¹⁴⁹Eu ε decay (93.1 d) **1982Me10,1992Ca11**

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 185, 2 (2022)	23-Aug-2022

Parent: ¹⁴⁹Eu: E=0.0; $J^{\pi}=5/2^+$; $T_{1/2}=93.1 \text{ d} 4$; $Q(\varepsilon)=695 4$; $\% \varepsilon \text{ decay}=100.0$

¹⁴⁹Eu-J^{π},T_{1/2}: From ¹⁴⁹Eu Adopted Levels.

¹⁴⁹Eu-Q(ε): From 2021Wa16.

1982Me10: measured γ , $\gamma\gamma$, ce using a mass-separated source and a Compton suppression spectrometer at LLNL.

1992Call: measured E γ , ce using a mass-separated source and a double focusing magnetic spectrometer at CERN.

2004Mi43: measured emission probabilities of 277.1 γ and 327.5 γ as 4.13 3 and 4.75 3, respectively using a $4\pi \beta \gamma$ coin apparatus at JAERI.

2011In01, 2011In04: measurement of high-resolution ce data for 22.5-keV transition using a combined electrostatic electron spectrometer consisting of a retarding sphere followed by a double-pass cylindrical mirror energy analyzer. The electron spectra were recorded by sweeping the retarding voltage while the analyzer voltage was kept constant. FWHM=7 eV. Sources of ¹⁴⁹Eu were prepared from bombardment of natural Er by 500-MeV protons from JINR accelerator followed by chemical separation of Eu fraction as Eu₂O₃ and EuF₃ compounds. Conversion lines of 22.5-keV transition recorded were: L1, L2, L3, M1, M2, M3, M4+M5, N1, N2, N3, O1, O2+O3. Natural widths of Sm atomic levels were deduced from the conversion electron lines of 22.5-keV transition as follows: 3.9 eV *1* for L1 shell, 3.6 eV *1* for L2 shell, 3.3 eV *1* for L3 shell, 13.4 eV *3* for M1 shell, 5.9 eV *3* for M2 shell, 7.3 eV *4* for M3 shell, 5.6 eV *4* for N1 shell, 2.3 eV *8* for N3 shell. Values are averages from Eu₂O₃ and EuF₃ sources (2011In04).

1996Vy01 (also 1979VyZV): analysis of ¹⁴⁹Eu ε decay data from authors' earlier (1978-1980) studies reported in secondary publications; five excited states reported at 22.5, 277.1, 350.0, 528.5 and 558.4 with $\varepsilon + \beta^+$ feedings for g.s. and the five excited states.

γ, γγ-coin: 1976Ga10, 1970Ch09, 1968Ad01, 1968Wi21, 1966Mc11, 1966Wi12, 1966Av05, 1962Wa32.

ce: 1981Ar17, 1970An17. Others: 1966Mc11, 1966Av05, 1966Wi12, 1962Wa32, 1962Dz02, 1961Ha23, 1959An36.

 $\gamma\gamma(\theta)$: 1980Kr15 (semi-semi and semi-scin systems), 1963Ha43.

γγ(θ,H,T): 1981KrZS, 1983Kr19.

γγ(t) and ceγ(t): 1970Ko30, 1966Be39, 1963Ki15.

Production and T_{1/2} of ¹⁴⁹Eu: 1970Ch09, 1962Dz02, 1961Ha40, 1953Ma17, 1951Ho30.

Total decay energy deposit of 682 keV 39 calculated by RADLIST code is in agreement with expected value of 695 keV 4, indicating the completeness of the decay scheme.

¹⁴⁹Sm Levels

E(level) [‡]	$J^{\pi \dagger}$	T _{1/2} †	Comments
0.0	7/2-	stable	
22.5002 8	5/2-	7.33 ns 9	E(level): 22.499 7 (1996Vy01).
			T _{1/2} : weighted average of 7.12 ns <i>11</i> (ce(x-ray)(t),1970Ko30) and 7.37 ns 5 $(\gamma\gamma(t),1996Vy01)$. Others: 6.9 ns 5 (1966Be39), 7.6 ns 5 (1963Ki15).
277.072 7	5/2-	≤0.2 ns	E(level): 277.083 4 (1996Vy01).
			$T_{1/2}$: adopted value from γ (x-ray)(t) (1970Ko30).
285.951 10	9/2-	0.22 ns 4	
350.036 6	3/2-	9.5 ps 3	E(level): 350.00 5 (1996Vy01).
		-	$T_{1/2}$: value from this dataset: ≤ 0.2 ns from $(x-ray)\gamma(t)$ (1970Ko30).
399.08 7	$(1/2^{-}, 3/2^{-})$		-,-
528.592 7	3/2-	24 ps 3	E(level): 528.484 7 (1996Vy01).
558.374 7	$5/2^{-}$	24 ps 8	E(level): 558.409 16 (1996Vy01).
590.880 10	9/2-		
636.421 17	$7/2^{-}$		
658.62 4	(<7/2)		

