| History         |                           |                   |                        |  |  |  |  |  |  |
|-----------------|---------------------------|-------------------|------------------------|--|--|--|--|--|--|
| Туре            | Author                    | Citation          | Literature Cutoff Date |  |  |  |  |  |  |
| Full Evaluation | Balraj Singh and Jun Chen | NDS 185, 2 (2022) | 23-Aug-2022            |  |  |  |  |  |  |

1976Ga10: (<sup>16</sup>O, <sup>16</sup>O') E=38-48 MeV at ANU. ( $\alpha, \alpha'$ ) E=6-11 MeV.  $\gamma, \gamma\gamma$ , <sup>16</sup>O- $\gamma(\theta)$  measurements. Subsequent analysis given by 1976Le15.

Others:

1976SiZW: ( ${}^{35}$ Cl, ${}^{35}$ Cl') E=145 MeV; measured E $\gamma$ , I $\gamma$ ,  $\gamma(\theta)$ , ( ${}^{35}$ Cl) $\gamma$ -coin at the Chalk River tandem accelerator facility.

1970Ga20:  $({}^{14}C, {}^{14}C'), E=46.1 \text{ MeV}$ ; measured Ey, Iy, 7(6), ((1970), E=46.1 MeV; measured Ey, Iy, 1967Bo42:  $({}^{12}C, {}^{12}C'), E=41.6 \text{ MeV}$ ; measured Ey, Iy, 1963A130:  $({}^{14}N, {}^{14}N'), E=52 \text{ MeV}$ ; measured Ey, Iy,  ${}^{14}N$ -y coin.

**1960Na13**:  $(\alpha, \alpha')$  E=14-20 MeV.

## <sup>149</sup>Sm Levels

850 level reported by 1967Bo42 and 1963Al30 has been omitted for lack of confirmation by 1976Ga10.  $B(E2)(\uparrow)$  values are relative to  $B(E2)(\uparrow)$  for 664 level.

| E(level) <sup>†</sup>                    | Jπ @                                 | $T_{1/2}^{\ddagger}$ | Comments                                                                                                                                                              |
|------------------------------------------|--------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0<br>22.5                              | 7/2 <sup>-</sup><br>5/2 <sup>-</sup> |                      |                                                                                                                                                                       |
| 277.4 2                                  | 5/2-                                 | <1.3 ns              | B(E2)= $0.0006 \ 6$ . Other: $0.0047 \ (1967Bo42)$ .<br>Level probably populated indirectly.<br>The: $< 0.2$ ns from the Adopted Levels.                              |
| 286.0 2                                  | 9/2-                                 | <0.7 ns              | $B(E2)=0.0010 \ 10. \text{ Other: } 0.0099 \ (1967Bo42).$<br>Level probably populated indirectly.<br>$T_{1/2}: \ 0.22 \text{ ns } 4 \text{ from the Adopted Levels.}$ |
| 350.0 2                                  | 3/2-                                 | 9.5 ps <i>3</i>      | B(E2)=0.043 <i>1</i> . Other: 0.029 (1967Bo42).                                                                                                                       |
| 528.3 2                                  | 3/2-                                 | 24 ps 3              | B(E2)=0.013 <i>I</i> . Other: 0.02 (1967Bo42).                                                                                                                        |
| 558.2 2                                  | $5/2^{-}$                            | 24 ps 8              | B(E2)=0.009 <i>I</i> . Others: 0.020 8 (1970Ga20), <0.02 (1967Bo42).                                                                                                  |
| 590.8 2                                  | 9/2-                                 | 3.0 ps 7             | B(E2)=0.174 2. Others: 0.11 (1967Bo42), 0.12 (1963A130).                                                                                                              |
| 636.7 2                                  | 7/2-                                 | <1.5 ps              | B(E2)=0.022 2. Others: 0.010 4 (1970Ga20), 0.11 (1963A130).<br>T <sub>1/2</sub> : from B(E2)=0.022, adopted branching ratio and δ for 637γ.                           |
| 664.0 2                                  | 11/2-                                | 2.7 ps 3             | B(E2)=0.223 19 (absolute measurement). Others: 0.19 (1967Bo42), 0.21 (1963Al30), 0.21 (1960Na13).                                                                     |
| 713?                                     |                                      |                      |                                                                                                                                                                       |
| 747 <sup>#</sup> 1                       | $13/2^{-}$                           |                      |                                                                                                                                                                       |
| 789 <sup>#</sup> 1<br>834 <sup>#</sup> 1 | 11/2+                                |                      |                                                                                                                                                                       |
| 878 <sup>#</sup> 1                       | 13/2+                                |                      |                                                                                                                                                                       |

