148 Nd(d,p γ) 1977HaXX,1979Ka16

History

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh and Jun Chen NDS 185, 2 (2022) 23-Aug-2022

1979Ka16, 1977HaXX: E=10 MeV at Jyvaskyla. Measured E γ , $\gamma\gamma$, $\gamma\gamma$ (t), p γ (t). The authors also report (3 He,xn γ) E=27 MeV experiments, but no details are available.

¹⁴⁹Nd Levels

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\ddagger}$	Comments
0.0 108.5 138.4 165.1 220.7 258.3 270.9	(9/2+)	≤0.7 ns <0.6 ns <0.5 ns 2.1 ns 5 <0.7 ns 5.1 ns 3	 J^π: 1979Ka16 use particle-rotor model with a nonspherical Woods-Saxon potential to predict the 9/2⁺ to 7/2⁻ transition probability for seven N=89, 91 and 93 nuclei. The qualitative agreement between these and the measured probabilities is used as an argument for the 9/2⁺ assignment. T_{1/2}: from 1979Ka16. Note that this value is in severe disagreement with 0.42 ns 3 in the Adopted Levels, where the value is from γγ(t) and βγ(t) in β⁻ decay of ¹⁴⁹Pr.
285.5		<0.6 ns	
316.2		<0.8 ns	
321.1		<0.9 ns	
332.9		<0.4 ns	
340.4			
365.9		<0.5 ns	
482.7		<0.8 ns	
548.7		<0.5 ns	

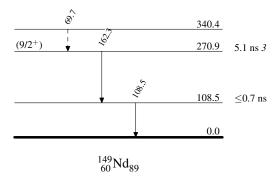
[†] Rounded values from the Adopted Levels.

γ (149Nd)

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
69.7 [‡] 108.5 162.3	340.4 108.5 270.9	(9/2+)	270.9 0.0 108.5	(9/2+)	Shown as tentative transition to 270.9 level.

 $^{^{\}dagger}$ From level diagram in 1979Ka16. No uncertainties were given.

[‡] From $p\gamma(t)$.


[‡] Placement of transition in the level scheme is uncertain.

$^{148}{ m Nd}({ m d},{ m p}\gamma)$ 1977HaXX,1979Ka16

Legend

Level Scheme

---- γ Decay (Uncertain)