[†] From the Adopted Levels. Comments are given for the source of the Adopted values.

[‡] From least squares fit to $E\gamma$ data.

¹⁴⁹Eu ε decay (93.1 d) 1982Me10,1992Ca11 (continued)

ε radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	Comments
(36 4)	658.62	0.0082 15	8.0 2	εL=0.705 +9-12; εM+=0.295 +12-9
(59 4)	636.421	4.85×10 ⁻⁴ 17	9.8 1	εK=0.218 +84-94; εL=0.576 +66-60; εM+=0.206 +28-24
(104 4)	590.880	1.43×10 ⁻⁴ 14	9.9 ¹ <i>u</i> 1	εK=0.171 24; εL=0.601 17; εM+=0.2281 79
(137 4)	558.374	0.164 5	8.55 4	εK=0.7241 +53-58; εL=0.2100 +43-39; εM+=0.0660 15
(166 4)	528.592	1.310 15	7.88 <i>3</i>	<i>L</i> : other: 0.13 <i>I</i> (1996Vy01). ε K=0.7551 +30-32; ε L=0.1872 +24-22; ε M+=0.05780 +85-79 <i>L</i> : other: 1.05 5 (1996Vy01).
(296 [‡] 4)	399.08	< 0.0005	>11.3 ¹ <i>u</i>	εK=0.7087 30; εL=0.2206 22; εM+=0.07066 +83-79
(345 4)	350.036	5.53 5	8.01 1	εK=0.81066 49; εL=0.14598 37; εM+=0.04336 13
				Iɛ: other: 4.65 18 (1996Vy01).
(409 4)	285.951	0.00072 28	$11.8^{1u} 2$	εK=0.7626 12; εL=0.18126 +90-87; εM+=0.05613 32
(418 4)	277.072	5.30 5	8.22 1	ε K=0.81785 32; ε L=0.14064 24; ε M+=4.1515×10 ⁻² +82-80
				Iɛ: other: 4.29 14 (1996Vy01).
(672 4)	22.5002	77.5 33	7.50 2	ε K=0.82970 11; ε L=0.131819 82; ε M+=3.8483×10 ⁻² 28
				Iε: see comment for Iε to g.s. Values of 25 (1982Me10) and 5 (1978LeZA,1976Ho17) are incorrect. Other: 60 8 (1996Vy01).
(695 4)	0.0	10.2 33	8.4 2	ε K=0.83029 <i>10</i> ; ε L=0.131375 <i>76</i> ; ε M+=3.8331×10 ⁻² 26
				I: from I(γ +ce) imbalance. Note that 1982Me10 and earlier compilations (1978LeZA,1976Ho17) give I ε =65 and 85, respectively. The discrepancy is most probably due to incorrect value of α (22 γ) used by 1982Me10 and 1978LeZA. Other: 31 9 (1996Vy01).

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

 $\gamma(^{149}\text{Sm})$

I γ normalization: From I γ /100 decays=4.75 4 for 327.5 γ by $4\pi\beta\gamma$ coin method (2004Mi43). Other: 0.0403 4 (1982Me10, from I(K x ray)/I γ (327.5 γ) and decay scheme.

¹⁴⁹Eu ε decay (93.1 d)

S

Measured x-ray intensities per 100 decays (1982Me10): 22.6 8 for K α_2 , 41.0 8 for K α_1 , 12.3 2 for K β_1 , 3.18 7 for K β_2 , and 79.1 14 for all the x-rays. Experimental values of α (K)exp, α (L)exp, α (M)exp given under comments have been deduced from present I γ data and Ice(K), Ice(L), and Ice(M) from 1982Me10. For 254 γ , 277 γ , 281 γ and 327 γ , weighted average of electron intensities available from 1992Ca11 and 1982Me10 are taken. The data have been normalized to the 350 γ treated as pure E2. On the basis of $\approx 3\%$ uncertainty on I γ data and 5% on Ice data an uncertainty of $\approx 7\%$ is assigned to α (exp) values. It may be noted that in some cases the α (exp) data given by 1982Me10 cannot be reproduced from their intensities. In these cases it appears that the electron intensities are in error.

