¹⁴⁹ Pm β^- decay (53.08 h) 1982 Me10

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 185, 2 (2022)	23-Aug-2022

Parent: ¹⁴⁹Pm: E=0.0; $J^{\pi}=7/2^+$; $T_{1/2}=53.08$ h 9; $Q(\beta^-)=1071.5$ 19; $\%\beta^-$ decay=100.0

 149 Pm-J^{π},T_{1/2}: From 149 Pm Adopted Levels.

¹⁴⁹Pm-Q(β^{-}): From 2021Wa16.

1982Me10: measured γ , $\gamma\gamma$ at LLNL. Mass separated source and Compton suppression spectrometer used for this study.

Others: 1976MiZJ, 1972Ho08, 1972De67, 1971Ba28, 1970Ch09, 1969Gr32, 1966Mc11, 1963Ho15, 1960Ch15, 1960Ar05, 1960Bu06, 1960Sc08.

γγ-coin: 1976MiZJ, 1966Mc11, 1960Ar05, 1960Sc08.

 $\gamma\gamma(\theta)$: 1976MiZJ (semi-scin system). Reanalysis by 1980Mi07.

γ(*θ*,t): 1984Pr04, 1960Ch15.

γγ(t): 1965Cu01, 1960Ma27.

ce: 1960Ar05, 1960Sc08, 1952Ru10.

References prior to 1960 dealing mainly with production and identification of ¹⁴⁹Pm: 1954Fi29, 1952Ki25, 1952Ru10, 1951Ko01, 1949Ma02, 1947Ma28, 1947In06, 1946Bo25, 1941La01.

Following γ rays [E γ (I γ)] seen by 1976MiZJ have been omitted by (evaluators) for lack of confirmation: 64.1(0.0033); 239.5(0.19); 278.6(0.0066); 487.0(0.33); 553.4(0.0165); 556.2(0.0033); 605.0(0.01); 920.0; 925.6. A level proposed at 836.8 from 278.6 γ and 487.0 γ has also been omitted. It may be pointed out that the source material used by 1976MiZJ contained several impurities.

 β^{-} and $\gamma\beta^{-}$: 1978Re01, 1960Sc08, 1960Ar05, 1960Ch15.

βγ(θ): 1980Mi07, 1979Ra11, 1977Mi17.

 β^- shape: 1978Re01.

 $\beta \gamma$ (t): 1968Ak02, 1960Ch15.

The statement "in-beam γ -ray" includes $(\alpha, n\gamma)$; and $(\alpha, 3n\gamma)$, (³He, 4n γ) reactions.

Total decay energy deposit of 1065 keV 4 calculated by RADLIST code is in agreement with expected value of 1071.5 keV 19, indicating the completeness of the decay scheme.

149Sm Levels

E(level) [‡]	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	7/2-	stable	
22.5002 8	5/2-		
277.093 17	5/2-		
285.948 10	9/2-	0.22 ns 4	T _{1/2} : unweighted average of 0.182 ns 7 ($\gamma\gamma(t)$,1965Cu01), 0.253 ns 27 ($\beta\gamma(t)$,1968Ak02). Other: 1960Ma27.
350.08 4	3/2-		
528.54 9	3/2-		
558.352 <i>23</i>	5/2-		
590.883 10	9/2-	3.0 ps 7	
636.54 <i>3</i>	7/2-	<1.5 ps	
664.40 10	$11/2^{-}$		
785.23 12	5/2-		
830.38 4	$(5/2^-, 7/2, 9/2^-)$		
833.23 5			
835.59 7	$(5/2^-, 7/2, 9/2^-)$		
881.97 4	$(5/2,7/2^{-})$		
952.78 9	$(5/2,7/2,9/2^{-})$		

[†] From the Adopted Levels.

[‡] From least-squares fit to $E\gamma$ values. Energy uncertainties of six γ rays were doubled to obtain a fairly acceptable reduced $\chi^2=2.9$ as compared to critical $\chi^2=1.8$. Without this adjustment reduced χ^2 was 5.9.

