<sup>149</sup>Pr β<sup>-</sup> decay (2.26 min) 1977Pi06,2010Ru09,1997Gr09

|                 | Hist                      | ory               |                        |
|-----------------|---------------------------|-------------------|------------------------|
| Туре            | Author                    | Citation          | Literature Cutoff Date |
| Full Evaluation | Balraj Singh and Jun Chen | NDS 185, 2 (2022) | 23-Aug-2022            |

Parent: <sup>149</sup>Pr: E=0;  $J^{\pi}=(5/2^+)$ ;  $T_{1/2}=2.26 \text{ min } 8$ ;  $Q(\beta^-)=3336 \ 10$ ;  $\%\beta^-$  decay=100.0

<sup>149</sup>Pr-J<sup> $\pi$ </sup>,T<sub>1/2</sub>: From <sup>149</sup>Pr Adopted Levels.

<sup>149</sup>Pr-Q( $\beta^{-}$ ): From 2021Wa16.

1977Pi06 (also 1976RoYT): measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ -coin at Grenoble and at the Kernforschungsanlage Julich.

2010Ru09: main emphasis in this work is the measurement of the half-lives of 14 levels in <sup>149</sup>Nd using advanced fast-timing techniques in  $\beta\gamma\gamma$  coin studies at Studsvik. Some new  $\gamma$  rays and levels were also reported. The <sup>149</sup>Pr source was obtained from decay chain starting from <sup>149</sup>Cs and <sup>149</sup>Ba (<sup>149</sup>Cs -> <sup>149</sup>Ba -> <sup>149</sup>La -> <sup>149</sup>Ce -> <sup>149</sup>Pr). The <sup>149</sup>Cs and <sup>149</sup>Ba were produced in <sup>235</sup>U(n,F), E=thermal at OSIRIS on-line fission-product mass separator facility in Studsvik. The A=149 activities were mass separated and deposited on a mylar tape. Measured  $\beta\gamma\gamma$  using NE111A plastic scintillator, one low- energy x-ray detector and a 50% HPGe detector. Lifetime measurements were made by  $\beta\gamma\gamma$ (t) using fast timing coincidence between NE111A  $\beta$  detector and BaF<sub>2</sub>  $\gamma$  detector together with coin requirement with a  $\gamma$  ray detected in a Ge detector.

1997Gr09, 1996Gr20: total absorption  $\gamma$ -ray spectra (TAGS) at the Idaho National Engineering Lab, deduced  $\beta$  feedings.

2014Ko27: measured level half-lives by  $\gamma\gamma$ (t).

Others:

**1995Ik03**: measured Q( $\beta^-$ )=3390 70 from  $\beta\gamma$ -coin.

1977Pf01: E $\gamma$ , I $\gamma$ , most of the  $\gamma$  rays are the same as in 1977Pi06.

1976Sk04: E $\gamma$ ,  $\gamma\gamma$  for intense transitions.

1974Bu09:  $E\gamma$ ,  $T_{1/2}$  of <sup>149</sup>Pr decay.

1973Oh08: E $\gamma$ , T<sub>1/2</sub> of <sup>149</sup>Pr decay.

1967Va14:  $\beta$ ,  $\gamma$  (five intense  $\gamma$  rays reported).

1964Ho03:  $T_{1/2}$  of <sup>149</sup>Pr decay.

The level scheme as given here is incomplete as compared with the TAGS data of 1997Gr09 (also 1996Gr20). For example 1997Gr09 obtain 55%  $\beta$  feeding to levels above 920.7. For low-lying excited levels (108.5-403.7), 1997Gr09 obtain total  $\beta$  feeding of 5.5%, whereas the gamma-ray intensity balance in the proposed level scheme gives about 50%.

Total decay energy deposit of 2997 keV 66 calculated by RADLIST code is somewhat lower than the expected value of 3336 keV 10 (2021Wa16), which could indicate the incompleteness of the decay scheme.

#### <sup>149</sup>Nd Levels

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | $T_{1/2}^{\#}$ | Comments                                                                                                                                                                                                                                                      |
|-----------------------|--------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | 5/2-               | 1.726 h 5      | $T_{1/2}$ : from the Adopted Levels.                                                                                                                                                                                                                          |
| 108.54 4              | 7/2-               | 0.19 ns 8      | $T_{1/2}^{1/2}$ : unweighted average of 0.11 ns 3 (2014Ko27, from average of three values for (162 $\gamma$ )(109 $\gamma$ )(t), (208 $\gamma$ )(109 $\gamma$ )(t), and (224 $\gamma$ )(109 $\gamma$ )(t)) and 278 ps 27 (2010Ru09, $\beta\gamma\gamma$ (t)). |
| 138.44 <i>3</i>       | 5/2-               | 0.178 ns 38    | T <sub>1/2</sub> : unweighted average of 0.14 ns 3 (2014Ko27, from average of three values for $(120\gamma)(138\gamma)(t)$ , $(227\gamma)(138\gamma)(t)$ , and $(433\gamma)(138\gamma)(t)$ ) and 216 ps 14 (2010Ru09, $\beta\gamma\gamma(t)$ ).               |
| 165.12 <i>3</i>       | $1/2^{-}, 3/2^{-}$ | 73 ps 11       | $T_{1/2}$ : from $\beta \gamma \gamma(t)$ (2010Ru09).                                                                                                                                                                                                         |
| 220.73 8              | 9/2-               | 1.61 ns 4      | T <sub>1/2</sub> : from the Adopted Levels. 1.60 ns 4 from weighted average of 1.60 ns 4 (2014Ko27, $(112\gamma+109\gamma)(t)$ ) and 1.65 ns 19 (2010Ru09, $\beta\gamma\gamma(t)$ ).                                                                          |
| 258.33 <i>3</i>       | 3/2-               | 0.203 ns 8     | T <sub>1/2</sub> : weighted average of 0.22 ns 3 (2014Ko27, average of three values for $(313\gamma)(258\gamma)(t)$ , $(623\gamma)(258\gamma)(t)$ , and $(662\gamma)(258\gamma)(t)$ ) and 202 ps 8 (2010Ru09, $\beta\gamma\gamma(t)$ ).                       |
| 270.69 6              | (9/2+)             | 0.42 ns 3      | $T_{1/2}$ : weighted average of 0.42 ns 3 (2014Ko27, (162 $\gamma$ +109 $\gamma$ )(t)) and 424 ps 60 (2010Ru09, $\beta\gamma\gamma$ (t)).                                                                                                                     |
| 285.48 <i>3</i>       | $1/2^{-}$          | 126 ps 13      | $T_{1/2}$ : from $\beta \gamma \gamma(t)$ (2010Ru09).                                                                                                                                                                                                         |
| 316.25 4              | $(5/2^-, 7/2^-)$   | 56 ps 11       | $T_{1/2}$ : from $\beta \gamma \gamma(t)$ (2010Ru09).                                                                                                                                                                                                         |
| 321.17 4              | $(5/2^-, 7/2^-)$   | 74 ps 17       | $T_{1/2}$ : from $\beta \gamma \gamma(t)$ (2010Ru09).                                                                                                                                                                                                         |
| 332.99 4              | 5/2+               | 14 ps 8        | $T_{1/2}$ : from $\beta \gamma \gamma(t)$ (2010Ru09).                                                                                                                                                                                                         |
| 365.84 6              | 3/2-               |                |                                                                                                                                                                                                                                                               |

Continued on next page (footnotes at end of table)

#### <sup>149</sup>Pr β<sup>-</sup> decay (2.26 min) 1977Pi06,2010Ru09,1997Gr09 (continued)

# 149Nd Levels (continued)

| E(level) <sup>†</sup>                                                                                          | $J^{\pi \ddagger}$                                                                             | $T_{1/2}^{\#}$            | Comments                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 403.76 <i>3</i><br>449.85 7                                                                                    | 1/2 <sup>-</sup><br>5/2 <sup>-</sup>                                                           | 23 ps 8<br>≤10 ps         | $T_{1/2}$ : from $\beta\gamma\gamma$ (t) (2010Ru09).<br>$T_{1/2}$ : $\beta\gamma\gamma$ (t) (2010Ru09).<br>Level proposed by 2010Ru09, with the two new $\gamma$ rays of 285.8 and 341.31 from this<br>level, which do not fit well in the decay scheme within the quoted uncertainties. |
| 459.53 <i>4</i><br>474.63 <i>5</i><br>482.71 <i>4</i><br>517.43 <i>6</i><br>548.70 <i>4</i><br>571.44 <i>4</i> | $(3/2^{-},5/2^{-})$<br>$(5/2^{+},7/2)$<br>$1/2^{+}$<br>(3/2,5/2,7/2)<br>$3/2^{-}$<br>$3/2^{+}$ | 31 ps <i>14</i><br>≤10 ps | $T_{1/2}$ : βγγ(t) (2010Ru09).<br>$T_{1/2}$ : βγγ(t) (2010Ru09).                                                                                                                                                                                                                         |
| 593.09 7<br>603.44 9<br>705.01 11<br>709.45 9<br>741.51 16<br>814.35 9                                         | $(5/2^+)$<br>(3/2,5/2)<br>$(3/2,5/2^-)$<br>$3/2^+$<br>$1/2^+$                                  |                           | E(level): level proposed by 2010Ru09.<br>E(level): level proposed by 2010Ru09.                                                                                                                                                                                                           |
| 862.81 <i>10</i><br>881.36 <i>8</i><br>920.66 <i>7</i><br>1000 <sup>@</sup> <i>50</i>                          | $(7/2)^+$<br>$3/2^+$<br>$(3/2,5/2,7/2^-)$                                                      |                           | E(level): level proposed by 2010Ru09.                                                                                                                                                                                                                                                    |
| 1012.6? <i>3</i>                                                                                               |                                                                                                |                           | E(level): level proposed by 2010Ru09, considered as uncertain by the evaluators, as it is not supported by $\gamma\gamma$ -coin data.                                                                                                                                                    |
| 1200 <sup>@</sup> 50<br>1300 <sup>@</sup> 50                                                                   |                                                                                                |                           |                                                                                                                                                                                                                                                                                          |
| 1400 <sup>@</sup> 50<br>1500 <sup>@</sup> 50                                                                   |                                                                                                |                           |                                                                                                                                                                                                                                                                                          |
| 1700 <sup>@</sup> 50<br>1800 <sup>@</sup> 50                                                                   |                                                                                                |                           |                                                                                                                                                                                                                                                                                          |
| 1900 <sup>@</sup> 50<br>2000 <sup>@</sup> 50                                                                   |                                                                                                |                           |                                                                                                                                                                                                                                                                                          |
| $2100^{\circ}$ 50<br>$2200^{\circ}$ 50<br>$2300^{\circ}$ 50                                                    |                                                                                                |                           |                                                                                                                                                                                                                                                                                          |
| 2400 <sup>@</sup> 50<br>2500 <sup>@</sup> 50                                                                   |                                                                                                |                           |                                                                                                                                                                                                                                                                                          |
| 2700 <sup>@</sup> 50<br>2800 <sup>@</sup> 50                                                                   |                                                                                                |                           |                                                                                                                                                                                                                                                                                          |
| 2900 <sup>@</sup> 50<br>3000 <sup>@</sup> 50                                                                   |                                                                                                |                           |                                                                                                                                                                                                                                                                                          |
| 3100 <sup>w</sup> 50                                                                                           |                                                                                                |                           |                                                                                                                                                                                                                                                                                          |

<sup>†</sup> From least-squares fit to  $E\gamma$  data. As indicated by comments, 285 $\gamma$  from 450 level was not used in the least-squares fit procedure, due to its very poor fit, the deviation being  $\approx 1$  keV. Uncertainties of three  $\gamma$  rays from the 709 level were doubled in the fitting procedure to obtain an acceptable reduced  $\chi^2$  fit, consistent with critical reduced  $\chi^2$  of 1.5. Without the above adjustments, reduced  $\chi^2$  is 4.3.