<sup>†</sup> From least-squares fit to  $E\gamma$  data, assuming 0.2 keV uncertainty for  $E\gamma$  value, when not stated.

<sup> $\ddagger$ </sup> From B(E2) values, adopted branching ratios and  $\delta$ .

<sup>#</sup> From 1976SiZW only. Probably excited through E3 or multiple excitation.

<sup>@</sup> From the Adopted Levels.

|                              | Coulomb                 |                        | Coulomb ex           | citation                            | 1976Ga10 (conti    | nued)              |                                                        |  |  |  |  |
|------------------------------|-------------------------|------------------------|----------------------|-------------------------------------|--------------------|--------------------|--------------------------------------------------------|--|--|--|--|
| $\gamma$ <sup>(149</sup> Sm) |                         |                        |                      |                                     |                    |                    |                                                        |  |  |  |  |
| Eγ                           | $I_{\gamma}^{\ddagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$ | Mult. <sup>†</sup> | $\delta^{\dagger}$ | Comments                                               |  |  |  |  |
| 22.5                         |                         | 22.5                   | 5/2-                 | 0.0 7/2-                            |                    |                    | $E_{\gamma}$ : rounded value from the Adopted dataset. |  |  |  |  |
| 73.0 <sup>@</sup>            |                         | 350.0                  | $3/2^{-}$            | 277.4 5/2-                          |                    |                    |                                                        |  |  |  |  |
| 89 <sup>#</sup> 1            |                         | 878                    | $13/2^{+}$           | 789 11/2 <sup>+</sup>               |                    |                    |                                                        |  |  |  |  |
| 125 <sup>#</sup> 1           |                         | 789                    | $11/2^{+}$           | 664.0 11/2-                         |                    |                    |                                                        |  |  |  |  |
| 178.6 <sup>@</sup>           |                         | 528.3                  | 3/2-                 | 350.0 3/2-                          |                    |                    |                                                        |  |  |  |  |
| 198 <sup>#</sup> 1           |                         | 789                    | $11/2^{+}$           | 590.8 9/2-                          |                    |                    |                                                        |  |  |  |  |
| 208.2 <sup>&amp;</sup> 2     |                         | 558.2                  | $5/2^{-}$            | 350.0 3/2-                          |                    |                    |                                                        |  |  |  |  |
| 214 <sup>#</sup> 1           |                         | 878                    | $\frac{1}{13/2^{+}}$ | 664.0 11/2-                         |                    |                    |                                                        |  |  |  |  |
| 251.5 <sup>@</sup>           |                         | 528.3                  | $3/2^{-}$            | 277.4 5/2-                          |                    |                    |                                                        |  |  |  |  |
| 254.6 <sup>@</sup>           |                         | 277.4                  | 5/2-                 | 22.5 5/2-                           |                    |                    |                                                        |  |  |  |  |
| 277.4                        | 2.7 5                   | 277.4                  | 5/2-                 | 0.0 7/2-                            |                    |                    |                                                        |  |  |  |  |
| 281.1                        | 1.1 5                   | 558.2                  | 5/2-                 | 277.4 5/2-                          |                    |                    |                                                        |  |  |  |  |
| 286.0                        | 9.0 6                   | 286.0                  | 9/2-                 | 0.0 7/2-                            |                    |                    |                                                        |  |  |  |  |