149 Pm β^{-} decay (53.08 h) 1982Me10 (continued)

β^- radiations

E(decay)	E(level)	Ιβ ^{-†#}	Log ft	Comments
(118.7 19)	952.78	0.0015 2	8.7 1	av E β =31.31 53
(189.5 19)	881.97	0.136 10	7.41 4	av $E\beta = 51.5256$
				Measured $E\beta = 190 \ 40, \ I\beta = 0.6 \ (1960 \text{Sc} 08), \ E\beta = 210 \ (1978 \text{Re} 01).$
(235.9 19)	835.59	0.0016 2	9.6 <i>1</i>	av $E\beta = 65.3458$
(238.3 19)	833.23	0.035 4	8.31 5	av $E\beta = 66.0558$
(241.1 19)	830.38	0.052 5	8.16 5	av $E\beta = 66.9258$
(286.3 19)	785.23	0.00037 7	10.5 1	av $E\beta = 80.84 \ 61$
(407.1 19)	664.40	0.00077 11	10.7^{1u} 1	av $E\beta = 134.53$ 65
(435.0 19)	636.54	0.027 2	9.28 4	av $E\beta = 129.30\ 65$
(480.6 19)	590.883	0.090 7	8.90 4	av $E\beta = 144.91\ 66$
				Measured E β =470 40 and I β =0.3 (1960Sc08); E β =470 (1978Re01).
(513.1 19)	558.352	0.035 3	9.40 4	av E β =156.23 67
(721.4 19)	350.08	0.0013 3	11.6 ¹ <i>u</i> 1	av E β =245.32 70
(785.6 19)	285.948	3.4 2	8.06 <i>3</i>	av $E\beta = 256.2873$
				E(decay): measured Eβ=786 7 from weighted average of 788 9 (1960Ar05), 784 10 (1960Sc08), 770 50 (1960Ch15). Other: 776 (1978Re01). Iβ ⁻ : from absolute intensity measurement of 286γ (1982Me10,1970Ch09,1966Mc11). Measured Iβ: 2.9 4 (1960Ar05), 10 3 (1960Sc08), 11 (1978Re01).
(794.4 19)	277.093	0.027 2	10.17 4	av E β =259.67 73
(1049.0 <i>19</i>)	22.5002	#		I β^- : total β^- feeding to g.s. and 22 level is 95.6% 5. From the measured endpoint energy it is estimated that feeding to g.s. is >50%, implying <46% β feeding for 22.5-keV level. See also comment with 1071.5 β .
(1071.5 <i>19</i>)	0.0	95.6 [‡] 5	7.092 4	av E β =369.20 78 E(decay): measured E β =1067 5 from weighted average of 1062 2 (1978Re01), 1072 2 (1960Ar05), 1064 8 (1960Sc08), 1050 50 (1960Ch15). I β^- : total β^- feeding to g.s. and 22.5 level. Measured I β corresponding to endpoint energy of 1072: 97.1 4 (1960Ar05), 89 3 (1960Sc08), 88 (1978Re01), which indicates that a large fraction (probably>50%) of β^- feeding proceeds to the g.s. The shape of 1067 β is neither statistical nor characteristic of a unique transition. Log <i>ft</i> : combined value for β feedings to 0 and 22 levels.

[†] From intensity balance at each level. [‡] Total β feeding is 95.6 5 for 0+22.5 levels. Feeding for the g.s. is estimated as >50% implying <46% for 22.5 level. [#] Absolute intensity per 100 decays.

$\gamma(^{149}\text{Sm})$

Iγ normalization: From absolute intensity (in $4\pi\beta\gamma$ measurement) %Iγ(286γ)=3.1 2 (1966Mc11).

