	Hist	ory		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh and Jun Chen	NDS 185, 2 (2022)	23-Aug-2022	

Parent: ²⁵²Cf: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=2.647$ y 3; %SF decay=3.102 3

²⁵²Cf-T_{1/2}: From ²⁵²Cf Adopted Levels in the ENSDF database (Jan 2021 update).

²⁵²Cf-%SF decay: %SF=3.102 3 for ²⁵²Cf SF decay.

Includes prompt γ -ray study from ${}^{9}\text{Be}({}^{238}\text{U},\text{F}\gamma)$ reaction from 2015Wa28.

2015Wa28: data from two experiments have been combined: 1. 252 Cf SF decay: measured E γ and $\gamma\gamma$ using GAMMASPHERE

array comprised of 101 Compton-suppressed Ge detectors at LBNL facility 2. ${}^{9}\text{Be}({}^{238}\text{U},\text{F}\gamma),\text{E=6.2 MeV/nucleon}$, measured E γ , I γ , Z- and A- gated $\gamma\gamma$ coincidences with isotopically identified fission fragments using VAMOS++ and EXOGAM array at GANIL facility. Deduced high-spin levels.

Others:

2000Hw03 (also 2001Ha14,1998Hw08): measured E γ and $\gamma\gamma$ using GAMMASPHERE array comprised of 72 Compton-suppressed Ge detectors. Band assigned to ¹⁴⁹Pr in 1998Hw08 actually belongs to ¹⁵¹Pr.

Others:

1974CIZX (also 1972CIZN): fission fragment isomers populated before β decay in deexcitation of fission fragments observed through (x-ray) γ and $\gamma\gamma$ coin. Mass assignments, energies and lifetimes measured in 6-parameter experiment with two fission, one Ge(Li) and one Si(Li) detectors.

1970Wa05 (also 1966WaZX from the same group): ce data.

¹⁴⁹Pr Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments			
0.0	$(5/2^+)$		Possible configuration= $\pi 5/2[413]$ from quasiparticle-rotor model calculations (2015Wa28).			
58.5 [#] 3	(7/2 ⁻)	22.9 ns 18	T _{1/2} : (fragment)(fragment)(x-ray)γ(t) (1974CIZX). Other: 26 ns 4 from γγ(t) (2010Rz02) in ²⁵² Cf SF decay. See also the Adopted Levels, where the T _{1/2} values from ¹⁴⁹ Ce β ⁻ decay, shorter by a factor of ≈3 from those in SF decays are discussed.			
86.5 ^{&} 5	$(7/2^+)$					
161.7 [#] 4	$(11/2^{-})$					
174.9 [@] 5	$(9/2^+)$					
365.0 <mark>&</mark> 7	$(11/2^+)$					
381.5 [#] 5	$(15/2^{-})$					
407.3 [@] 5	$(13/2^+)$					
711.8 [#] 6	(19/2 ⁻)					
736.6 <mark>&</mark> 9	$(15/2^+)$					
752.0 [@] 6	$(17/2^+)$					
1127.9 [#] 6	$(23/2^{-})$					
1174.0 ^{&} 10	$(19/2^+)$					
1189.3 [@] 6	$(21/2^+)$					
1607.8 [#] 7	$(27/2^{-})$					
1664.7 <mark>&</mark> 12	$(23/2^+)$					
1695.6 [@] 7	$(25/2^+)$					
2130.3 [#] 9	$(31/2^{-})$					
2192.0 ^{&} 13	$(27/2^+)$					
2230.8 [@] 8	$(29/2^+)$					
2664.8 [#] 10	$(35/2^{-})$					
2722.5 [@] 9	$(33/2^+)$					
3185.1 [#] 11	(39/2 ⁻)					
3724.0 [#] 12	$(43/2^{-})$					

²⁵²Cf SF decay 2015Wa28 (continued)

¹⁴⁹Pr Levels (continued)

 $\gamma(^{149}\mathrm{Pr})$

- [†] From least-squares fit to $E\gamma$ data. [‡] As proposed by 2015Wa28. Note that spins were two units higher in their previous work 2000Hw03, for band based on (7/2⁻).
- [#] Band(A): Band based on $(7/2^{-})$. Possible octupole band. Bands 1 and 2 in Figure 14 of 2015Wa28 possibly form alternating-parity bands.
- [@] Band(B): Band based on (9/2⁺). Possible octupole band. Bands 1 and 2 in Figure 14 of 2015Wa28 possibly form alternating-parity bands.
- [&] Band(C): Band based on $(7/2^+)$.