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^{&}	δ&	$\alpha^{\boldsymbol{b}}$	Comments
22.5002 8	57.1 [@] 20	22.5002	5/2-	0.0	7/2-	M1+E2	0.0784 9	30.0 5	%Iy=2.71 10 α (L)=23.5 4; α (M)=5.17 8 α (N)=1.155 18; α (O)=0.1620 25; α (P)=0.00718 10 E _γ : weighted average of 22.4999 9 deduced from an average of nine conversion electron lines and 22.5012 17 from gamma-ray spectroscopy, both measured by 2011In01. Others: 22.519 8 (1982Me10) and 22.494 11 (1970An17). Relative Iy=55.5 20 (1992Ca11), 59.6 25 (1982Me10), 56.8 40 (1976Ga10). %I(γ+ce)=84 4 from Iy and α . From Ice(22γ)/Ice(277K)=185 8 (1970An17), %I(γ+ce)=56 3. The ce data of 1966Av05 give %I(γ+ce)(22γ)=82. Discrepancy is probably due to problems in finding relative ce intensities. Mult.,δ: from 2011In01 for penetration parameter Λ =-2 10 (2011In01). δ =0.0742 18 for Λ =2.9 12 and 0.0722 20 for Λ =1.5 15 Other: 0.0715 11 (1981Ar17,1970An17). Subshell ratios from ce data: L2/L1=0.30 2, 0.30 2; L3/L1=0.30 2, 0.29 2; M2/M1=0.29 2, 0.29 2; M3/M1=0.32 2, 0.31 2; N3/N1=0.25 6, 0.26 5; P1/N1=0.013 2, 0.014 3; (O2+O3)/O1=0.59 7, 0,64 8. First value for Eu ₂ O ₃ , second for EuF ₃ (2011In04). Measured electron intensities (2011In01): L1:L2:L3:M1:M2:M3:N1:N3:P1:O1:O2+O3::(49.1 3):(14.5 2):(14.7 2): (10.9 1):(3.1 1):(3.5 1):(2.4 2):(0.6 2):(0.03 1):(0.32 3):(0.21 2). L- and M- subshell ratios. Weighted average of values deduced from 1981Ar17 and 1970An17. 1981Ar17 give following Ice values relative to ce(K)=100 for 277y. ce(L1)=10640, ce(L2)=2756 85, ce(L3)=2809 85, ce(M1)=2490 150, ce(M2)=585 64, ce(M3)=585 64, ce(N)=745 110, ce(O)+ce(P)=160 53. Values from 1970An17 are: ce(L1)=9100 700, ce(L2)=2590 180, ce(L3)=2560 170, ce(M1)=2050 50, ce(M2)=590 80, ce(M3)=570 120, ce(N)=800 100, ce(O)+ce(P)=200 50. Others: 1966Av05, 1962Wa32, 1961Ha23.