ω

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α &	Comments
22.5002 8	<54	22.5002	5/2-	0.0	7/2-	M1+E2	0.0784 9	30.0 5	%Iγ≤0.0496 α(L)=23.5 4; α(M)=5.17 8 α(N)=1.155 18; α(O)=0.1620 25; α(P)=0.00718 10 E _γ : from ¹⁴⁹ Eu ε decay (2011In01), γ not observed in ¹⁴⁹ Pm β ⁻ . I _γ : from Iβ(22.5 level)<46% (see comment for Iβ to 22.5 level). For Iβ(22 level)=0%, Iγ(22γ)≈0.2. Mult.,δ: from ¹⁴⁹ Eu ε decay; δ(E2/M1) from ce measurements by 2011In01.
72.98 7	0.0010 8	350.08	3/2-	277.093	5/2-	M1+E2	0.27 6	4.42 12	%Iγ=3.1×10 ⁻⁵ 25 α (K)=3.48 6; α (L)=0.73 10; α (M)=0.162 24 α (N)=0.036 5; α (O)=0.0051 6; α (P)=0.000219 5
208.28 11	0.047 3	558.352	5/2-	350.08	3/2-	M1+E2	-0.45 15	0.210 4	%Iγ=0.00146 13 α (K)=0.175 5; α (L)=0.0279 13; α (M)=0.00606 33 α (N)=0.00137 7; α (O)=0.000199 7; α (P)=1.08×10 ⁻⁵ 5 δ: from $\gamma(\theta)$ in in-beam γ -ray.
x238.38 12	0.007 1								%Iγ=0.000217 <i>34</i>
242.10 14	0.006 1	833.23	5/0-	590.883	9/2-			0.10.10.00	$\%$ I γ =0.000186 33
254.57 8 *257.77 11	0.17 1	277.093	5/2-	22.5002	5/2-	M1+E2	+0.20 +8-6	0.1242 20	$%1\gamma=0.0053$ S $\alpha(K)=0.1052$ 19; $\alpha(L)=0.01494$ 23; $\alpha(M)=0.00321$ 5 $\alpha(N)=0.000727$ 12; $\alpha(O)=0.0001087$ 16; $\alpha(P)=6.63\times10^{-6}$ 14 δ: from $\gamma(\theta)$ in in-beam γ -ray. %I $\gamma=0.00034$ 4
263.23 [#] 4	0.31 1	285.948	9/2-	22.5002	5/2-	[E2]		0.0849	%Iγ=0.0096 7 %Iγ=0.0096 7 α (K)=0.0647 9; α (L)=0.01571 22; α (M)=0.00352 5 α (N)=0.000782 11; α (O)=0.0001063 15; α (P)=3.40×10 ⁻⁶ 5
277.09 2	0.93 4	277.093	5/2-	0.0	7/2-	M1+E2	-0.08 +1-2	0.0997 14	%Iγ=0.0288 22 α (K)=0.0847 12; α (L)=0.01179 17; α (M)=0.002530 35 α (N)=0.000574 8; α (O)=8.61×10 ⁻⁵ 12; α (P)=5.36×10 ⁻⁶ 8 δ: from $\gamma(\theta)$ in in-beam γ -ray.
281.24 3	0.24 1	558.352	5/2-	277.093	5/2-	M1+E2	+0.14 9	0.0955 16	%Iγ=0.0074 6 α (K)=0.0811 14; α (L)=0.01134 16; α (M)=0.002435 35 α (N)=0.000552 8; α (O)=8.27×10 ⁻⁵ 12; α (P)=5.12×10 ⁻⁶ 10 Mult.,δ: from ¹⁴⁹ Eu ε decay. (281γ)(277γ)(θ): A ₂ =-0.08 5 (1976MiZJ). Consistent with δ =0.14 from ¹⁴⁹ Eu ε decay.
285.95 1	100	285.948	9/2-	0.0	7/2-	M1(+E2)	+0.06 6	0.0917 13	%I γ =3.10 20 α (K)=0.0780 11; α (L)=0.01083 15; α (M)=0.002323 33