<sup>149</sup>Pr β<sup>-</sup> decay (2.26 min) 1977Pi06,2010Ru09,1997Gr09 (continued)

## 149Nd Levels (continued)

 $\ddagger$  From the Adopted Levels.

<sup>#</sup> From this dataset, unless otherwise noted. Quoted values are the same in the Adopted Levels.

<sup>@</sup> Pseudolevel from  $\beta$  feeding deduced from TAGS (total absorption  $\gamma$  ray spectra) data (1997Gr09). Uncertainty of 50 keV

assigned by the evaluators based on choice of 100 keV bins for the TAGS spectrum of 1997Gr09.

#### $\beta^{-}$ radiations

| E(decay)               | E(level) | $I\beta^{-\dagger\ddagger}$ | $\log ft^{\dagger}$ | Comments                                                                                                           |
|------------------------|----------|-----------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------|
| $(2.4 \times 10^2 5)$  | 3100     | 0.034                       | 5.1                 | av $E\beta = 65 \ 16$                                                                                              |
| $(3.4 \times 10^2 5)$  | 3000     | 0.085                       | 5.2                 | av E $\beta$ =97 17                                                                                                |
| $(4.4 \times 10^2 5)$  | 2900     | 0.18                        | 5.3                 | av E $\beta$ =130 18                                                                                               |
| $(5.4 \times 10^2 5)$  | 2800     | 0.57                        | 5.1                 | av E $\beta$ =165 19                                                                                               |
| $(6.4 \times 10^2 5)$  | 2700     | 1.0                         | 5.1                 | av E $\beta$ =201 19                                                                                               |
| $(7.4 \times 10^2 5)$  | 2600     | 1.6                         | 5.1                 | av E $\beta$ =238 20                                                                                               |
| $(8.4 \times 10^2 5)$  | 2500     | 3.2                         | 5.0                 | av E $\beta$ =277 20                                                                                               |
| $(9.4 \times 10^2 5)$  | 2400     | 4.1                         | 5.1                 | av E $\beta$ =316 21                                                                                               |
| $(1.04 \times 10^3 5)$ | 2300     | 3.6                         | 5.3                 | av E $\beta$ =356 21                                                                                               |
| $(1.14 \times 10^3 5)$ | 2200     | 3.4                         | 5.4                 | av E $\beta$ =397 21                                                                                               |
| $(1.24 \times 10^3 5)$ | 2100     | 12.7                        | 5.0                 | av E $\beta$ =438 22                                                                                               |
| $(1.34 \times 10^3 5)$ | 2000     | 11.8                        | 5.2                 | av E $\beta$ =480 22                                                                                               |
| $(1.44 \times 10^3 5)$ | 1900     | 0.87                        | 6.4                 | av E $\beta$ =523 22                                                                                               |
| $(1.54 \times 10^3 5)$ | 1800     | 1.6                         | 6.3                 | av E $\beta$ =566 22                                                                                               |
| $(1.64 \times 10^3 5)$ | 1700     | 1.3                         | 6.5                 | av E $\beta$ =609 23                                                                                               |
| $(1.74 \times 10^3 5)$ | 1600     | 1.0                         | 6.7                 | av E $\beta$ =653 23                                                                                               |
| $(1.84 \times 10^3 5)$ | 1500     | 1.4                         | 6.6                 | av E $\beta$ =697 23                                                                                               |
| $(1.94 \times 10^3 5)$ | 1400     | 1.8                         | 6.6                 | av E $\beta$ =741 23                                                                                               |
| $(2.04 \times 10^3 5)$ | 1300     | 1.3                         | 6.8                 | av E $\beta$ =786 23                                                                                               |
| $(2.14 \times 10^3 5)$ | 1200     | 1.1                         | 7.0                 | av E $\beta$ =830 23                                                                                               |
| $(2.24 \times 10^3 5)$ | 1100     | 1.1                         | 7.1                 | av E $\beta$ =875 23                                                                                               |
| (2323 <sup>#</sup> 10) | 1012.6?  | 0.80 15                     | 7.3                 | av E $\beta$ =914.7 46                                                                                             |
|                        |          |                             |                     | $I\beta^{-}$ : from intensity balance; value not available from TAGS data.                                         |
| $(2.34 \times 10^3 5)$ | 1000     | 0.87                        | 7.3                 | av E $\beta$ =920 23                                                                                               |
| (2415 10)              | 920.66   | 6.6                         | 6.4                 | av E $\beta$ =956.2 46                                                                                             |
|                        |          |                             |                     | $I\beta^-$ : intensity balance gives 5.2 9.                                                                        |
| (2455 10)              | 001.00   | 4 5                         |                     | E(decay): 2430 160 ( $\beta\gamma$ ,19951k03).                                                                     |
| (2455-10)              | 881.30   | 4.5                         | 0.0                 | av $E\beta = 9/4.040$                                                                                              |
|                        |          |                             |                     | F(decay): 2490 160 (By 1995] $F(03)$                                                                               |
| (2473, 10)             | 862.81   | 0.65.14                     | 75                  | $E(4ccay)$ : 2490 100 ( $\beta$ ), 1995 ( $k$ 05).<br>av $E\beta = 982.5.46$                                       |
| (2000 10)              | 002.01   | 0100 11                     | , 10                | $I\beta^{-}$ : from intensity balance; value not available from TAGS data.                                         |
| $(2522^{\#} 10)$       | 814.35   | 3.2                         | 6.8                 | av $E\beta = 1004.5.46$                                                                                            |
| (2022 10)              | 01 1100  | 0.2                         | 010                 | $IB^-$ : intensity balance gives 1.13 24, including contributions identified in $(n, \gamma)$ by                   |
|                        |          |                             |                     | 1976Pi04; expected to be negligible due to $\Delta J=2$ and $\Delta \pi=$ no for the $\beta$                       |
|                        |          |                             |                     | transition.                                                                                                        |
| (2594 10)              | 741.51   | 0.39                        | 7.8                 | av E $\beta$ =1037.6 46                                                                                            |
|                        |          |                             |                     | $I\beta^{-}$ : intensity balance gives 0.45 <i>12</i> , including contributions identified in $(n,\gamma)$ by      |
| (2(27, 10))            | 700 45   | 1.0                         | 7.4                 | 19/6P104.                                                                                                          |
| (2027-10)              | /09.45   | 1.0                         | 7.4                 | av $E\beta = 1052.2.40$<br>$R^{-1}$ : intensity belonge gives 1.0.4 including contributions identified in (n c) by |
|                        |          |                             |                     | $10^{-10}$ intensity balance gives 1.9 4, including contributions identified in (ii, $\gamma$ ) by $1076P_{10}$    |
| (2631, 10)             | 705.01   | 1.1                         | 7.4                 | av $E\beta = 1054.2.46$                                                                                            |
| (2001 10)              | /00.01   | 1.1                         | <i>,.</i> .         | $I\beta^-$ : intensity balance gives 2.3 5.                                                                        |
| (2733 10)              | 603.44   | 0.89 21                     | 7.5                 | av Eβ=1100.6 46                                                                                                    |
|                        |          |                             |                     | $I\beta^-$ : from intensity balance; value not available from TAGS data.                                           |
|                        |          |                             |                     |                                                                                                                    |

Continued on next page (footnotes at end of table)