				¹⁴⁹ Eu ε	decay (93.1 d	l) 1982M	e10,1992Ca	11 (continue	ed)				
γ ⁽¹⁴⁹ Sm) (continued)													
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult. ^{&}	$\delta^{\&}$	$\alpha^{\boldsymbol{b}}$	Comments				
72.983 10	0.347 [@] 17	350.036	3/2-	277.072	5/2-	M1+E2	0.23 4	4.36 9	%I γ =0.0165 8 α (L)exp=0.72 7; α (M)exp=0.13 2 α (K)=3.50 5; α (L)=0.67 6; α (M)=0.148 14 α (N)=0.0332 31; α (O)=0.0047 4; α (P)=0.000221 4 Relative I γ =0.38 4 (1992Ca11), 0.342 17 (1982Me10), 0.33 11 (1976Ga10). δ : from ce data.				
122.0 2	0.007 [#] 5	399.08	(1/2 ⁻ ,3/2 ⁻)	277.072	5/2-	[M1,E2]		1.05 10	%I γ =0.00033 24 α (K)=0.74 7; α (L)=0.24 13; α (M)=0.055 30 α (N)=0.012 7; α (O)=0.0016 8; α (P)=4.1×10 ⁻⁵ 11				
129.50 7	$0.010^{\#} 5$	528.592 658.62	3/2-	399.08 528 592	(1/2 ⁻ ,3/2 ⁻)	[M1,E2]		0.87 6	%I γ =0.00047 24 α (K)=0.63 6; α (L)=0.19 9; α (M)=0.043 22 α (N)=0.010 5; α (O)=0.0013 6; α (P)=3.5×10 ⁻⁵ 9 %I γ =0.0037 10				
178.580 <i>16</i>	0.54 [@] 3	528.592	3/2-	350.036	3/2-	M1+E2	+0.5 2	0.325 6	%Iy=0.0057 16 %Iy=0.0257 14 α(K)exp=0.27 3; α(L)exp=0.019 2; α(M)exp=0.009 1 α(K)=0.266 9; α(L)=0.046 4; α(M)=0.0100 10 α(N)=0.00226 22; α(O)=0.000325 25; α(P)=1.63×10 ⁻⁵ 10 1982Me10 deduce α(L)exp=0.05, incorrectly. Relative Iy=0.52 5 (1992Ca11), 0.571 25 (1982Me10), 0.45 1 (1976Ga10); NRM weighted average. δ: from ce data and γγ(θ) assuming δ(328γ)=+0.27 40 (1980Kr15).				
208.283 21	0.305 [@] 25	558.374	5/2-	350.036	3/2-	M1+E2	-0.45 15	0.210 4	(1980Kr15). %I γ =0.0145 12 α (K)exp=0.056 6; α (L)exp=0.016 2 α (K)=0.175 5; α (L)=0.0279 13; α (M)=0.00606 33 α (N)=0.00137 7; α (O)=0.000199 7; α (P)=1.08×10 ⁻⁵				
251.510 37	0.273 [@] 25	528.592	3/2-	277.072	5/2-	[M1,E2]		0.114 16	1982Me10 give α (K)exp=0.13, α (L)exp=0.04, which cannot be reproduced from their intensity data. Relative I γ =0.28 <i>3</i> (1992Ca11), 0.323 <i>25</i> (1982Me10). δ: from $\gamma(\theta)$ in in-beam γ -ray. %I γ =0.0130 <i>12</i> α (K)=0.092 <i>18</i> ; α (L)=0.0170 <i>17</i> ; α (M)=0.0037 <i>5</i> α (N)=0.00084 <i>9</i> ; α (O)=0.000119 <i>7</i> ; α (P)=5.4×10 ⁻⁶ <i>16</i>				