					¹⁴⁹ Pm	β^- decay (5.	3.08 h) 1982N	1e10 (continue	ed)
$\gamma(^{149}\text{Sm})$ (continued)									
E_{γ}	$I_{\gamma}^{\dagger @}$	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α &	Comments
									$\alpha(N)=0.000527\ 7;\ \alpha(O)=7.91\times10^{-5}\ 11;\ \alpha(P)=4.93\times10^{-6}$
									7 I_{γ} : $I_{\gamma}/100 \text{ decays}=3.1 \ 2 \ (1966Mc11)$. Others: 1970Ch09, 1960Bu06. δ : from $\gamma(\theta,t) \ (1984Pr04)$. $\alpha(K)\exp=0.075 \ 8, \ K/L=6.5 \ 7, \ L/M=4 \ 1 \ (1960Ar05)$. Others: $\alpha(K)\exp=0.16 \ 5, \ K/L=9.0 \ 15 \ (1960Sc08)$, $K/L=8.0 \ 25 \ (1952Ru10)$. $A_2=+0.097 \ to \ +0.30 \ in \ \gamma(\theta,t) \ (1984Pr04)$.
305.22# 8	0.083 5	590.883	9/2-	285.948	9/2-	M1(+E2)	+0.15 15	0.0767 18	%Iγ=0.00257 23 α (K)=0.0652 17; α (L)=0.00909 13; α (M)=0.001951 28 α (N)=0.000442 6; α (O)=6.63×10 ⁻⁵ 10; α (P)=4.11×10 ⁻⁶ 13 δ: from (305γ)(286γ)(θ): A ₂ =-0.104 12, A ₄ =-0.004 15 (1976MiZJ, 1980Mi07).
$x_{314.85}$ 15 323.05 [#] .0	0.009 1	881.07	$(5/2,7/2^{-})$	558 350	5/2-				$\% I_{\gamma} = 0.00028 \ 4$
327.53 7	0.120 6	350.08	(3/2,7/2)) 3/2 ⁻	22.5002	5/2 ⁻	M1+E2	+0.14 3	0.0637 9	$%I_{\gamma}=0.00132$ 18 $%I_{\gamma}=0.00372$ 30 $\alpha(N)=0.000366$ 5; $\alpha(O)=5.49\times10^{-5}$ 8; $\alpha(P)=3.41\times10^{-6}$ 5 $\alpha(K)=0.0542$ 8; $\alpha(L)=0.00753$ 11; $\alpha(M)=0.001614$ 23
350.0 1	0.0111	350.08	3/2-	0.0	7/2-	E2		0.0352 5	δ: from $\gamma(\theta, t)$ in ¹⁴⁹ Eu decay (1981KrZS). %I γ =0.000344 α (N)=0.000280 4; α (O)=3.90×10 ⁻⁵ 5; α (P)=1.539×10 ⁻⁶ 22 α (K)=0.0279 4; α (L)=0.00566 8; α (M)=0.001253 18
350.71 7	0.048 <i>3</i>	636.54	7/2-	285.948	9/2-	M1+E2	-0.30 10	0.0521 <i>13</i>	γ not resolved from 350.71γ. %Iγ=0.00149 <i>I3</i> α (K)=0.0441 <i>I2</i> ; α (L)=0.00623 <i>9</i> ; α (M)=0.001339 <i>20</i> α (N)=0.000303 <i>5</i> ; α (O)=4.53×10 ⁻⁵ <i>7</i> ; α (P)=2.76×10 ⁻⁶ <i>8</i> δ: from (351γ)(286γ)(θ): A ₂ =-0.074 <i>I4</i> , A ₄ =-0.023 <i>19</i> (1976Mi7L 1980Mi07)
353.46 <i>11</i> 359.57 7	0.010 <i>1</i> 0.048 <i>4</i>	881.97 636.54	(5/2,7/2 ⁻) 7/2 ⁻	528.54 277.093	3/2 ⁻ 5/2 ⁻	M1+E2	+0.9 5	0.042 6	$\% I\gamma = 0.00031 4$ $\% I\gamma = 0.00149 16$ $\alpha(K) = 0.035 5; \ \alpha(L) = 0.00556 24; \ \alpha(M) = 0.00121 4$ $\alpha(N) = 0.000272 10; \ \alpha(O) = 3.97 \times 10^{-5} 23; \ \alpha(P) = 2.1 \times 10^{-6}$ 4
506.1 2	0.004 1	528.54	3/2-	22.5002	5/2-	E2+M1	+4.9 +31-15	0.0128 4	δ: from $(360\gamma)(277\gamma)(\theta)$: A ₂ =-0.08 2 (1976MiZJ). %Iγ=0.000124 32 α(K)=0.01051 34; α(L)=0.00176 4; α(M)=0.000385 8 α(N)=8.65×10 ⁻⁵ 18; α(O)=1.242×10 ⁻⁵ 28; α(P)=6.09×10 ⁻⁷ 23
528.6 2	0.004 1	528.54	3/2-	0.0	7/2-	E2		0.01108 16	Mult., δ : from $\gamma(\theta,t)$ in ¹⁺⁹ Eu decay (1981KrZS). %I γ =0.000124 32