### <sup>149</sup>Pr $β^-$ decay (2.26 min) 1977Pi06,2010Ru09,1997Gr09 (continued)

#### $\beta^-$ radiations (continued)

| E(decay)                       | E(level) | Iβ <sup>-†‡</sup> | $\log ft^{\dagger}$ | Comments                                                                                                                    |  |  |  |
|--------------------------------|----------|-------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|
| (2743 10)                      | 593.09   | 1.5 3             | 7.3                 | av Eβ=1105.3 46                                                                                                             |  |  |  |
|                                |          |                   | 6.0                 | $I\beta^-$ : from intensity balance; value not available from TAGS data.                                                    |  |  |  |
| (2765-10)                      | 571.44   | 5.5               | 6.8                 | av $E\beta = 1115.2.46$<br>E(decay): 2820, 100 ( $\theta_{12}$ 10051102)                                                    |  |  |  |
|                                |          |                   |                     | E(decay): 2820 190 (py,19931K03).<br>$IB^-$ : intensity balance gives 6.8.11 including contributions identified in (n y) by |  |  |  |
|                                |          |                   |                     | 1976Pi04.                                                                                                                   |  |  |  |
| (2787 10)                      | 548.70   | 0.78              | 7.6                 | av E $\beta$ =1125.6 46                                                                                                     |  |  |  |
|                                |          |                   |                     | $I\beta^-$ : intensity balance gives 2.0 4, including contributions identified in $(n,\gamma)$ by 1976Pi04.                 |  |  |  |
| (2819 10)                      | 517.43   | 2.1               | 7.2                 | av E $\beta$ =1139.9 46                                                                                                     |  |  |  |
|                                |          |                   |                     | E(decay): 2970 220 ( $\beta\gamma$ , 1995[k03).                                                                             |  |  |  |
| (2952# 10)                     | 400 71   | 0.26              | 0.0                 | $1\beta$ : intensity balance gives 5.5 9.                                                                                   |  |  |  |
| (2853" 10)                     | 482.71   | 0.36              | 8.0                 | av $\pm \beta = 1155.840$<br>$I\beta^{-1}$ : intensity balance gives 0.55.16 including contributions identified in (n x) by |  |  |  |
|                                |          |                   |                     | 1976Pi04. $\Delta J=2 \Delta \pi=+$ requires negligible $\beta$ feeding.                                                    |  |  |  |
| (2861 10)                      | 474.63   | 2.1               | 7.2                 | av E $\beta$ =1159.5 46                                                                                                     |  |  |  |
|                                |          |                   |                     | $I\beta^-$ : intensity balance gives 4.7 8.                                                                                 |  |  |  |
| (2876 10)                      | 459.53   | 0.97              | 7.6                 | av $E\beta = 1166.4$ 46                                                                                                     |  |  |  |
|                                |          |                   |                     | $1\beta$ : intensity balance gives 2.97, including contributions identified in $(n,\gamma)$ by 1976Pi04                     |  |  |  |
| (2886 10)                      | 449.85   | 1.4 3             | 7.4                 | av $E\beta = 1170.8 \ 46$                                                                                                   |  |  |  |
|                                |          |                   |                     | I $\beta^-$ : from intensity balance; value from TAGS data not available.                                                   |  |  |  |
| (2932 <sup>#</sup> 10)         | 403.76   | 0.0               |                     | I $\beta^-$ : intensity balance gives 1.9 4, including contributions identified in $(n,\gamma)$ by 1976Pi04.                |  |  |  |
| (2970 <sup>#</sup> 10)         | 365.84   | 0.0               |                     | I $\beta^-$ : intensity balance gives 2.3 5, including contributions identified in $(n,\gamma)$ by                          |  |  |  |
|                                |          |                   |                     | 1976Pi04.                                                                                                                   |  |  |  |
| (3003 10)                      | 332.99   | 1.4               | 7.5                 | av $E\beta = 1224.4.46$                                                                                                     |  |  |  |
|                                |          |                   |                     | $1976P_{i}04$                                                                                                               |  |  |  |
| (3015 10)                      | 321.17   | 1.6               | 7.4                 | av E $\beta$ =1229.9 46                                                                                                     |  |  |  |
|                                |          |                   |                     | $I\beta^-$ : intensity balance gives 6.0 10.                                                                                |  |  |  |
| (3020 10)                      | 316.25   | 1.1               | 7.6                 | av $E\beta = 1232.1 \ 46$                                                                                                   |  |  |  |
|                                |          |                   |                     | $1\beta$ : intensity balance gives 4.2 8, including contributions identified in $(n,\gamma)$ by 1976 bio                    |  |  |  |
| $(3051^{\#} 10)$               | 285 48   | 0.0               |                     | $I\beta^{-1}$ : intensity balance gives 1.9.4 including contributions identified in (n y) by                                |  |  |  |
| (5051 10)                      | 205.40   | 0.0               |                     | 1976Pi04.                                                                                                                   |  |  |  |
| (3065 <sup>#</sup> 10)         | 270.69   | 0.0               |                     | $I\beta^-$ : intensity balance gives 1.9 4, expected to be negligible, based on $\Delta J=2$ ,                              |  |  |  |
| · · · ·                        |          |                   |                     | $\Delta \pi$ =no, involved in $\beta$ transition.                                                                           |  |  |  |
| (3078 <sup>#</sup> 10)         | 258.33   | 0.0               |                     | $I\beta^-$ : intensity balance gives 3.6 8.                                                                                 |  |  |  |
| (3115 <sup>#</sup> <i>10</i> ) | 220.73   | 0.0               |                     | $I\beta^-$ : intensity balance gives 2.4 8.                                                                                 |  |  |  |
| (3171 <sup>#</sup> <i>10</i> ) | 165.12   | 0.0               |                     | $I\beta^-$ : intensity balance gives <1.3.                                                                                  |  |  |  |
| (3198 10)                      | 138.44   | 0.56              | 8.0                 | av $E\beta = 1313.9$ 46                                                                                                     |  |  |  |
| (2227 10)                      | 109 54   | 0.87              | 7 0                 | $I\beta^-$ : intensity balance gives 4.0 9.                                                                                 |  |  |  |
| (3227 10)                      | 100.34   | 0.07              | /.0                 | $I\beta^{-1}$ : intensity balance gives 4.5 14.                                                                             |  |  |  |
| (3336 10)                      | 0.0      | 11.4 <i>14</i>    | 6.77 6              | av E $\beta$ =1377.8 47                                                                                                     |  |  |  |
|                                |          |                   |                     | E(decay): 3000 200 from 1967Va14.                                                                                           |  |  |  |
|                                |          |                   |                     | $I\beta^-$ : from TAGS data of 1996Gr20.                                                                                    |  |  |  |

<sup>†</sup>  $\beta$  feedings are from TAGS data in 1997Gr09, unless otherwise noted. The  $\beta$  feedings deduced from  $\gamma$ -ray intensity balances are given under comments which differ significantly from those deduced from TAGS data of 1997Gr09. Since there are 29 unplaced  $\gamma$  rays with a total intensity of 15%, and multipolarities of several  $\gamma$  rays are unknown, the present decay scheme is likely to be

<sup>149</sup>Pr  $\beta^-$  decay (2.26 min) 1977Pi06,2010Ru09,1997Gr09 (continued)

#### $\beta^-$ radiations (continued)

incomplete, thus the I $\beta$  values listed in comments can only be considered as upper limits. <sup>‡</sup> Absolute intensity per 100 decays. <sup>#</sup> Existence of this branch is questionable.

# $\gamma$ <sup>(149</sup>Nd)

I $\gamma$  normalization: 1977Pi06 provide in Table 1 intensities per 100 decays with statistical uncertainties, with a statement that 15% uncertainty from arising from calibration procedure is not included. Summed I( $\gamma$ +ce)(to g.s.)=88.6 *14*, obtained from 100–(measured I $\beta$ =11.4 *14* to g.s.) gives  $\gamma$ -normalization factor of 1.109 *26*, which agrees with 1.00 *15* within the uncertainties, however, note that the uncertainty in normalization factor of 1.109 *26* is based on  $\gamma$ -ray intensities with statistical uncertainties only.

| $E_{\gamma}^{\dagger}$                          | $I_{\gamma}^{\dagger ch}$         | $E_i$ (level) | $\mathbf{J}_i^{\pi}$                  | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$                  | Mult.             | $\alpha^{i}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------|-----------------------------------|---------------|---------------------------------------|------------------|---------------------------------------|-------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 88.731 <sup>e</sup> 4                           | 0.053 8                           | 571.44        | 3/2+                                  | 482.71           | 1/2+                                  | [M1+E2]           | 2.7 7        | % $I\gamma = 0.053 \ 11$<br>$\alpha(K) = 1.689 \ 25; \ \alpha(L) = 0.8 \ 5; \ \alpha(M) = 0.18 \ 13$                                                                                                                                                                                                                                                                                                                                                                |
| 93.11 8                                         | 0.50 5                            | 258.33        | 3/2-                                  | 165.12           | 1/2 <sup>-</sup> ,3/2 <sup>-</sup>    | [M1] <sup>g</sup> | 1.737 25     | $ \begin{aligned} &\alpha(N) = 0.038 \ 27; \ \alpha(O) = 0.0050 \ 33; \ \alpha(P) = 9.1 \times 10^{-5} \ 19 \\ &\% I\gamma = 0.50 \ 9 \\ &\alpha(K) = 1.477 \ 21; \ \alpha(L) = 0.2058 \ 29; \ \alpha(M) = 0.0437 \ 6 \\ &\alpha(N) = 0.00978 \ 14; \ \alpha(O) = 0.001484 \ 21; \ \alpha(P) = 9.57 \times 10^{-5} \ 14 \end{aligned} $                                                                                                                             |
| <sup>x</sup> 103.99 <sup>#</sup> 16<br>108.51 6 | 0.70 <i>21</i><br>9.5 <i>4</i>    | 108.54        | 7/2-                                  | 0.0              | 5/2-                                  | [M1] <sup>g</sup> | 1.122 16     | %I $\gamma$ =0.70 23<br>%I $\gamma$ =9.5 15<br>$\alpha$ (K)=0.954 13; $\alpha$ (L)=0.1326 19; $\alpha$ (M)=0.0281 4<br>$\alpha$ (N)=0.00630 9; $\alpha$ (O)=0.000957 13; $\alpha$ (P)=6.18×10 <sup>-5</sup> 9                                                                                                                                                                                                                                                       |
| 112.12 <sup>#</sup> 9                           | 1.0 3                             | 220.73        | 9/2-                                  | 108.54           | 7/2-                                  | [M1+E2]           | 1.24 22      | %I $\gamma$ =1.00 34<br>$\alpha$ (K)=0.867 12; $\alpha$ (L)=0.29 17; $\alpha$ (M)=0.06 4<br>$\alpha$ (N)=0.014 8; $\alpha$ (O)=0.0019 10; $\alpha$ (P)=4.8×10 <sup>-5</sup> 9                                                                                                                                                                                                                                                                                       |
| 117.19 <sup>#</sup> <i>17</i>                   | 0.40 8                            | 482.71        | 1/2+                                  | 365.84           | 3/2-                                  | [E1]              | 0.1679 24    | %I $\gamma$ =0.40 <i>10</i><br>$\alpha$ (K)=0.1426 <i>21</i> ; $\alpha$ (L)=0.02007 <i>29</i> ; $\alpha$ (M)=0.00424 <i>6</i><br>$\alpha$ (N)=0.000935 <i>14</i> ; $\alpha$ (O)=0.0001357 <i>20</i> ; $\alpha$ (P)=7.26×10 <sup>-6</sup> <i>11</i>                                                                                                                                                                                                                  |
| 119.885 <sup>b</sup> 1                          | 0.61 <sup>b</sup> 3               | 258.33        | 3/2-                                  | 138.44           | 5/2-                                  | [M1+E2]           | 1.00 15      | %Iγ=0.61 10<br>$\alpha(K)$ =0.714 11; $\alpha(L)$ =0.22 12; $\alpha(M)$ =0.049 28<br>$\alpha(N)$ =0.011 6; $\alpha(O)$ =0.0015 7; $\alpha(P)$ =3.9×10 <sup>-5</sup> 7<br>F : proof fit layed energy difference=110.836                                                                                                                                                                                                                                              |
| 120.30 6                                        | 1.40 8                            | 285.48        | 1/2-                                  | 165.12           | 1/2 <sup>-</sup> ,3/2 <sup>-</sup>    | [M1] <sup>g</sup> | 0.837 12     | %Iγ=1.40 22<br>$\alpha$ (K)=0.711 10; $\alpha$ (L)=0.0988 14; $\alpha$ (M)=0.02097 30<br>$\alpha$ (N)=0.00469 7; $\alpha$ (O)=0.000713 10; $\alpha$ (P)=4.61×10 <sup>-5</sup> 6                                                                                                                                                                                                                                                                                     |
| $x^{129.3}^{\#}4$                               | 0.26 16                           |               |                                       |                  |                                       |                   |              | %Iy=0.26 <i>16</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| x 134.07 <sup>#</sup> 25<br>138.46 5            | 0.36 <i>14</i><br>11.02 <i>33</i> | 138.44        | 5/2-                                  | 0.0              | 5/2-                                  | [M1] <sup>g</sup> | 0.563 8      | %I $\gamma$ =0.36 <i>15</i><br>%I $\gamma$ =11.0 <i>17</i><br>$\alpha$ (K)=0.479 <i>7</i> ; $\alpha$ (L)=0.0663 <i>9</i> ; $\alpha$ (M)=0.01407 <i>20</i><br>$\alpha$ (N)=0.00315 <i>4</i> ; $\alpha$ (O)=0.000479 <i>7</i> ; $\alpha$ (P)=3.10×10 <sup>-5</sup> <i>4</i><br>Measured I $\gamma$ /100 decays=11.0 <i>17</i> (1977Pi06 give 15% uncertainty<br>for absolute intensities). Other: I $\gamma$ (138.46 $\gamma$ )/100 decays=13 <i>5</i><br>(1967Va14). |
| 143.31 <sup>#</sup> 20                          | 0.60 25                           | 459.53        | (3/2 <sup>-</sup> ,5/2 <sup>-</sup> ) | 316.25           | (5/2 <sup>-</sup> ,7/2 <sup>-</sup> ) | [M1+E2]           | 0.56 5       | %I $\gamma$ =0.60 27<br>$\alpha$ (K)=0.423 13; $\alpha$ (L)=0.11 5; $\alpha$ (M)=0.024 11<br>$\alpha$ (N)=0.0053 24; $\alpha$ (O)=7.3×10 <sup>-4</sup> 29; $\alpha$ (P)=2.4×10 <sup>-5</sup> 4                                                                                                                                                                                                                                                                      |