4

From ENSDF

 $^{149}_{62}\mathrm{Sm}_{87}$ -4

	¹⁴⁹ Eu ε decay (93.1 d) 1982Me10,1992Ca11 (continued)														
	γ ⁽¹⁴⁹ Sm) (continued)														
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	$\delta^{\&}$	α b	Comments						
									Relative Iγ=0.26 5 (1992Ca11), 0.273 25 (1982Me10), 0.34 11 (1976Ga10).						
254.566 23	15.78 [@] 20	277.072	5/2-	22.5002	5/2-	M1+E2	+0.20 +8-6	0.1242 20	%I γ =0.750 11 α (K)exp=0.097 8; α (L)exp=0.0147 12; α (M)exp=0.0034 4 α (K)=0.1052 19; α (L)=0.01494 23; α (M)=0.00321 5 α (N)=0.000728 12; α (O)=0.0001087 16; α (P)=6.63×10 ⁻⁶ 14						
									Relative $1\gamma = 15.8\ 2\ (1992Ca11),\ 15.73\ 20\ (1982Me10),\ 15.8 \ 2\ (1976Ga10).$ $\delta:\ \text{from }\gamma(\theta)\ \text{in in-beam }\gamma\text{-ray. }\gamma(\theta,T)\ \text{in }^{149}\text{Eu }\varepsilon\ \text{decay}$						
272.21 ^c 14	0.0032 [#] 22	558.374	5/2-	285.951	9/2-	[E2]		0.0763 11	gives +0.6 4 (1981KrZS); $\delta(E2/M1)<0.9$ from ce data. $\%$ I γ =0.00015 10 α (K)=0.0585 8; α (L)=0.01386 20; α (M)=0.00310 4 α (N)=0.000689 10; α (O)=9.40×10 ⁻⁵ 13; α (P)=3.09×10 ⁻⁶ 4						
277.089 10	88.0 [@] 4	277.072	5/2-	0.0	7/2-	M1+E2	-0.08 +1-2	0.0997 14	%Iγ=4.18 4 α (K)exp=0.085 8; α (L)exp=0.0123 12; α (M)exp=0.0029 3 α (K)=0.0847 12; α (L)=0.01179 17; α (M)=0.002530 35 α (N)=0.000574 8; α (O)=8.61×10 ⁻⁵ 12; α (P)=5.36×10 ⁻⁶ 8 Relative Iγ=86.9 5 (2004Mi43), 88.4 4 (1992Ca11), 88.1 10 (1982Me10), 88.2 3 (1976Ga10). Measured Iγ/100 decays=4.13 3 (2004Mi43), 3.55 4 (1982Me10). δ: from $\gamma(\theta)$ in in-beam γ -ray. Others: $\gamma(\theta,T)$ in ¹⁴⁹ Eu ε decay gives +0.036 18 (1981KrZS); δ (E2/M1)<1.0						
281.295 <i>16</i>	0.554 [@] 25	558.374	5/2-	277.072	5/2-	M1+E2	+0.14 9	0.0954 16	from ce data. %I γ =0.0263 12 α (K)=0.0810 14; α (L)=0.01134 16; α (M)=0.002433 35 α (N)=0.000552 8; α (O)=8.27×10 ⁻⁵ 12; α (P)=5.11×10 ⁻⁶ 10 α (K)exp=0.092 10 Relative I γ =0.53 3 (1992Ca11), 0.571 25 (1982Me10). δ : from $\gamma\gamma(\theta)$ (1980Kr15). (281 γ)(277 γ)(θ): A ₂ =-0.043 35, A ₄ =-0.032 40 (1980Kr15).						
285.95 1	0.017 [#] 5	285.951	9/2-	0.0	7/2-	M1(+E2)	+0.06 6	0.0917 <i>13</i>	%Iγ=0.00081 24 α (K)=0.0780 11; α (L)=0.01083 15; α (M)=0.002323 33 α (N)=0.000527 7; α (O)=7.91×10 ⁻⁵ 11; α (P)=4.93×10 ⁻⁶ 7 δ: from $\gamma(\theta,T)$ in ¹⁴⁹ Pm β^- decay.						

S

 $^{149}_{62}\mathrm{Sm}_{87}$ -5

Т

				¹⁴⁹ Eu ε de	ecay (9.	3.1 d) 1	982Me10,1992C	a11 (continued))
						γ (¹⁴⁹ Sm) (continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^π	E_{f}	\mathbf{J}_{f}^{π}	Mult. ^{&}	$\delta^{\&}$	α b	Comments
308.0 ^{<i>c</i>} 1	0.0025 [#] 25	658.62	(≤7/2)	350.036	3/2-				%Iγ=0.00012 12 E _γ : fitted energy deviates by 0.5 keV.
327.526 10	100.0 [#] 5	350.036	3/2-	22.5002	5/2-	M1+E2	+0.14 3	0.0637 9	% I γ =4.75 5 α (K)exp=0.056 5; α (L)exp=0.0083 8; α (M)exp=0.0019 2 α (K)=0.0542 8; α (L)=0.00753 11; α (M)=0.001614 23 α (N)=0.000366 5; α (O)=5.49×10 ⁻⁵ 8; α (P)=3.41×10 ⁻⁶ 5 Relative I γ =100.0 6 (2004Mi43), 100 (1992Ca11), 100.0 10 (1982Me10), 100.0 4 (1976Ga10). Measured I γ /100 decays=4.75 4 (2004Mi43), 4.03 4 (1982Me10). δ : from $\gamma(\theta, T)$ (1981KrZS). Other: <0.6 from ce
350.016 <i>10</i>	8.95 [@] 14	350.036	3/2-	0.0	7/2-	E2		0.0352 5	data. %I γ =0.425 8 α (L)exp=0.0048 5; α (M)exp=0.0012 1 α (K)=0.0279 4; α (L)=0.00565 8; α (M)=0.001252 18 α (N)=0.000279 4; α (O)=3.89×10 ⁻⁵ 5; α (P)=1.539×10 ⁻⁶ 22 α (K)(theory)=0.028 is used for normalization of ce data for other transitions. Relative I γ =8.7 3 (1992Ca11), 8.91 10 (1982Me10), 9.6 2 (1976Ga10); NRM weighted average taken
376.5 [°] 2 381.7 2	$0.0007^{\#} 5$ $0.086^{@} 20$	399.08 658.62	$(1/2^-, 3/2^-)$ $(\leq 7/2)$	22.5002 277.072	5/2 ⁻ 5/2 ⁻				$\%$ I γ =3.3×10 ⁻⁵ 24 %I γ =0.0041 10 Relative I γ =0.094 20 (1992Ca11), 0.074 25
506.093 10	13.58 [@] 11	528.592	3/2-	22.5002	5/2-	E2+M1	+4.9 +31-15	0.0128 4	(1982Me10). %I γ =0.645 8 α (K)exp=0.0115 11; α (L)exp=0.00157 16; α (M)exp=0.00039 4 α (K)=0.01051 34; α (L)=0.00176 4; α (M)=0.000385 8 α (N)=8.65×10 ⁻⁵ 18; α (O)=1.242×10 ⁻⁵ 28; α (P)=6.09×10 ⁻⁷ 23 Relative I γ =13.60 8 (1992Ca11), 13.45 13 (1982Me10), 14.5 2 (1976Ga10); NRM weighted average.
528.587 10	12.73 [@] 18	528.592	3/2-	0.0	7/2-	E2		0.01108 <i>16</i>	 δ: trom γ(θ,T) (1981KrZS). Other: >1.8 from ce data. %Iγ=0.605 10