4

				¹⁴⁹ P	$m \beta^{-} d$	lecay (53.08	8 h) 1982Me10	(continued)	
						γ (¹⁴⁹ S	m) (continued)		
Eγ	$I_{\gamma}^{\dagger @}$	E _i (level)	${ m J}^{\pi}_i$	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α ^{&}	Comments
		001.05	(5/0 5/0-)	250.00					$\begin{array}{l} \alpha(\mathbf{K}) = 0.00913 \ 13; \ \alpha(\mathbf{L}) = 0.001528 \ 21; \\ \alpha(\mathbf{M}) = 0.000333 \ 5 \\ \alpha(\mathbf{N}) = 7.49 \times 10^{-5} \ 11; \ \alpha(\mathbf{O}) = 1.076 \times 10^{-5} \ 15; \\ \alpha(\mathbf{P}) = 5.28 \times 10^{-7} \ 7 \end{array}$
531.61" 6 535.90 5	0.048 <i>4</i> 0.37 <i>2</i>	881.97 558.352	(5/2,7/2 ⁻) 5/2 ⁻	350.08 22.5002	3/2 ⁻ 5/2 ⁻	E2+M1	-0.65 +23-43	0.0159 <i>18</i>	%1γ=0.00149 16 %1γ=0.0115 10 $\alpha(K)=0.0135$ 16; $\alpha(L)=0.00191$ 15; $\alpha(M)=0.000410$ 31 $\alpha(N)=9.3\times10^{-5}$ 7; $\alpha(O)=1.38\times10^{-5}$ 12; $\alpha(P)=8.3\times10^{-7}$ 11 M by 5 for (0) = 149 F and (1001K 70)
544.27 6 547.17 7 550.01 15	0.080 <i>4</i> 0.052 <i>4</i> 0.006 <i>1</i>	830.38 833.23 835.59	(5/2 ⁻ ,7/2,9/2 ⁻) (5/2 ⁻ ,7/2,9/2 ⁻)	285.948 285.948 285.948	9/2- 9/2- 9/2-				Mult., δ : from $\gamma(\theta, t)$ in ¹⁴⁹ Eu decay (1981KrZS). %I γ =0.00248 20 %I γ =0.00161 16 %I γ =0.000186 33
552.92# 9 558.37 4	0.019 <i>1</i> 0.49 <i>3</i>	830.38 558.352	(5/2 ⁻ ,7/2,9/2 ⁻) 5/2 ⁻	277.093 0.0	5/2 ⁻ 7/2 ⁻	M1+E2	+1.5 5	0.0117 <i>13</i>	% $I_{\gamma}=0.00059 5$ % $I_{\gamma}=0.0152 14$ $\alpha(K)=0.0098 12; \alpha(L)=0.00148 11; \alpha(M)=0.000321$ 23 (2), 7.2, 10=5.5, (2), 1.0(, 10=5.0)
568.36 7	0.60 4	590.883	9/2-	22.5002	5/2-	E2		0.00919 13	$\alpha(N) = 7.2 \times 10^{-5} 5; \ \alpha(O) = 1.06 \times 10^{-5} 9; \alpha(P) = 5.9 \times 10^{-7} 8 \% I\gamma = 0.0186 17 \alpha(K) = 0.00761 11; \ \alpha(L) = 0.001240 17; \alpha(M) = 0.000270 4 \alpha(N) = 6.07 \times 10^{-5} 8; \ \alpha(O) = 8.76 \times 10^{-6} 12; $
^x 571.08 9 590.88 1	0.078 7 2.23 9	590.883	9/2-	0.0	7/2-	E2+M1	-1.5 +9-4	0.0101 25	$\alpha(\mathbf{N})=0.07\times10^{-8}$, $\alpha(\mathbf{C})=8.76\times10^{-7}$ $\alpha(\mathbf{P})=4.42\times10^{-7}$ 6 $\%1\gamma=0.00242$ 27 $\%1\gamma=0.069$ 5
X508 42 15	0.007.1				·				$\alpha(\dot{\mathbf{K}})=0.0085\ 22;\ \alpha(\mathbf{L})=0.00127\ 22;\ \alpha(\mathbf{M})=0.00027\ 5$ $\alpha(\mathbf{N})=6.2\times10^{-5}\ 11;\ \alpha(\mathbf{O})=9.1\times10^{-6}\ 17;$ $\alpha(\mathbf{P})=5.1\times10^{-7}\ 15$
613.92 6	0.007 <i>I</i> 0.48 <i>3</i>	636.54	7/2-	22.5002	5/2-				$\%1\gamma = 0.00021734$ $\%1\gamma = 0.014913$
636.50 5	0.30 2	636.54	7/2-	0.0	7/2-	M1+E2	-0.30 +16-18	0.0114 5	% $I_{\gamma}=0.0093 \ 9$ $\alpha(K)=0.0097 \ 5; \ \alpha(L)=0.00132 \ 5; \ \alpha(M)=0.000282 \ 11$ $\alpha(N)=6.40\times10^{-5} \ 24; \ \alpha(O)=9.6\times10^{-6} \ 4;$ $\alpha(P)=6.02\times10^{-7} \ 31$
664.4 <i>1</i>	0.025 3	664.40	11/2-	0.0	7/2-	E2		0.00624 9	$\% I_{\gamma} = 0.00078 \ II$ $\alpha(K) = 0.00521 \ 7; \ \alpha(L) = 0.000808 \ II;$ $\alpha(M) = 0.0001752 \ 25$ $\alpha(N) = 3.94 \times 10^{-5} \ 6; \ \alpha(O) = 5.74 \times 10^{-6} \ 8;$
785.23 12	0.012 2	785.23	5/2-	0.0	7/2-				α (P)=3.06×10 ⁻⁷ 4 %I γ =0.00037 7