6

From ENSDF

|                                                               |                                       |                        | <sup>149</sup> P                      | $r \beta^- dec$  | ay (2.26 mir                            | n) <b>1977Pi</b> (              | 06,2010Ru09,      | 1997Gr09 (continued)                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------|---------------------------------------|------------------------|---------------------------------------|------------------|-----------------------------------------|---------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                               |                                       |                        |                                       |                  |                                         | $\gamma$ <sup>(149</sup> Nd) (c | continued)        |                                                                                                                                                                                                                                                                                                                                           |
| ${\rm E_{\gamma}}^{\dagger}$                                  | $I_{\gamma}^{\dagger ch}$             | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                    | $\mathbf{E}_{f}$ | $\mathrm{J}_f^\pi$                      | Mult.                           | $\alpha^{i}$      | Comments                                                                                                                                                                                                                                                                                                                                  |
| 145.92 20                                                     | 0.40 16                               | 403.76                 | 1/2-                                  | 258.33           | 3/2-                                    | [M1] <sup>g</sup>               | 0.486 7           | %Iγ=0.40 <i>17</i><br>$\alpha$ (K)=0.413 <i>6</i> ; $\alpha$ (L)=0.0572 <i>8</i> ; $\alpha$ (M)=0.01214 <i>18</i><br>$\alpha$ (N)=0.00272 <i>4</i> ; $\alpha$ (O)=0.000413 <i>6</i> ; $\alpha$ (P)=2.68×10 <sup>-5</sup> <i>4</i><br>Placement proposed by 2010Ru09 based on possible γγ-coin<br>evidence. The γ was unplaced in 1977Pi06 |
| 147.036 <sup>e</sup> 2                                        | 0.062 <sup>e</sup> 7                  | 285.48                 | 1/2-                                  | 138.44           | 5/2-                                    | [E2]                            | 0.561 8           | % Iy=0.062 12<br>$\alpha(K)=0.380$ 5; $\alpha(L)=0.1414$ 20; $\alpha(M)=0.0318$ 4<br>$\alpha(N)=0.00691$ 10; $\alpha(O)=0.000917$ 13; $\alpha(P)=1.803 \times 10^{-5}$ 25                                                                                                                                                                 |
| 149.8 <sup>#</sup> 3                                          | 0.26 16                               | 258.33                 | 3/2-                                  | 108.54           | 7/2-                                    | [E2]                            | 0.526 8           | $\%$ I $\gamma$ =0.26 <i>16</i><br>$\alpha$ (K)=0.358 <i>5</i> ; $\alpha$ (L)=0.1307 <i>21</i> ; $\alpha$ (M)=0.0294 <i>5</i><br>$\alpha$ (N)=0.00639 <i>10</i> : $\alpha$ (O)=0.000848 <i>14</i> : $\alpha$ (P)=1.709×10 <sup>-5</sup> 26                                                                                                |
| 151.120 <sup>e</sup> 20                                       | 0.19 <sup>e</sup> 3                   | 316.25                 | (5/2 <sup>-</sup> ,7/2 <sup>-</sup> ) | 165.12           | 1/2-,3/2-                               | [M1,E2]                         | 0.475 35          | $\alpha(\Lambda) = 0.0005710; \ \alpha(O) = 0.000010171; \ \alpha(I) = 1.105 \times 10^{-1} 20^{-1}$<br>$\% I\gamma = 0.19 4$<br>$\alpha(K) = 0.362 14; \ \alpha(L) = 0.09 4; \ \alpha(M) = 0.020 9$<br>$\alpha(N) = 0.0043 18; \ \alpha(O) = 6.0 \times 10^{-4} 22; \ \alpha(P) = 2.0 \times 10^{-5} 4$                                  |
| 156.04 5                                                      | 1.40 <sup>&amp;</sup> 14              | 321.17                 | (5/2 <sup>-</sup> ,7/2 <sup>-</sup> ) | 165.12           | 1/2-,3/2-                               | [M1] <sup>g</sup>               | 0.403 6           | %Iy=1.40 25<br>$\alpha$ (K)=0.343 5; $\alpha$ (L)=0.0474 7; $\alpha$ (M)=0.01005 14<br>$\alpha$ (N)=0.002251 32; $\alpha$ (D)=0.000342 5; $\alpha$ (P)=2.218×10 <sup>-5</sup> 31                                                                                                                                                          |
| 162.30 8                                                      | 3.1 2                                 | 270.69                 | (9/2+)                                | 108.54           | 7/2-                                    | [E1]                            | 0.0690 10         | $\alpha(K) = 0.00251 52, \alpha(G) = 0.000542 5, \alpha(I) = 2.213 \times 10^{-5} 51$<br>$\alpha(K) = 0.0588 8; \alpha(L) = 0.00807 11; \alpha(M) = 0.001703 24$<br>$\alpha(K) = 0.000377 5; \alpha(Q) = 5.54 \times 10^{-5} 8; \alpha(P) = 3.12 \times 10^{-6} 4$                                                                        |
| 165.08 6                                                      | 9.9 4                                 | 165.12                 | 1/2 <sup>-</sup> ,3/2 <sup>-</sup>    | 0.0              | 5/2-                                    | [M1] <sup>g</sup>               | 0.345 5           | $\alpha(\Lambda) = 0.0005775, \alpha(O) = 0.0017676, \alpha(I) = 0.00059777$<br>$\alpha(K) = 0.02934; \alpha(L) = 0.04056; \alpha(M) = 0.0085972$<br>$\alpha(N) = 0.00192327; \alpha(O) = 0.0002924; \alpha(P) = 1.896 \times 10^{-5}27$                                                                                                  |
| <sup>x</sup> 172.92 <sup>#</sup> 6<br>174.031 <sup>e</sup> 18 | 0.60 7<br>0.10 <sup>e</sup> 3         | 459.53                 | (3/2 <sup>-</sup> ,5/2 <sup>-</sup> ) | 285.48           | 1/2-                                    | [M1,E2]                         | 0.306 9           | % $I_{\gamma}=0.60 \ 11$<br>% $I_{\gamma}=0.100 \ 34$<br>$\alpha(K)=0.239 \ 15; \ \alpha(L)=0.052 \ 18; \ \alpha(M)=0.012 \ 4$<br>$\alpha(N)=0.0025 \ 9; \ \alpha(O)=3.6\times10^{-4} \ 10; \ \alpha(P)=1.37\times10^{-5} \ 27$                                                                                                           |
| <sup>x</sup> 175.70 <sup>#</sup> 14                           | 0.25 5                                | 216.05                 |                                       | 120.44           | 5/0-                                    |                                 | 0.006.7           | %Iy=0.25 6                                                                                                                                                                                                                                                                                                                                |
| 1/7.737                                                       | 0.50 5                                | 316.25                 | (5/2 ,1/2 )                           | 138.44           | 5/2                                     | [MI+E2]                         | 0.286 /           | $\alpha(K) = 0.209$<br>$\alpha(K) = 0.225$ 15; $\alpha(L) = 0.049$ 16; $\alpha(M) = 0.0114$                                                                                                                                                                                                                                               |
| 182.55 7                                                      | 1.00 5                                | 321.17                 | (5/2 <sup>-</sup> ,7/2 <sup>-</sup> ) | 138.44           | 5/2-                                    | [M1+E2]                         | 0.264 5           | $\alpha(N)=0.0023 \ 8; \ \alpha(O)=3.3\times10^{-4} \ 9; \ \alpha(P)=1.29\times10^{-3} \ 25$<br>% $I\gamma=1.00 \ 16$<br>$\alpha(K)=0.208 \ 15; \ \alpha(L)=0.044 \ 13; \ \alpha(M)=0.0097 \ 32$<br>$\alpha(N)=0.0021 \ 7; \ \alpha(O)=3.0\times10^{-4} \ 8; \ \alpha(P)=1.20\times10^{-5} \ 24$                                          |
| 197.13 <sup>#</sup> 17                                        | 0.27 7                                | 482.71                 | 1/2+                                  | 285.48           | 1/2-                                    | [E1]                            | 0.0408 6          | % I $\gamma$ =0.27 8<br>$\alpha$ (K)=0.0348 5; $\alpha$ (L)=0.00473 7; $\alpha$ (M)=0.000997 14<br>$\alpha$ (N)=0.0002210 31; $\alpha$ (O)=3.27×10 <sup>-5</sup> 5; $\alpha$ (P)=1.887×10 <sup>-6</sup> 27                                                                                                                                |
| 204.15 <sup><i>d</i></sup> 10<br>207.67 20                    | 0.40 <sup><i>d</i></sup> 4<br>2.75 14 | 474.63<br>316.25       | $(5/2^+,7/2)$<br>$(5/2^-,7/2^-)$      | 270.69<br>108.54 | (9/2 <sup>+</sup> )<br>7/2 <sup>-</sup> | [D,E2]<br>[M1+E2]               | 0.11 7<br>0.178 6 | %1 $\gamma$ =0.40 7<br>%1 $\gamma$ =2.8 4<br>$\alpha$ (K)=0.142 14; $\alpha$ (L)=0.028 6; $\alpha$ (M)=0.0061 15<br>$\alpha$ (N)=0.00134 32; $\alpha$ (O)=0.00019 4; $\alpha$ (P)=8.3×10 <sup>-6</sup> 17                                                                                                                                 |