${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult.	α #	Comments
(13.2) (25.8)		174.9 407.3	$(9/2^+)$ $(13/2^+)$	161.7 381.5	$(11/2^{-})$ $(15/2^{-})$			
^x 54.7 1								$T_{1/2}=5.8$ ns <i>11</i> from (fragment)(fragment)(x ray) γ (t) (1974ClZX), γ probably a precursor of the 58.0 γ .
58.5 <i>3</i>	<500	58.5	$(7/2^{-})$	0.0	$(5/2^+)$			E_{y} : 58.0 <i>I</i> (1974CIZX), 58.5 (200Hw03). $E_{y}(100 \text{ fissions} = 0.421 \text{ 7} (1974CIZX))$
86.5 <i>5</i> 103.2 <i>3</i> 116.4 <i>5</i>	<80	86.5 161.7 174.9	$(7/2^+)$ $(11/2^-)$ $(9/2^+)$	0.0 58.5 58.5	$(5/2^+)$ $(7/2^-)$ $(7/2^-)$	M1	1.96 4	$\alpha(\exp)=1.63\ 22\ (2015Wa28)$ E _{γ} : 103.2 (2000Hw03).
^x 143 <i>1</i>								E_{γ} : from ce(K)=100 keV (1970Wa05). Mult.: consistent with E2 from K/L=3.6 (1970Wa05).
								T _{1/2} =1.8 ns 4 (1970Wa05) from (fragment)(fragment)(x ray)ce(t). I(ce)/100 fissions=0.32 (1970Wa05).
219.8 <i>3</i>	100 5	381.5	$(15/2^{-})$	161.7	$(11/2^{-})$			E _γ : 220.3 (2000Hw03).
232.4 3	20 1	407.3	$(13/2^+)$	174.9	$(9/2^+)$			
245.6 <i>3</i>	20 1	407.3	$(13/2^+)$	161.7	$(11/2^{-})$			
278.5 5	15 <i>I</i>	365.0	$(11/2^+)$	86.5	$(7/2^+)$			
330.3 <i>3</i>	79 <i>5</i>	711.8	$(19/2^{-})$	381.5	$(15/2^{-})$			E_{γ} : 330.8 (2000Hw03).
344.7 5	6.9 5	752.0	$(17/2^+)$	407.3	$(13/2^+)$			
370.5 5	10 1	752.0	$(17/2^+)$	381.5	$(15/2^{-})$			
371.6 5	10 1	736.6	$(15/2^+)$	365.0	$(11/2^+)$			
416.0 3	41 3	1127.9	$(23/2^{-})$	711.8	$(19/2^{-})$			E_{γ} : 415.8 (2000Hw03).
437.4 [@] 5	4.2 [@] 4	1174.0	$(19/2^+)$	736.6	$(15/2^+)$			
437.4 [@] 5	11 [@] /	1189.3	$(21/2^{+})$	752.0	$(17/2^{+})$			
477.6 5	3.3 4	1189.3	$(21/2^+)$	711.8	$(19/2^{-})$			
479.8.3	21 /	1607.8	$(27/2^{-})$	1127.9	$(23/2^{-})$			E ₂ : 480.0 (2000Hw03).
490.7 5	1.4 2	1664.7	$(23/2^+)$	1174.0	$(19/2^+)$			
491.7 5	2.7 3	2722.5	$(33/2^+)$	2230.8	$(29/2^+)$			
506.4 5	7.5 6	1695.6	$(25/2^+)$	1189.3	$(21/2^+)$			
520.3 5	2.4 5	3185.1	$(39/2^{-})$	2664.8	$(35/2^{-})$			E _v : 520.3 (2000Hw03).
522.5 5	7.8 5	2130.3	$(31/2^{-})$	1607.8	$(27/2^{-})$			E_{γ} : 522.5 (2000Hw03).
527.3 5	1.1 <i>I</i>	2192.0	$(27/2^+)$	1664.7	$(23/2^+)$			
534.5 5	5.7 11	2664.8	$(35/2^{-})$	2130.3	$(31/2^{-})$			E _v : 534.5 (2000Hw03).
535.5 5	4.0 4	2230.8	$(29/2^+)$	1695.6	$(25/2^+)$			
538.9 5	1.1 2	3724.0	$(43/2^{-})$	3185.1	$(39/2^{-})$			
568.0 5	2.0 2	1695.6	$(25/2^+)$	1127.9	$(23/2^{-})$			
622.7 5	< 0.5	2230.8	$(29/2^+)$	1607.8	$(27/2^{-})$			

²⁵²Cf SF decay 2015Wa28 (continued)

$\gamma(^{149}\text{Pr})$ (continued)

- [†] Uncertainty is stated as 0.5 keV for strong transitions and as much as 1 keV in prompt γ -spectra, whereas from ²⁵²Cf SF decay, uncertainty is stated as 0.1 keV for strong γ rays and 0.5 for weaker lines. Evaluators assign 0.3 keV uncertainty for I $\gamma \ge 20$ and 0.5 for I $\gamma < 20$, or when I γ not stated.
- [‡] From ²⁵²Cf SF decay, according to e-mail reply from the first author (E.H. Wang) of 2015Wa28 on Sept 17, 2015.
- [#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- [@] Multiply placed with intensity suitably divided.

 $x \gamma$ ray not placed in level scheme.

¹⁴⁹₅₉Pr₉₀

4

²⁵²Cf SF decay 2015Wa28

¹⁴⁹₅₉Pr₉₀