6

From ENSDF

				14	⁴⁹ Eu ε	decay (93.1	d) 1982Me10	,1992Ca11 (co	ntinued)					
γ ⁽¹⁴⁹ Sm) (continued)														
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	δ ^{&}	$\alpha^{\boldsymbol{b}}$	Comments					
									$ \begin{array}{l} \alpha(\text{K}) \exp = 0.0090 \; 9; \; \alpha(\text{L}) \exp = 0.0013 \; 2; \; \alpha(\text{M}) \exp = 0.00035 \; 4 \\ \alpha(\text{K}) = 0.00913 \; 13; \; \alpha(\text{L}) = 0.001528 \; 21; \; \alpha(\text{M}) = 0.000334 \; 5 \\ \alpha(\text{N}) = 7.49 \times 10^{-5} \; 10; \; \alpha(\text{O}) = 1.076 \times 10^{-5} \; 15; \; \alpha(\text{P}) = 5.28 \times 10^{-7} \\ 7 \end{array} $					
									Relative I γ =12.10 4 (1992Ca11), 12.73 13 (1982Me10), 13.0 2 (1976Ga10): NRM weighted average.					
535.897 12	1.128 [@] 36	558.374	5/2-	22.5002	5/2-	M1+E2	-0.65 +23-43	0.0159 <i>18</i>	%Iy=0.0536 <i>18</i> α (K)exp=0.0082 <i>8</i> ; α (L)exp=0.0014 <i>3</i> α (K)=0.0135 <i>16</i> ; α (L)=0.00191 <i>15</i> ; α (M)=0.000410 <i>31</i> α (N)=9.3×10 ⁻⁵ <i>7</i> ; α (O)=1.38×10 ⁻⁵ <i>12</i> ; α (P)=8.3×10 ⁻⁷ <i>11</i> Relative Iy=1.35 <i>4</i> (1992Ca11), 1.117 <i>25</i> (1982Me10), 1.1 <i>I</i> (1976Ga10); NRM weighted average. Mult.: from α (K)exp (1982Me10). δ : from $\gamma(\theta,T)$ (1981KrZS). Other: >3 from ce data.					
558.372 10	1.32 [@] 8	558.374	5/2-	0.0	7/2-	M1+E2	1.2 +7-4	0.0124 <i>13</i>	%Iy=0.063 4 $\alpha(K)\exp=0.0097 \ 10; \ \alpha(L)\exp=0.0016 \ 2; \ \alpha(M)\exp=0.00041 \ 5$ $\alpha(K)=0.0104 \ 12; \ \alpha(L)=0.00154 \ 12; \ \alpha(M)=0.000333 \ 24$ $\alpha(N)=7.5\times10^{-5} \ 6; \ \alpha(O)=1.11\times10^{-5} \ 9; \ \alpha(P)=6.3\times10^{-7} \ 8$ Relative Iy=1.20 3 (1992Ca11), 1.464 35 (1982Me10), 1.3 $I \ (1976Ga10).$ $\delta: \ from \ \alpha(K)\exp.$					
568.27 10	0.00060 [#] 20	590.880	9/2-	22.5002	5/2-	E2		0.00919 13	% $I\gamma = 2.9 \times 10^{-5}$ 10 $\alpha(K) = 0.00761$ 11; $\alpha(L) = 0.001241$ 17; $\alpha(M) = 0.000270$ 4 $\alpha(N) = 6.07 \times 10^{-5}$ 9; $\alpha(O) = 8.76 \times 10^{-6}$ 12; $\alpha(P) = 4.42 \times 10^{-7}$ 6					
590.88 1	0.00238 [#] 20	590.880	9/2-	0.0	7/2-	E2+M1	-1.5 +9-4	0.0101 25	%Iγ=0.000113 10 $\alpha(K)=0.0085 22; \alpha(L)=0.00127 22; \alpha(M)=0.00027 5$ $\alpha(N)=6.2\times10^{-5} 11; \alpha(O)=9.1\times10^{-6} 17; \alpha(P)=5.1\times10^{-7} 15$ 1982Me10 give $\alpha(K)$ exp=0.0086 and assign M1+E2. But from authors' intensities evaluators deduce $\alpha(K)$ exp=0.28 which is too high for an M1+E2 assignment. Evaluators suggests that Ice(K)=0.96 8 (1982Me10) is in error.					
613.915 <i>17</i>	0.00645 [#] 25	636.421	7/2-	22.5002	5/2-				%I γ =0.000306 <i>12</i> From authors' intensities, evaluators deduce α (K)exp=0.10 <i>I</i> . Evaluators suspect that Ice(K)=0.96 8 (1982Me10) is in error.					