 $^{149}_{60}\mathrm{Nd}_{89}$ -7

From ENSDF

 $^{149}_{60}\mathrm{Nd}_{89}$ -7

|                                   |                                |                        | 149                                   | $\mathbf{Pr}\beta^-\mathbf{de}$ | cay (2.26 min                                             | ) <b>1977Pi</b> (               | )6,2010Ru09,                    | 1997Gr09 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------|--------------------------------|------------------------|---------------------------------------|---------------------------------|-----------------------------------------------------------|---------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                                |                        |                                       |                                 |                                                           | $\gamma$ <sup>(149</sup> Nd) (c | continued)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ${\rm E_{\gamma}}^{\dagger}$      | $I_{\gamma}^{\dagger ch}$      | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                  | $\mathbf{E}_{f}$                | $\mathrm{J}_f^\pi$                                        | Mult.                           | $\alpha^{i}$                    | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 212.65 10                         | 1.00 5                         | 321.17                 | (5/2 <sup>-</sup> ,7/2 <sup>-</sup> ) | 108.54                          | 7/2-                                                      | [M1+E2]                         | 0.166 7                         | %I $\gamma$ =1.00 <i>16</i><br>$\alpha$ (K)=0.133 <i>13</i> ; $\alpha$ (L)=0.026 <i>6</i> ; $\alpha$ (M)=0.0056 <i>13</i><br>$\alpha$ (N)=0.00124 <i>28</i> ; $\alpha$ (O)=0.000176 <i>31</i> ; $\alpha$ (P)=7.8×10 <sup>-6</sup> <i>16</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 215.67 <sup>#</sup> 15            | 0.40 8                         | 548.70                 | 3/2-                                  | 332.99                          | 5/2+                                                      | [E1]                            | 0.0321 5                        | %I $\gamma$ =0.40 <i>10</i><br>$\alpha$ (K)=0.0274 <i>4</i> ; $\alpha$ (L)=0.00370 <i>5</i> ; $\alpha$ (M)=0.000781 <i>11</i><br>$\alpha$ (N)=0.0001732 <i>24</i> ; $\alpha$ (O)=2.57×10 <sup>-5</sup> <i>4</i> ; $\alpha$ (P)=1.498×10 <sup>-6</sup> <i>21</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 220.76 <sup>#</sup> 16            | 0.40 6                         | 220.73                 | 9/2-                                  | 0.0                             | 5/2-                                                      | [E2]                            | 0.1409 20                       | %I $\gamma$ =0.40 8<br>$\alpha$ (K)=0.1064 15; $\alpha$ (L)=0.0270 4; $\alpha$ (M)=0.00599 9<br>$\alpha$ (N)=0.001309 19; $\alpha$ (O)=0.0001795 26; $\alpha$ (P)=5.52×10 <sup>-6</sup> 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 224.25 11                         | 0.40 5                         | 332.99                 | 5/2+                                  | 108.54                          | 7/2-                                                      | [E1]                            | 0.0289 4                        | ${}^{\circ}$ I $\gamma$ =0.40 8<br>$\alpha$ (K)=0.02469 35; $\alpha$ (L)=0.00333 5; $\alpha$ (M)=0.000702 10<br>$\alpha$ (N)=0.0001559 22; $\alpha$ (O)=2.312×10 <sup>-5</sup> 33; $\alpha$ (P)=1.356×10 <sup>-6</sup> 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 227.36 <sup>ja</sup> 7            | 0.85 <sup>j</sup> 9            | 365.84                 | 3/2-                                  | 138.44                          | 5/2-                                                      | [M1+E2]                         | 0.136 8                         | %Iγ=0.85 <i>16</i><br>$\alpha$ (K)=0.110 <i>13</i> ; $\alpha$ (L)=0.020 <i>4</i> ; $\alpha$ (M)=0.0044 <i>9</i><br>$\alpha$ (N)=0.00098 <i>19</i> ; $\alpha$ (O)=0.000141 <i>20</i> ; $\alpha$ (P)=6.5×10 <sup>-6</sup> <i>14</i><br>I <sub>γ</sub> : combined intensity of the doublet=1.55 <i>11</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 227.36 <i>ja</i> 7                | 0.70 <sup>j</sup> 7            | 548.70                 | 3/2-                                  | 321.17                          | (5/2 <sup>-</sup> ,7/2 <sup>-</sup> )                     | [M1+E2]                         | 0.136 8                         | %Iγ=0.70 13<br>$\alpha$ (K)=0.110 13; $\alpha$ (L)=0.020 4; $\alpha$ (M)=0.0044 9<br>$\alpha$ (N)=0.00098 19; $\alpha$ (O)=0.000141 20; $\alpha$ (P)=6.5×10 <sup>-6</sup> 14<br>E <sub>v</sub> : poor fit level-energy difference=227 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 238.453 <sup>b</sup> 20           | 0.80 <sup>b</sup> 8            | 571.44                 | 3/2+                                  | 332.99                          | 5/2+                                                      | [M1+E2]                         | 0.118 9                         | %Iγ=0.80 14<br>α(K)=0.096 12; $α(L)=0.0174$ 27; $α(M)=0.0038$ 7<br>$α(N)=0.00083$ 14; $α(O)=0.000120$ 14; $α(P)=5.7\times10^{-6}$ 13<br>E <sub>γ</sub> : other: 238.68 10 for the unresolved doublet in β <sup>-</sup> decay<br>(1977Pi06).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 238.638 <sup>b</sup> 3            | 0.40 <sup>b</sup> 4            | 403.76                 | 1/2-                                  | 165.12                          | 1/2 <sup>-</sup> ,3/2 <sup>-</sup>                        | [M1] <sup>g</sup>               | 0.1258 18                       | $\gamma_{\gamma}$ . combined intensity of the doublet=1.00 7 in β <sup>-</sup> decay.<br>%Iγ=0.40 7<br>$\alpha(K)=0.1072 \ 15; \ \alpha(L)=0.01466 \ 21; \ \alpha(M)=0.00311 \ 4$<br>$\alpha(N)=0.000696 \ 10; \ \alpha(O)=0.0001059 \ 15; \ \alpha(P)=6.90\times10^{-6} \ 10$<br>E <sub>γ</sub> : other: 238.68 \ 10 for the unresolved doublet in β <sup>-</sup> decay<br>(1977Pi06).<br>I <sub>γ</sub> : combined intensity of the doublet=1.00 7 in β <sup>-</sup> decay.<br>E : poor fit level-energy difference=238 623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 245.4 <sup>#</sup> 3<br>258.27 10 | 0.60 <i>18</i><br>5.7 <i>2</i> | 705.01<br>258.33       | (3/2,5/2)<br>3/2 <sup>-</sup>         | 459.53<br>0.0                   | (3/2 <sup>-</sup> ,5/2 <sup>-</sup> )<br>5/2 <sup>-</sup> | [D,E2]<br>[M1+E2]               | 0.07 <i>5</i><br>0.093 <i>9</i> | % Iy=0.60 20<br>% Iy=5.7 9<br>$\alpha(K)=0.076 11; \alpha(L)=0.0133 15; \alpha(M)=0.0029 4$<br>$\alpha(K)=0.00024 8 \alpha(D)=0.0133 15; \alpha(M)=0.0029 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 260.10 <sup>d</sup> 9             | 0.64 <sup><i>d</i></sup> 12    | 593.09                 | (5/2+)                                | 332.99                          | 5/2+                                                      | [M1+E2]                         | 0.091 9                         | $\alpha(N)=0.00064 \ \delta; \ \alpha(O)=9.5\times10^{-7} \ ; \ \alpha(P)=4.5\times10^{-7} \ 10^{-7} \ \alpha(N)=0.0028 \ 4^{-7} \ \alpha(N)=0.00062 \ 7; \ \alpha(O)=9.0\times10^{-5} \ 7; \ \alpha(P)=4.5\times10^{-6} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7} \ 10^{-7$ |
| 265.48 <sup>‡</sup> <i>19</i>     | 0.47 6                         | 403.76                 | 1/2-                                  | 138.44                          | 5/2-                                                      | [E2]                            | 0.0772 11                       | %Iγ=0.47 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

