¹⁴⁹Ba β^- decay (352 ms) 2004Sy01

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh and Jun Chen	NDS 185, 2 (2022)	23-Aug-2022			

Parent: ¹⁴⁹Ba: E=0.0; $J^{\pi}=(5/2^{-},3/2^{-})$; $T_{1/2}=352$ ms 6; $Q(\beta^{-})=7.39\times10^{3}$ 20; $\%\beta^{-}$ decay=100.0

¹⁴⁹Ba-J^{π},T_{1/2}: From ¹⁴⁹Ba Adopted Levels.

¹⁴⁹Ba-Q(β^{-}): From 2021Wa16.

¹⁴⁹Ba-% β^{-} decay: % $\beta^{-}=100$; % $\beta^{-}n=2.2$ 17.

2004Sy01 (also 2007SyZZ thesis): radioactive beam of mass A=149 was produced at the OSIRIS online fission-product mass separator by thermal-neutron induced fission of a ²³⁵U target, which consisted of about 1 g of uranium dispersed in graphite, at T=2300°. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ with two Compton-suppressed NORDBALL Ge spectrometers. Low-energy photons were measured with a high-purity X-ray detector (LEP). The $\gamma\gamma$ coincidence events were performed in a second measurement in which the BGO shields of both Ge detectors had been removed. Transitions belonging to ¹⁴⁹Ba decay were identified on the basis of coincidences with the x rays of La and $\gamma\gamma$ coincidences. 1987MaZY was an earlier brief report of production of ¹⁴⁹Ba isotope with the observation of γ and x rays, without any details of level population.

2004Sy01 proposed two bands of opposite parities based on $(3/2^{-})$ for g.s. and multipolarities of 46.0 and 81.5 transitions, but 2007Ur03 conclude that both $3/2^{+}$ and $3/2^{-}$ are possible, which precludes the band assignments.

The decay scheme is incomplete due to a large gap of about 6.5 MeV between Q-value and the highest observed level.

¹⁴⁹La Levels

Two possible bands of opposite parities are proposed in 2004Sy01: a negative-parity band consisting of 46, 226, 357, 517 and 844 levels; and a positive-parity band consisting of 83, 165, 286, 506 and 894 levels.

E(level) [†]	J#‡	T _{1/2} ‡	Comments
0.0	(3/2)	1.091 s <i>34</i>	J^{π} : (3/2 ⁻) in 2004Sy01.
45.97 8	(1/2, 3/2, 5/2)		J^{π} : From the Adopted Levels.
			$\pi = (-)$ in 2004Sy01.
83.00 10			$\pi = (+)$ in 2004Sy01.
164.50 18			$\pi = (+)$ in 2004Sy01.
226.03 8			$\pi = (-)$ in 2004Sy01.
286.30 17			$\pi = (+)$ in 2004Sy01.
357.32 15			$\pi = (-)$ in 2004Sy01.
505.7 <i>3</i>			$\pi = (+)$ in 2004Sy01.
516.53 22			$\pi = (-)$ in 2004Sy01.
843.6 5			$\pi = (-)$ in 2004Sy01.
893.9 <i>3</i>			$\pi = (+)$ in 2004Sy01.
	least-squares fin ne Adopted Leve		
			γ ⁽¹⁴⁹ La)

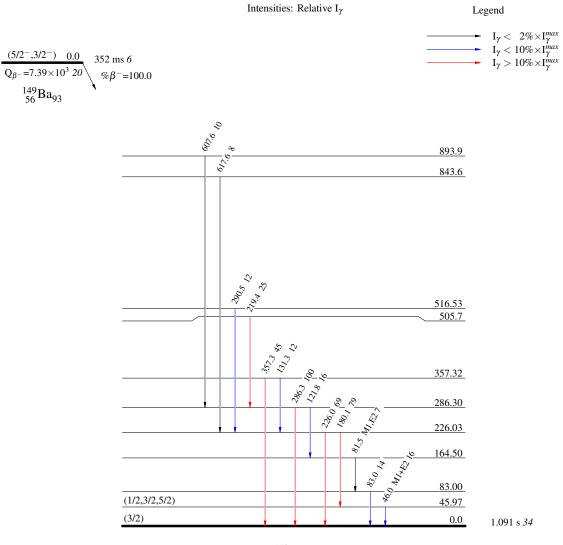
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	α [#]	Comments
46.0 <i>1</i>	16 2	45.97	(1/2,3/2,5/2)	0.0 (3/2)	M1+E2	23 13	$\begin{aligned} &\alpha(K)=7.8 \ 9; \ \alpha(L)=12 \ 11; \ \alpha(M)=2.7 \ 24 \\ &\alpha(N)=0.6 \ 5; \ \alpha(O)=0.08 \ 7; \ \alpha(P)=0.00055 \ 13 \\ &\alpha(exp)>3.6 \ if \ mult(180.1\gamma)=E1; \ >4.3 \ if \\ &mult(180.1\gamma)=M1; \ >4.5 \ if \ mult(180.1\gamma)=E2 \\ &suggest \ that \ mult(46.0\gamma) \ not \ E1. \end{aligned}$
81.5 2	72	164.50		83.00	M1,E2	3.0 11	$\begin{aligned} &\alpha(K) = 1.93 \ 27; \ \alpha(L) = 0.9 \ 7; \ \alpha(M) = 0.19 \ 15 \\ &\alpha(N) = 0.041 \ 31; \ \alpha(O) = 0.006 \ 4; \ \alpha(P) = 0.000122 \ 8 \\ &\alpha(\exp) = 1.7 \ 5 \ \text{if mult}(83.0\gamma) = E1; \ 4.6 \ 15 \ \text{if mult}(83.0\gamma) = M1. \end{aligned}$

Continued on next page (footnotes at end of table)

$^{149}\text{Ba}\,\beta^-$ decay (352 ms) 2004Sy01 (continued)

$\gamma(^{149}\text{La})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	$J_i^{\pi} = E_f$	J_f^π	Comments
83.0 1	14 2	83.00	0.0	(3/2)	
121.8 2	16 4	286.30	164.50		
131.3 2	12 2	357.32	226.03		E_{γ} , I_{γ} : average value from singles and $\gamma\gamma$ coincidence spectra.
180.1 <i>1</i>	79 4	226.03	45.97	(1/2, 3/2, 5/2)	
219.4 2	25 4	505.7	286.30		
226.0 1	69 5	226.03	0.0	(3/2)	
286.3 2	100 24	286.30	0.0	(3/2)	I_{γ} : from $\gamma\gamma$ spectra.
290.5 2	12 4	516.53	226.03		
357.3 2	45 7	357.32	0.0	(3/2)	
607.6 2	10 2	893.9	286.30		E_{γ}, I_{γ} : from $\gamma\gamma$ coin data.
617.6 5	82	843.6	226.03		E_{γ} , I_{γ} : from $\gamma\gamma$ coin data.


 † From $\gamma\text{-ray}$ singles spectra, unless otherwise stated.

[‡] From conversion coefficients, deduced based on I(γ +ce) intensity balance by 2004Sy01.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁴⁹Ba β^- decay (352 ms) 2004Sy01

Decay Scheme

¹⁴⁹₅₇La₉₂

3