 \neg

				149	Eu ɛ de	ecay (93.1 d) 1982Me10,1	992Ca11 (co	ntinued)						
	γ ⁽¹⁴⁹ Sm) (continued)														
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.&	<i>δ</i> &	α b	Comments						
636.05 ^c 10	0.0074 [#]	658.62	(≤7/2)	22.5002	5/2-				%Iy=3.5×10 ⁻⁴						
636.50 7	0.00372 [#] 25	636.421	7/2-	0.0	7/2-	M1+E2	-0.30 +16-18	0.0114 5	%I γ =0.000177 <i>12</i> α (K)=0.0097 <i>5</i> ; α (L)=0.00132 <i>5</i> ; α (M)=0.000282 <i>11</i> α (N)=6.40×10 ⁻⁵ <i>24</i> ; α (O)=9.6×10 ⁻⁶ <i>4</i> ; α (P)=6.02×10 ⁻⁷ <i>31</i> α (K)exp=0.058 <i>12</i> for doublet. Evaluators suggest that Ice(K)=0.95 <i>8</i> (1982Me10) is in error.						

[†] From 1982Me10. In several cases 1982Me10 give uncertainties of less than 10 eV. The evaluators have adopted a lowest uncertainty of 10 eV based on least squares fit to $E\gamma$ values in the level scheme.

[‡] Relative intensities with respect to 100.0 for 327.5 γ . Values in 1982Me10 were given as intensities per 1000 decays. These have been converted to relative values with respect to $I\gamma(327.5\gamma)=100$ ($I\gamma/1000=40.3$ 4 in 1982Me10) using a multiplicative factor of 2.4814.

[#] From 1982Me10, converted to relative intensity.

[@] Weighted average of 1992Ca11, 1982Me10 and 1976Ga10.

[&] From the Adopted Gammas. Adopted values are based on ce data (1982Me10), unless otherwise noted. For 22.5 γ the data are from 2011In01 and 2011In04. Others: 1981Ar17 and 1970An17. For normalization, mult(350 γ) was used as pure E2 (1982Me10).

^a For absolute intensity per 100 decays, multiply by 0.0475 4.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Placement of transition in the level scheme is uncertain.

 $^{149}_{62}\rm{Sm}_{87}\text{-}8$

¹⁴⁹Eu ε decay (93.1 d) 1982Me10,1992Ca11