 $\infty$ 

Т

|                                                                                                     |                                                   |                        | <sup>149</sup> <b>Pr</b> $\beta$      | <sup>3<sup>-</sup></sup> decay | (2.26 min)                         | 1977Pi06, | 2010Ru09,199 | 7Gr09 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------|---------------------------------------|--------------------------------|------------------------------------|-----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                     | $\underline{\gamma}(^{149}\text{Nd})$ (continued) |                        |                                       |                                |                                    |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| ${\rm E_{\gamma}}^{\dagger}$                                                                        | $I_{\gamma}^{\dagger ch}$                         | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                    | $\mathbf{E}_{f}$               | $\mathrm{J}_f^\pi$                 | Mult.     | $\alpha^{i}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| <sup>x</sup> 277.17 <sup>#</sup> 13<br><sup>x</sup> 282.83 <sup>#</sup> 20<br>285.8 <sup>d</sup> 1  | 0.30 6<br>0.36 4<br>0.27 <sup>d</sup> 5           | 449.85                 | 5/2-                                  | 165.12                         | 1/2-,3/2-                          | [M1,E2]   | 0.069 8      | $\begin{aligned} \alpha(\mathrm{K}) = 0.0601 \; 9; \; \alpha(\mathrm{L}) = 0.01339 \; 19; \; \alpha(\mathrm{M}) = 0.00295 \; 4 \\ \alpha(\mathrm{N}) = 0.000646 \; 9; \; \alpha(\mathrm{O}) = 9.00 \times 10^{-5} \; 13; \; \alpha(\mathrm{P}) = 3.23 \times 10^{-6} \; 5 \\ \% \mathrm{I}\gamma = 0.30 \; 7 \\ \% \mathrm{I}\gamma = 0.36 \; 7 \\ \% \mathrm{I}\gamma = 0.27 \; 6 \\ \alpha(\mathrm{K}) = 0.057 \; 9; \; \alpha(\mathrm{L}) = 0.0096 \; 6; \; \alpha(\mathrm{M}) = 0.00207 \; 17 \\ \alpha(\mathrm{N}) = 0.000460 \; 33; \; \alpha(\mathrm{O}) = 6.70 \times 10^{-5} \; 21; \; \alpha(\mathrm{P}) = 3.4 \times 10^{-6} \; 8 \\ \mathrm{E}_{\gamma}: \text{ Poor fit. Level-energy difference} = 284.7. \text{ This } \gamma \text{ was not} \end{aligned}$ |  |  |  |
| <sup>x</sup> 288.38 <sup>#</sup> 11<br><sup>x</sup> 293.18 <sup>#</sup> 20<br>294.44 <sup>e</sup> 4 | 0.30 6<br>0.50 12<br>0.54 <sup>e</sup> 14         | 459.53                 | (3/2 <sup>-</sup> ,5/2 <sup>-</sup> ) | 165.12                         | 1/2 <sup>-</sup> ,3/2 <sup>-</sup> | [M1,E2]   | 0.064 8      | used in the used in the least-squares fitting procedure.<br>%I $\gamma$ =0.30 7<br>%I $\gamma$ =0.50 14<br>%I $\gamma$ =0.54 16<br>$\alpha$ (K)=0.053 9; $\alpha$ (L)=0.0087 4; $\alpha$ (M)=0.00189 13<br>$\alpha$ (N)=0.000418 24; $\alpha$ (O)=6.11×10 <sup>-5</sup> 13; $\alpha$ (P)=3.2×10 <sup>-6</sup> 8                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| $^{x}295.14^{\#}20$                                                                                 | 0.50 12                                           |                        |                                       |                                |                                    |           |              | $\%_{1\gamma=0.50}$ 14<br>$\%_{1\gamma=0.50}$ 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| x303.61 <sup>#</sup> 15                                                                             | 0.20 6                                            |                        |                                       |                                |                                    |           |              | %Iy=0.20 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 312.91 15                                                                                           | 0.85 10                                           | 571.44                 | 3/2+                                  | 258.33                         | 3/2-                               | [E1]      | 0.01218 17   | % $I\gamma$ =0.85 16<br>$\alpha$ (K)=0.01043 15; $\alpha$ (L)=0.001386 19; $\alpha$ (M)=0.000292 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 316.35 10                                                                                           | 2.70 10                                           | 316.25                 | (5/2 <sup>-</sup> ,7/2 <sup>-</sup> ) | 0.0                            | 5/2-                               | [M1+E2]   | 0.052 8      | $\alpha(N)=6.50\times10^{-5} \ 9; \ \alpha(O)=9.71\times10^{-6} \ 14; \ \alpha(P)=5.89\times10^{-7} \ 8$<br>$\%I\gamma=2.7 \ 4$<br>$\alpha(K)=0.043 \ 8; \ \alpha(L)=0.00699 \ 15; \ \alpha(M)=0.00150 \ 5$<br>$\alpha(N)=0.000334 \ 9; \ \alpha(O)=4.89\times10^{-5} \ 10; \ \alpha(P)=2.6\times10^{-6} \ 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 321.28 <sup>jb</sup> 10                                                                             | 2.50 <sup>jb</sup> 20                             | 321.17                 | (5/2 <sup>-</sup> ,7/2 <sup>-</sup> ) | 0.0                            | 5/2-                               | [M1+E2]   | 0.050 7      | %I $\gamma$ =2.5 4<br>$\alpha$ (K)=0.041 7; $\alpha$ (L)=0.00666 11; $\alpha$ (M)=0.00143 4<br>$\alpha$ (N)=0.000318 7; $\alpha$ (O)=4.67×10 <sup>-5</sup> 12; $\alpha$ (P)=2.5×10 <sup>-6</sup> 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 321.28 <sup>jbk</sup> 10                                                                            | <0.10 <sup>jb</sup>                               | 459.53                 | (3/2 <sup>-</sup> ,5/2 <sup>-</sup> ) | 138.44                         | 5/2-                               | [M1+E2]   | 0.050 7      | %Iγ<0.10<br>$\alpha$ (K)=0.041 7; $\alpha$ (L)=0.00666 11; $\alpha$ (M)=0.00143 4<br>$\alpha$ (N)=0.000318 7; $\alpha$ (O)=4.67×10 <sup>-5</sup> 12; $\alpha$ (P)=2.5×10 <sup>-6</sup> 6<br>Placement proposed by 2010Ru09 based on possible γγ-coin<br>evidence, considered as uncertain by the evaluators.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 322.40 <sup><i>d</i></sup> 4                                                                        | 0.81 <sup><i>d</i></sup> 12                       | 593.09                 | (5/2+)                                | 270.69                         | (9/2+)                             | [E2]      | 0.0419 6     | %I $\gamma$ =0.81 <i>17</i><br>$\alpha$ (K)=0.0334 <i>5</i> ; $\alpha$ (L)=0.00664 <i>9</i> ; $\alpha$ (M)=0.001450 <i>20</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 332.97 6                                                                                            | 6.15 <i>30</i>                                    | 332.99                 | 5/2+                                  | 0.0                            | 5/2-                               | [E1]      | 0.01042 15   | $\begin{aligned} \alpha(N) &= 0.000319 \ 4; \ \alpha(O) &= 4.52 \times 10^{-5} \ 6; \ \alpha(P) &= 1.857 \times 10^{-6} \ 26 \\ \% I\gamma &= 6.2 \ 10 \\ \alpha(K) &= 0.00892 \ 12; \ \alpha(L) &= 0.001182 \ 17; \ \alpha(M) &= 0.0002491 \ 35 \\ \alpha(N) &= 5.54 \times 10^{-5} \ 8; \ \alpha(O) &= 8.29 \times 10^{-6} \ 12; \ \alpha(P) &= 5.06 \times 10^{-7} \ 7 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| <sup>x</sup> 336.45 <sup>#</sup> 24<br>341.31 5                                                     | 0.60 <i>6</i><br>1.1 <i>1</i>                     | 449.85                 | 5/2-                                  | 108.54                         | 7/2-                               | [M1+E2]   | 0.042 7      | %Iy=0.60 11<br>%Iy=1.10 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |

 $^{149}_{60}\mathrm{Nd}_{89}$ -9

From ENSDF

 $^{149}_{60}\mathrm{Nd}_{89}$ -9

|                                                   |                           |                        | <sup>149</sup> <b>P</b>               | $\mathbf{r} \beta^- \mathbf{deca}$ | ay (2.26 min)                         | 1977Pi06 | ,2010Ru09,199 | 07Gr09 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|---------------------------------------------------|---------------------------|------------------------|---------------------------------------|------------------------------------|---------------------------------------|----------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\underline{\gamma}(^{149}\text{Nd})$ (continued) |                           |                        |                                       |                                    |                                       |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| ${\rm E_{\gamma}}^\dagger$                        | $I_{\gamma}^{\dagger ch}$ | E <sub>i</sub> (level) | $J_i^\pi$                             | $\mathbf{E}_{f}$                   | $\mathrm{J}_f^\pi$                    | Mult.    | $\alpha^{i}$  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                   |                           |                        |                                       |                                    | <u> </u>                              |          |               | $\alpha(K)=0.035\ 7;\ \alpha(L)=0.00554\ 12;\ \alpha(M)=0.001189\ 17$<br>$\alpha(N)=0.000264\ 4;\ \alpha(O)=3.89\times10^{-5}\ 18;\ \alpha(P)=2.1\times10^{-6}\ 5$<br>$E_{\gamma},I_{\gamma}:\ from\ 2010Ru09.\ This\ \gamma\ was\ reported\ in\ 1977Pi06\ with\ E\gamma=341.26\ 13,\ I_{\gamma}=0.90\ 8\ (1977Pi06),\ but\ was\ unplaced.$                                                                                                                                   |  |  |
| x345.87 <sup>#</sup> 40                           | 0.30 15                   |                        |                                       |                                    |                                       |          |               | %Iγ=0.30 <i>16</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 351.2 <sup>#</sup> <i>13</i>                      | 0.80 12                   | 459.53                 | (3/2 <sup>-</sup> ,5/2 <sup>-</sup> ) | 108.54                             | 7/2-                                  | [M1,E2]  | 0.039 6       | %I $\gamma$ =0.80 <i>17</i><br>$\alpha$ (K)=0.032 <i>6</i> ; $\alpha$ (L)=0.00508 <i>17</i> ; $\alpha$ (M)=0.001090 <i>24</i><br>$\alpha$ (N)=0.000242 <i>7</i> ; $\alpha$ (O)=3.57×10 <sup>-5</sup> <i>21</i> ; $\alpha$ (P)=2.0×10 <sup>-6</sup> <i>5</i>                                                                                                                                                                                                                   |  |  |
| <sup>x</sup> 355.67 <sup>#</sup> 15               | 0.60 12                   |                        |                                       |                                    |                                       |          |               | %Iy=0.60 <i>15</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 366.02 <sup>ja</sup> 10                           | 1.7 <sup>j</sup> 2        | 365.84                 | 3/2-                                  | 0.0                                | 5/2-                                  | [M1+E2]  | 0.035 6       | %Iγ=1.70 32<br>$\alpha$ (K)=0.029 6; $\alpha$ (L)=0.00449 20; $\alpha$ (M)=0.000962 31<br>$\alpha$ (N)=0.000214 8; $\alpha$ (O)=3.16×10 <sup>-5</sup> 22; $\alpha$ (P)=1.8×10 <sup>-6</sup> 5<br>I <sub>γ</sub> : total intensity of the doublet=3.1 3.                                                                                                                                                                                                                       |  |  |
| 366.02 <i>ja</i> 10                               | 1.4 <mark>/</mark> 2      | 474.63                 | $(5/2^+, 7/2)$                        | 108.54                             | 7/2-                                  | [D,E2]   | 0.024 16      | %Iy=1.40 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 375.95 <sup>ef</sup> 8                            | 0.22 3                    | 709.45                 | $(3/2, 5/2^{-})$                      | 332.99                             | 5/2+                                  | [D,E2]   | 0.023 15      | %Iy=0.22 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 383.61 18                                         | 0.27 4                    | 548.70                 | 3/2-                                  | 165.12                             | 1/2 <sup>-</sup> ,3/2 <sup>-</sup>    | [M1+E2]  | 0.030 6       | % $i\gamma$ =0.27 6<br>$\alpha$ (K)=0.025 5; $\alpha$ (L)=0.00391 24; $\alpha$ (M)=0.00084 4<br>$\alpha$ (N)=0.000186 10; $\alpha$ (O)=2.76×10 <sup>-5</sup> 24; $\alpha$ (P)=1.6×10 <sup>-6</sup> 4                                                                                                                                                                                                                                                                          |  |  |
| 388.70 <sup>ja</sup> 12                           | 0.60 <sup>j</sup> 9       | 705.01                 | (3/2,5/2)                             | 316.25                             | (5/2 <sup>-</sup> ,7/2 <sup>-</sup> ) | [D,E2]   | 0.021 14      | %I $\gamma$ =0.60 <i>13</i><br>I $_{\gamma}$ : combined intensity of the doublet=0.80 <i>10</i> .                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 388.70 <i>jaf</i> 12                              | 0.20 <b>j</b> 3           | 709.45                 | $(3/2, 5/2^{-})$                      | 321.17                             | $(5/2^-, 7/2^-)$                      | [D,E2]   | 0.021 14      | %Iy=0.20 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| <sup>x</sup> 390.59 <sup>#</sup> 16               | 0.70 11                   |                        |                                       |                                    |                                       |          |               | %Iy=0.70 <i>15</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| <sup>x</sup> 393.32 <sup>#</sup> 10               | 0.70 18                   |                        |                                       |                                    |                                       |          |               | %Iy=0.70 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 403.50 <sup>‡</sup> 22                            | 0.38 10                   | 403.76                 | 1/2-                                  | 0.0                                | 5/2-                                  | [E2]     | 0.02143 30    | %I $\gamma$ =0.38 <i>12</i><br>$\alpha$ (K)=0.01747 <i>25</i> ; $\alpha$ (L)=0.00311 <i>4</i> ; $\alpha$ (M)=0.000674 <i>10</i><br>$\alpha$ (N)=0.0001490 <i>21</i> ; $\alpha$ (O)=2.143×10 <sup>-5</sup> <i>30</i> ; $\alpha$ (P)=1.002×10 <sup>-6</sup>                                                                                                                                                                                                                     |  |  |
| 406.34 6                                          | 2.40 12                   | 571.44                 | 3/2+                                  | 165.12                             | 1/2-,3/2-                             | [E1]     | 0.00640 9     | $^{77}$<br>%I $\gamma$ =2.4 4<br>$\alpha$ (K)=0.00549 8; $\alpha$ (L)=0.000721 10; $\alpha$ (M)=0.0001517 21<br>$\alpha$ (N)=3.38×10 <sup>-5</sup> 5; $\alpha$ (O)=5.08×10 <sup>-6</sup> 7; $\alpha$ (P)=3.15×10 <sup>-7</sup> 4                                                                                                                                                                                                                                              |  |  |
| 408.92 <sup>b</sup> 15                            | 0.60 <sup>b</sup> 9       | 517.43                 | (3/2,5/2,7/2)                         | 108.54                             | 7/2-                                  | [D,E2]   | 0.019 11      | %I $\gamma$ =0.60 13<br>E $_{\gamma}$ : other: 409.70 9 for the unresolved doublet in $\beta^-$ decay (1977Pi06).                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 410.29 <sup>b</sup> 3                             | 0.50 <sup>b</sup> 7       | 548.70                 | 3/2-                                  | 138.44                             | 5/2-                                  | [M1+E2]  | 0.025 5       | $\begin{aligned} & \gamma: \text{ combined intensity of the doublet=1.1 I in β- decay.} \\ & \% I \gamma = 0.50 I0 \\ & \alpha(K) = 0.021 5; α(L) = 0.00321 27; α(M) = 0.00069 5 \\ & \alpha(N) = 0.000153 I2; α(O) = 2.27 \times 10^{-5} 24; α(P) = 1.30 \times 10^{-6} 35 \\ & E_{\gamma}: \text{ other: } 409.70 9 \text{ for the unresolved doublet in β- decay (1977Pi06).} \\ & I_{\gamma}: \text{ combined intensity of the doublet=1.1 I in β- decay.} \end{aligned}$ |  |  |
| <sup>x</sup> 413.56 <sup>#</sup> 37               | 0.18 9                    |                        |                                       |                                    |                                       |          |               | %Iy=0.18 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |

 $^{149}_{60}\mathrm{Nd}_{89}$ -10

Т

|                                                 |                           |                        | <sup>149</sup> Pı                     | $\beta^{-}$ deca | y (2.26 min)                          | 1977Pi06,                  | 2010Ru09,1997                      | Gr09 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------|---------------------------|------------------------|---------------------------------------|------------------|---------------------------------------|----------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 |                           |                        |                                       |                  | <u> </u>                              | v( <sup>149</sup> Nd) (con | tinued)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ${\rm E_{\gamma}}^{\dagger}$                    | $I_{\gamma}^{\dagger ch}$ | E <sub>i</sub> (level) | ${ m J}^{\pi}_i$                      | $\mathbf{E}_{f}$ | $\mathrm{J}_f^\pi$                    | Mult.                      | $\alpha^{i}$                       | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 432.96 7                                        | 2.40 12                   | 571.44                 | 3/2+                                  | 138.44           | 5/2-                                  | [E1]                       | 0.00550 8                          | % $I\gamma$ =2.4 4<br>$\alpha(K)$ =0.00472 7; $\alpha(L)$ =0.000618 9; $\alpha(M)$ =0.0001301 18<br>$\alpha(N)$ =2.90×10 <sup>-5</sup> 4; $\alpha(O)$ =4.36×10 <sup>-6</sup> 6; $\alpha(P)$ =2.72×10 <sup>-7</sup><br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 450.40 <sup>#</sup> <i>f</i> 20                 | 0.56 9                    | 709.45                 | (3/2,5/2 <sup>-</sup> )               | 258.33           | 3/2-                                  | [D,E2]                     | 0.014 10                           | $^{\prime}$ Kappa Kapp |
| 459.9 <sup>#</sup> 3                            | 0.95 20                   | 459.53                 | (3/2 <sup>-</sup> ,5/2 <sup>-</sup> ) | 0.0              | 5/2-                                  | [M1+E2]                    | 0.019 4                            | % I <sub>Y</sub> =0.95 25<br>$\alpha$ (K)=0.016 4; $\alpha$ (L)=0.00232 27; $\alpha$ (M)=0.00050 5<br>$\alpha$ (N)=0.000110 12; $\alpha$ (O)=1.65×10 <sup>-5</sup> 22; $\alpha$ (P)=9.7×10 <sup>-7</sup><br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <sup>x</sup> 465.65 <sup>#</sup> 25             | 0.36 13                   |                        |                                       |                  |                                       |                            |                                    | %Iy=0.36 <i>14</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 474.57 <sup>#</sup> 6                           | 2.80 17                   | 474.63                 | $(5/2^+, 7/2)$                        | 0.0              | 5/2-                                  | [D,E2]                     | 0.013 8                            | %Iγ=2.8 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 494.90 8                                        | 0.88 13                   | 603.44                 |                                       | 108.54           | 7/2-                                  | [D,E2]                     | 0.011 7                            | %I $\gamma$ =0.88 <i>19</i><br>E $_{\gamma}$ ,I $_{\gamma}$ : from 2010Ru09. This $\gamma$ was reported in 1977Pi06<br>with E $\gamma$ =494.62 <i>12</i> , I $\gamma$ =0.74 <i>5</i> (1977Pi06), but was<br>unplaced.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 517.43 <sup>#</sup> 6<br>528.91 <sup>e</sup> 10 | 4.80 <i>20</i><br>0.31 7  | 517.43<br>814.35       | (3/2,5/2,7/2)<br>1/2 <sup>+</sup>     | 0.0<br>285.48    | 5/2 <sup>-</sup><br>1/2 <sup>-</sup>  | [D,E2]<br>[E1]             | 0.010 <i>6</i><br>0.00347 <i>5</i> | %I $\gamma$ =4.8 7<br>%I $\gamma$ =0.31 8<br>$\alpha$ (K)=0.00298 4; $\alpha$ (L)=0.000387 5; $\alpha$ (M)=8.14×10 <sup>-5</sup> 11<br>$\alpha$ (N)=1.816×10 <sup>-5</sup> 25; $\alpha$ (O)=2.74×10 <sup>-6</sup> 4;<br>$\alpha$ (P)=1.734×10 <sup>-7</sup> 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <sup>x</sup> 530.59 <sup>#</sup> 25             | 0.85 17                   |                        |                                       |                  |                                       |                            |                                    | %Iy=0.85 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 540.1 <sup><i>d</i></sup> 3                     | 0.55 <sup>d</sup> 9       | 705.01                 | (3/2,5/2)                             | 165.12           | 1/2-,3/2-                             | [D,E2]                     |                                    | $\%$ I $\gamma$ =0.55 <i>12</i><br>E <sub><math>\gamma</math></sub> : uncertainty assigned by the evaluators.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 545.3 <sup>dk</sup> 5                           | 0.08 <sup>d</sup> 3       | 709.45                 | $(3/2, 5/2^{-})$                      | 165.12           | $1/2^{-}, 3/2^{-}$                    | [D,E2]                     | 0.009 6                            | %Iy=0.08 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 566.8 <sup>#</sup> 3                            | 0.47 8                    | 705.01                 | (3/2,5/2)                             | 138.44           | 5/2-                                  | [D,E2]                     |                                    | $\%$ I $\gamma$ =0.47 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 571.13 <sup>#</sup> 10                          | 0.80 9                    | 709.45                 | $(3/2, 5/2^{-})$                      | 138.44           | 5/2-                                  | [D,E2]                     | 0.008 5                            | $\%$ I $\gamma$ =0.80 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 576.39 <sup>#</sup> 15                          | 0.45 10                   | 741.51                 | 3/2+                                  | 165.12           | 1/2 <sup>-</sup> ,3/2 <sup>-</sup>    | [E1]                       | 0.00287 4                          | %Iγ=0.45 12<br>$\alpha$ (K)=0.002463 35; $\alpha$ (L)=0.000319 4; $\alpha$ (M)=6.70×10 <sup>-5</sup> 9<br>$\alpha$ (N)=1.496×10 <sup>-5</sup> 21; $\alpha$ (O)=2.258×10 <sup>-6</sup> 32;<br>$\alpha$ (P)=1.438×10 <sup>-7</sup> 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 592.1 <sup><i>d</i></sup> 2                     | 0.16 <sup>d</sup> 4       | 862.81                 | (7/2)+                                | 270.69           | (9/2+)                                | [M1+E2]                    | 0.0098 22                          | % Iy=0.16 5<br>$\alpha(K)=0.0083 \ 20; \ \alpha(L)=0.00117 \ 19; \ \alpha(M)=0.00025 \ 4$<br>$\alpha(N)=5.6\times10^{-5} \ 9; \ \alpha(O)=8.4\times10^{-6} \ 15; \ \alpha(P)=5.1\times10^{-7} \ 14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 604.07 <sup>#</sup> 14                          | 1.20 6                    | 920.66                 | $(3/2, 5/2, 7/2^{-})$                 | 316.25           | (5/2 <sup>-</sup> ,7/2 <sup>-</sup> ) | [D,E2]                     | 0.007 4                            | %Iy=1.20 <i>19</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 622.97 <sup>#</sup> 10                          | 1.80 <i>14</i>            | 881.36                 | 3/2+                                  | 258.33           | 3/2-                                  | [E1]                       | 2.42×10 <sup>-3</sup> 3            | %I $\gamma$ =1.80 30<br>$\alpha$ (K)=0.002081 29; $\alpha$ (L)=0.000268 4; $\alpha$ (M)=5.64×10 <sup>-5</sup> 8<br>$\alpha$ (N)=1.260×10 <sup>-5</sup> 18; $\alpha$ (O)=1.904×10 <sup>-6</sup> 27;<br>$\alpha$ (P)=1.218×10 <sup>-7</sup> 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