S

 $^{149}_{62}\mathrm{Sm}_{87}$ -5

$\gamma(^{149}\text{Sm})$ (continued)

Eγ	$I_{\gamma}^{\dagger @}$	E _i (level)	J_i^π	E_f	\mathbf{J}_{f}^{π}	Comments
808.11 [#]	0.53 4	830.38	(5/2-,7/2,9/2-)	22.5002	5/2-	%Iγ=0.0164 <i>16</i>
812.92	0.010 1	835.59	$(5/2^-, 7/2, 9/2^-)$	22.5002	$5/2^{-}$	%Iy=0.00031 4
x824.3 2	0.004 1					%Iγ=0.000124 <i>32</i>
830.53 7	1.05 8	830.38	$(5/2^-, 7/2, 9/2^-)$	0.0	$7/2^{-}$	%Iy=0.0325 <i>32</i>
833.40 7	1.07 8	833.23		0.0	$7/2^{-}$	%Iγ=0.0332 <i>33</i>
835.55 11	0.035 <i>3</i>	835.59	$(5/2^{-}, 7/2, 9/2^{-})$	0.0	$7/2^{-}$	$\%$ I γ =0.00108 12
859.46 6	3.5 1	881.97	$(5/2,7/2^{-})$	22.5002	$5/2^{-}$	%Iy=0.108 8
881.98 5	0.77 3	881.97	$(5/2,7/2^{-})$	0.0	$7/2^{-}$	%Iy=0.0239 18
^x 915.5 3	0.0003 1					$\%I\gamma = 9.3 \times 10^{-6} 32$
930.2 2	0.019 3	952.78	$(5/2,7/2,9/2^{-})$	22.5002	$5/2^{-}$	%Iy=0.00059 10
^x 950.6 2	0.007 2					%Iγ=0.00022 6
952.8 <i>1</i>	0.028 3	952.78	$(5/2, 7/2, 9/2^{-})$	0.0	$7/2^{-}$	%Iy=0.00087 11
^x 964.4 5	0.00010 3					$\%$ I γ =3.1×10 ⁻⁶ 10
^x 969.6 5	0.00010 3					$\%$ I γ =3.1×10 ⁻⁶ 10

[†] 3% uncertainty added (evaluators) in quadrature to uncertainties given by 1982Me10. [‡] From the Adopted Gammas, where the assignments are from ce data in ¹⁴⁹Eu decay and $\gamma(\theta)$, $\gamma(\text{lin pol})$ data in in-beam γ -ray.

[#] Uncertainty doubled for fitting purpose, as the $E\gamma$ fits poorly.

^(a) For absolute intensity per 100 decays, multiply by 0.031 2. ^(b) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

6

Z

 $^{149}_{62}\mathrm{Sm}_{87}$ -7