J2 + 24 | ∠                                       | <u>u</u>         |
| 12+22                |                                         | <u>12847.3+z</u> |
| <u>J3+22</u>         |                                         | 11490.0+Z        |
| <u>J3+20</u>         |                                         | 10187.6+z        |
| J3+18                | • · · · · · · · · · · · · · · · · · · · | 8935.6+z         |
| J3+16                |                                         | 7735.6+z         |
| <u>J3+14</u>         | \$                                      | 6587.2+z         |
| <u>J3+12</u>         | \$                                      | 5491.4+z         |
| J3+10                |                                         | 4447.5+z         |
| J3+8                 | o <sup>x</sup>                          | 3454.9+z         |
| J3+6                 | ళ                                       | 2513.9+z         |
| J3+4                 | ↓<br>↓                                  | 1623 3+z         |

 $^{149}_{65}{\rm Tb}_{84}$ 

4



<sup>149</sup><sub>65</sub>Tb<sub>84</sub>

## <sup>128</sup>Te(<sup>27</sup>Al,6nγ):SD 1998Kh09

Band(D): SD-4 Band

| J4+26  | 1     | 4832.8+u         |
|--------|-------|------------------|
| J4+24  | 14501 | 3382.3+u         |
| J4+22  | 14051 | 1976.9+u         |
| J4+20  | 13541 | 0 <u>622.9+u</u> |
| J4+18  | 1300  | 9 <u>322.9+u</u> |
| J4+16  | 1245  | 8077.9+u         |
| J4+14- | 1245  | 6884.9+u         |
| J4+12  | 1193  | 5744.9+u         |
| J4+10  | 1140  | 4656.6+u         |
| J4+8   | 1088  | 3619.0+u         |
| J4+6   | 1038  | 2633.3+u         |
| J4+4   | 986   | 1701.4+u         |
| J4+2   | 932   | 824.0+u          |
| J4 ~   | 824   | u                |

Band(C): SD-3 Band

| 3+24 | 1284              | 7.3+z  |
|------|-------------------|--------|
| 3+22 | 13571149          | 0.6+z  |
| 3+20 | 1303 1018         | 87.6+z |
| +18— | 893               | 5.6+z  |
| +16  | 1252 173          | 5.6+z  |
| +14  | 1200 658          | 7.2+z  |
| +12  | 1148 549          | 1.4+z  |
| +10_ | 1096 444          | 7.5+z  |
| +8 \ | 1044 345          | 4.9+z  |
| +6 \ | 993 251           | 3.9+z  |
| +4 \ | 941_162           | 3.3+z  |
| +2 \ | 891<br>827 78     | 6.0+z  |
| ~    | <u>851</u><br>786 | z      |

Band(B): SD-2 Band

| J2+36     | 19             | 9594.6+y |
|-----------|----------------|----------|
| J2+34     | 154218         | 8052.7+y |
| J2+32     | 1488           | 565.0+y  |
| J2+30     | 1400 15        | 3131.5+y |
| J2+28     | 143413         | 752.8+y  |
| J2+26     | 137912         | 427.9+y  |
| J2+24     | 1325           | 156.5+y  |
| J2+22     | 1271           | 938.6+y  |
| J2+20     | 12/1           | 774.1+y  |
| J2+18     | 1218 1         | 662.4+y  |
| J2+16     | 1164           | 603.6+y  |
| J2+14     | 1112           | 597.3+y  |
| J2+12     | 1059           | 643.2+y  |
| J2+10     | 1006 }         | 741.2+y  |
| J2+8      | 954 7          | 890.7+y  |
| J2+6      | 902 g<br>850 7 | 091.7+y  |
| J2+4      | 799            | 343.6+y  |
| J2+2      |                | 646.2+y  |
| <u>J2</u> | _ 646          | y y      |

| Band(A): SI | D-1 Band |
|-------------|----------|
|-------------|----------|

| J1+28  | 15259.2+x                 |
|--------|---------------------------|
| J1+26  | <sup>1444</sup> 13815.0+x |
| J1+24  | 139112423.9+x             |
| J1+22- | 122411089.5+x             |
| J1+20  | 9810.7+x                  |
| J1+18  | <sup>1279</sup> 8586.1+x  |
| J1+16  | 1225 7416.9+x             |
| J1+14  | 1169 \$302.7+x            |
| J1+12  | 1114 \$242.0+x            |
| J1+10  | 1061 4234.8+x             |
| J1+8   | 1007 3281.3+x             |
| J1+6   | 954 2381.9+x              |
| J1+4   | 899 1534.8+x              |
| J1+2   | $\frac{847}{705}$ 740.1+x |
| J1     | 740 X                     |

<sup>149</sup><sub>65</sub>Tb<sub>84</sub>

# <sup>128</sup>Te(<sup>27</sup>Al,6nγ):SD 1998Kh09 (continued)



 $^{149}_{65}{
m Tb}_{84}$