From ENSDF

 $^{149}_{60}\mathrm{Nd}_{89}$ -11

|                                     |                           |                        | <sup>149</sup>        | $\Pr{\beta^-}$ dec | ay (2.26 mi        | n) <b>1977</b>               | Pi06,2010Ru09           | ,1997Gr09 (continued)                                                                                                                                                                                                                                                                                               |
|-------------------------------------|---------------------------|------------------------|-----------------------|--------------------|--------------------|------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                           |                        |                       |                    |                    | $\gamma$ ( <sup>149</sup> Nd | ) (continued)           |                                                                                                                                                                                                                                                                                                                     |
| $E_{\gamma}^{\dagger}$              | $I_{\gamma}^{\dagger ch}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$    | $\mathbf{E}_{f}$   | $\mathrm{J}_f^\pi$ | Mult.                        | $\alpha^{i}$            | Comments                                                                                                                                                                                                                                                                                                            |
| <sup>x</sup> 632.11 <sup>#</sup> 31 | 0.30 9                    |                        |                       |                    |                    |                              |                         | %Iv=0.30 10                                                                                                                                                                                                                                                                                                         |
| 642.03 <sup>d</sup> 8               | 0.30 <sup>d</sup> 7       | 862.81                 | $(7/2)^+$             | 220.73             | 9/2-               | [E1]                         | $2.27 \times 10^{-3}$ 3 | %Iγ=0.30 8                                                                                                                                                                                                                                                                                                          |
|                                     |                           |                        |                       |                    |                    |                              |                         | $\begin{aligned} &\alpha(\mathrm{K}) = 0.001952 \ 27; \ \alpha(\mathrm{L}) = 0.0002514 \ 35; \ \alpha(\mathrm{M}) = 5.28 \times 10^{-5} \ 7 \\ &\alpha(\mathrm{N}) = 1.180 \times 10^{-5} \ 17; \ \alpha(\mathrm{O}) = 1.784 \times 10^{-6} \ 25; \\ &\alpha(\mathrm{P}) = 1.144 \times 10^{-7} \ 16 \end{aligned}$ |
| 649.22 <sup>#</sup> 20              | 0.20 10                   | 814.35                 | 1/2+                  | 165.12             | 1/2-,3/2-          | [E1]                         | $2.22 \times 10^{-3} 3$ | %Iy=0.20 10                                                                                                                                                                                                                                                                                                         |
|                                     |                           |                        |                       |                    |                    |                              |                         | $\begin{aligned} &\alpha(\mathbf{K}) = 0.001906 \ 27; \ \alpha(\mathbf{L}) = 0.0002454 \ 34; \ \alpha(\mathbf{M}) = 5.16 \times 10^{-5} \ 7 \\ &\alpha(\mathbf{N}) = 1.152 \times 10^{-5} \ 16; \ \alpha(\mathbf{O}) = 1.741 \times 10^{-6} \ 24; \\ &\alpha(\mathbf{P}) = 1.117 \times 10^{-7} \ 16 \end{aligned}$ |
| 662.45 <sup>#</sup> 9               | 1.80 13                   | 920.66                 | $(3/2, 5/2, 7/2^{-})$ | 258.33             | 3/2-               | [D,E2]                       | 0.0056 35               | %Iγ=1.80 <i>30</i>                                                                                                                                                                                                                                                                                                  |
| 675.6 <sup>#</sup> 3                | 0.60 10                   | 814.35                 | 1/2+                  | 138.44             | 5/2-               | [M2]                         | 0.02463 35              | %Iγ=0.60 <i>13</i>                                                                                                                                                                                                                                                                                                  |
|                                     |                           |                        |                       |                    |                    |                              |                         | $\alpha(K)=0.02080\ 29;\ \alpha(L)=0.00302\ 4;\ \alpha(M)=0.000645\ 9$<br>$\alpha(N)=0.0001445\ 20;\ \alpha(O)=2.194\times10^{-5}\ 31;$<br>$\alpha(P)=1.412\times10^{-6}\ 20$<br>Mult.: M2 required from $\Lambda J^{\pi}$ . Placement is unlikely.                                                                 |
| 716.47 <sup>#</sup> 27              | 0.35 17                   | 881.36                 | 3/2+                  | 165.12             | $1/2^{-}.3/2^{-}$  | [E1]                         | $1.80 \times 10^{-3}$ 3 | %Iv=0.35.78                                                                                                                                                                                                                                                                                                         |
|                                     | 0.00 17                   | 001100                 | 0,-                   | 100112             |                    | [21]                         | 100/10 2                | $\alpha(K)=0.001552\ 22;\ \alpha(L)=0.0001989\ 28;\ \alpha(M)=4.18\times10^{-5}\ 6$<br>$\alpha(N)=9.34\times10^{-6}\ 13;\ \alpha(O)=1.413\times10^{-6}\ 20;\ \alpha(P)=9.12\times10^{-8}$<br>13                                                                                                                     |
| <sup>x</sup> 721.63 <sup>#</sup> 31 | 0.53 13                   |                        |                       |                    |                    |                              |                         | %Iy=0.53 <i>15</i>                                                                                                                                                                                                                                                                                                  |
| 724.7 2                             | 0.19 5                    | 862.81                 | $(7/2)^+$             | 138.44             | 5/2-               | [E1]                         | $1.76 \times 10^{-3}$ 3 | %Iy=0.19 6                                                                                                                                                                                                                                                                                                          |
|                                     |                           |                        |                       |                    |                    |                              |                         | $\alpha(K)=0.001516 \ 21; \ \alpha(L)=0.0001942 \ 27; \ \alpha(M)=4.08\times10^{-5} \ 6$<br>$\alpha(N)=9.11\times10^{-6} \ 13; \ \alpha(O)=1.380\times10^{-6} \ 19; \ \alpha(P)=8.91\times10^{-8}$<br>12                                                                                                            |
|                                     |                           |                        |                       |                    |                    |                              |                         | $E_{\gamma}$ , $I_{\gamma}$ : from 2010Ru09. This $\gamma$ was reported in 1977Pi06<br>with $E_{\gamma}$ =724.30 <i>30</i> , $I_{\gamma}$ =0.80 <i>11</i> (1977Pi06), but was<br>unplaced.                                                                                                                          |
| 742.94 <sup>#</sup> 10              | 1.40 14                   | 881.36                 | 3/2+                  | 138.44             | $5/2^{-}$          | [E1]                         | $1.67 \times 10^{-3} 2$ | %Iγ=1.40 25                                                                                                                                                                                                                                                                                                         |
|                                     |                           |                        |                       |                    |                    |                              |                         | $ \begin{array}{l} \alpha(\mathrm{K}) = 0.001441 \ 20; \ \alpha(\mathrm{L}) = 0.0001844 \ 26; \ \alpha(\mathrm{M}) = 3.87 \times 10^{-5} \ 5 \\ \alpha(\mathrm{N}) = 8.65 \times 10^{-6} \ 12; \ \alpha(\mathrm{O}) = 1.311 \times 10^{-6} \ 18; \ \alpha(\mathrm{P}) = 8.48 \times 10^{-8} \\ 12 \end{array} $     |
| 755.81 <sup>#</sup> 15              | 0.85 12                   | 920.66                 | $(3/2, 5/2, 7/2^{-})$ | 165.12             | 1/2-,3/2-          | [D,E2]                       | 0.0041 25               | %Iγ=0.85 <i>18</i>                                                                                                                                                                                                                                                                                                  |
| <sup>x</sup> 766.86 <sup>#</sup> 28 | 0.40 20                   |                        |                       |                    |                    |                              |                         | %Iγ=0.40 21                                                                                                                                                                                                                                                                                                         |
| 781.99 <sup>#</sup> 15              | 1.3 2                     | 920.66                 | $(3/2, 5/2, 7/2^{-})$ | 138.44             | 5/2-               | [D,E2]                       | 0.0038 23               | %Iγ=1.30 28                                                                                                                                                                                                                                                                                                         |
| <sup>x</sup> 797.35 <sup>#</sup> 30 | 0.88 15                   |                        | ,                     |                    |                    | -                            |                         | %Iγ=0.88 20                                                                                                                                                                                                                                                                                                         |
| 874.11 <sup>k</sup> 26              | 0.80 8                    | 1012.6?                |                       | 138.44             | 5/2-               | [D,E2]                       | 0.003 2                 | %Iγ=0.80 <i>14</i>                                                                                                                                                                                                                                                                                                  |
|                                     |                           |                        |                       |                    |                    |                              |                         | Placement proposed by 2010Ru09. $E\gamma$ =874.8 in 2010Ru09. Placement considered uncertain by the evaluators.                                                                                                                                                                                                     |

12

Т

### $\gamma$ (<sup>149</sup>Nd) (continued)

- <sup>†</sup> From 1977Pi06, unless otherwise stated. According to 1977Pi06, uncertainties quoted for the intensities in their Table 1 do not take into account 15% uncertainty resulting from the absolute intensity calibration procedure.
- <sup>‡</sup> Placed by evaluators.
- <sup>#</sup> From 1977Pi06 only.
- <sup>@</sup> Corrected for weak contribution from <sup>142</sup>Ba  $\beta^-$ .
- & Corrected for weak contribution from <sup>149</sup>Nd  $\beta^-$ .
- $^{a} \gamma \gamma$  data indicate an unresolved doublet. Intensity is split between two locations. Uncertainty of 10-15% is assigned by the evaluators based on the uncertainty for the combined intensity of the unresolved doublet in  $\beta^{-}$  decay.
- <sup>b</sup>  $\gamma\gamma$ -coin data indicate a doublet (1977Pi06). Energy is from curved crystal data in (n, $\gamma$ ) (1976Pi04). Split intensity is taken from 1977Pi06, probably from their  $\gamma\gamma$ -coin data.
- <sup>c</sup> 1977Pi06 establish the absolute intensity of 138.46 $\gamma$  as 11.0 *17* per 100 disintegrations, in agreement with 13 5 from 1967Va14.
- $^{d}$   $\gamma$  from 2010Ru09, energy and intensity data obtained through an e-mail reply of June 8, 2010 from the authors.
- <sup>*e*</sup>  $\gamma$  taken by 2010Ru09 from the Adopted Gammas from the 2004 version of the A=149 ENSDF database;  $\gamma\gamma$ -coin evidence is from 2010Ru09. Intensity is based on branching ratios in the Adopted Gammas.
- <sup>f</sup> Uncertainty doubled in the least-squares fit procedure, due to its poor fit in the level scheme.
- <sup>g</sup> Dominant M1 expected from RUL=300 for E2.
- <sup>h</sup> For absolute intensity per 100 decays, multiply by 1.00 15.
- <sup>*i*</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies,
- assigned multipolarities, and mixing ratios, unless otherwise specified.
- <sup>*j*</sup> Multiply placed with intensity suitably divided.
- <sup>k</sup> Placement of transition in the level scheme is uncertain.
- <sup>x</sup>  $\gamma$  ray not placed in level scheme.

13

<sup>49</sup><sub>60</sub>Nd<sub>89</sub>-13

#### <sup>149</sup>Pr $β^-$ decay (2.26 min) 1977Pi06,2010Ru09,1997Gr09



#### <sup>149</sup>Pr $\beta^-$ decay (2.26 min) 1977Pi06,2010Ru09,1997Gr09



## <sup>149</sup>Pr β<sup>-</sup> decay (2.26 min) 1977Pi06,2010Ru09,1997Gr09



# <sup>149</sup>Pr $\beta^-$ decay (2.26 min) 1977Pi06,2010Ru09,1997Gr09



<sup>149</sup><sub>60</sub>Nd<sub>89</sub>