| 287 <sup>°°</sup> 1          | 2.9.6                   | 636.7                  | $7/2^{-}$            | 350.0 3/2-                          |                    |                    |                                                        |  |  |  |  |
| 304.9                        | 2.8 0                   | 390.8<br>350.0         | 9/2<br>3/2-          | $286.0 \ 9/2$                       | M1 + E2            | +0.27 + 30 45      | $\Delta_{2} = 0.114.44: \Delta_{2} = 0.004.48$         |  |  |  |  |
| 350.0                        | 3.5.6                   | 350.0                  | $3/2^{-}$            | $0.0 7/2^{-}$                       | IVII + L2          | +0.27 $+30-43$     | A <sub>2</sub> ==0.114 44, A <sub>4</sub> ==0.004 48   |  |  |  |  |
| 350 <sup>&amp;</sup> 1       | 043                     | 636.7                  | 7/2-                 | $286.0 \ 9/2^{-1}$                  |                    |                    |                                                        |  |  |  |  |
| 359.4                        | 1.3 3                   | 636.7                  | $7/2^{-}$            | 277.4 5/2-                          |                    |                    |                                                        |  |  |  |  |
| 378.2                        | 3.5 7                   | 664.0                  | $11/2^{-}$           | 286.0 9/2-                          |                    |                    |                                                        |  |  |  |  |
| 436 <sup><i>a</i></sup>      |                         | 713?                   |                      | 277.4 5/2-                          |                    |                    |                                                        |  |  |  |  |
| 461 <sup>#</sup> 1           |                         | 747                    | $13/2^{-}$           | 286.0 9/2-                          |                    |                    |                                                        |  |  |  |  |
| 506.1 <sup>@</sup>           |                         | 528.3                  | $3/2^{-}$            | 22.5 5/2-                           |                    |                    |                                                        |  |  |  |  |
| 528.3                        | 4.2 7                   | 528.3                  | 3/2-                 | 0.0 7/2-                            |                    |                    |                                                        |  |  |  |  |
| 535.9                        | 2.16                    | 558.2<br>558.2         | 5/2                  | 22.5 5/2                            | E2 + M1            | 12 + 7 4           | Mult & from the Adopted Common                         |  |  |  |  |
| 568 3                        | 18 3 11                 | 550.2<br>590.8         | $9/2^{-}$            | $22.5 5/2^{-1}$                     | E2+IVII            | 1.2 +/-4           | $A_{2}=-0.04.8$ $A_{4}=+0.29.10$                       |  |  |  |  |
| 590.8                        | 80.8 21                 | 590.8                  | $9/2^{-}$            | $0.0 7/2^{-}$                       | E2+M1              | -1.5 +9-4          | $A_2 = -0.069 \ 37; \ A_4 = -0.32 \ 5$                 |  |  |  |  |
| 614.0                        | 5.0 7                   | 636.7                  | 7/2-                 | 22.5 5/2-                           |                    |                    | 2 · · · , 7 · · · ·                                    |  |  |  |  |
| 636.7                        | 1.9 6                   | 636.7                  | $7/2^{-}$            | 0.0 7/2-                            | M1+E2              | -0.30 +16-18       | Mult., $\delta$ : from the Adopted Gammas.             |  |  |  |  |
| 664.0                        | 100.0 23                | 664.0                  | $11/2^{-}$           | 0.0 7/2-                            | E2                 |                    | $A_2 = +0.33 4$ ; $A_4 = -0.060 43$                    |  |  |  |  |
| 834 <b>#</b> 1               |                         | 834                    |                      | $0.0 \ 7/2^{-}$                     |                    |                    |                                                        |  |  |  |  |

<sup>†</sup> From  $\gamma(\theta)$  data in 1976Ga10 and RUL, unless otherwise noted. <sup>‡</sup> Relative to 100 for 664 $\gamma$  at E(<sup>16</sup>O)=44 MeV. <sup>#</sup> From 1976SiZW only. <sup>@</sup> Rounded values from the Adopted Gammas.

<sup>&</sup> From  $\gamma\gamma$  only.

<sup>*a*</sup> Placement of transition in the level scheme is uncertain.



<sup>149</sup><sub>62</sub>Sm<sub>87</sub>