¹⁵⁰Sm(d, ³He) **1981Le21**

History

Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 185, 2 (2022)	23-Aug-2022

1981Le21: E(d)=50 MeV from the KVI AVF cyclotron. Targets of 89% 150 Sm in Sm₂O₃, 650 μ g/cm². $\sigma(\theta)$ measured at 10 angles with uncertainty of 10% and used to deduce L values. FWHM=45 keV. Unresolved multiplets analyzed with a peak fitting program to give level energies to within 10 keV.

¹⁴⁹Pm Levels

E(level) [†]	L	S [‡]	Comments
0	4	4.0	
110 <i>10</i>	2	1.2	
230 [#] 10	5+(1) [#]	2.0,0.21	E(level),L: part of an unresolved triplet including the 211, 240, and 270 states. S: for L=1 component, value is for $2p_{1/2}$ factor; 0.09 if $3p_{1/2}$ form factor is used.
270 [#] 10	#		E(level): see comment for 230 level.
380 10	4+2	2.3,0.42	E(level),L: part of an unresolved triplet of energies 360, 387, and 415 with L=4,0,2, respectively, as seen in 150 Sm(pol t, α) reaction. The L=0 component is not found in the analysis of the compound peak in the 150 Sm(d, 3 He) reaction.
420 10			E(level): see comment for 380 state.
560 [#] 20	4+(1) [#]	0.29,0.05	E(level),L: L=4 inconsistent with 552 L=5 level from (pol t,α). S: for L=1 component, value is for $2p_{1/2}$ factor; 0.02 if $3p_{1/2}$ form factor is used.
730 10	2+4	0.15,0.94	E(level): corresponds to the $721(L=4)$ and $751(L=2)$ states in (pol t, α).
790 <i>10</i>	2+4	0.08,0.67	E(level): possibly corresponds to 786.72 $(3/2^+, 5/2^+)$ state seen in β^- decay and the 791 (L=5) state in (t,α) and other reactions.
880 10	2+4	0.16,0.79	E(level): there are probably several states contributing to this peak.
940 [#] 10	2+(1) [#]	0.13,0.09	E(level),L: in addition to the L=2 state which may be the $955(5/2^+)$ level there appears to be an L=1 component.
			S: for L=1 component, value is for $2p_{1/2}$ factor; 0.04 if $3p_{1/2}$ form factor is used.
1350 <i>10</i>	1	0.2	E(level): probably corresponds to 1329 and/or 1367 in Adopted Levels. S: for L=1 component, value is for 2p _{1/2} factor; 0.09 if 3p _{1/2} form factor is used.

[†] Most levels reported here are unresolved multiplets.

 $^{^{\}ddagger}$ $\sigma(\exp)/(N \times \sigma(\text{theory}))$. $\sigma(\text{theory})$ obtained from a DWBA calculation using computer code DWUCK, and optical model and normalization factors given by authors. Despite slight differences in nomenclature, the S values derived from the (3 He,d), (α ,t), (4 t, 4 t, 4 t) reactions are comparable.

[#] The authors fit unresolved multiplets with incoherent combinations of DWBA distributions using L values from earlier work for the strong components and allowing the program to seek other L values. Strong L=1 state is thus identified. Whether this is a real state or a creation of the analysis remains unclear. This state is not included in the Adopted Levels.