Adopted Levels, Gammas

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Balraj Singh and Jun Chen	NDS 185, 2 (2022)	23-Aug-2022							

 $Q(\beta^{-})=6.45\times10^{3}\ 20;\ S(n)=5.58\times10^{3}\ 20;\ S(p)=9.96\times10^{3}\ 20;\ Q(\alpha)=-2.59\times10^{3}\ 20$ 2021Wa16 $S(2n)=9680\ 200,\ S(2p)=22880\ 200,\ Q(\beta^{-}n)=2110\ 200\ (2021Wa16).$

¹⁴⁹La isotope produced through mass separation of fission fragments from $^{235}U(n,F)$ E(n)=thermal

(1979En02, 1986ReZU, 2002Sy01, 2004Sy01). See also 2017Wu04, with isotope production in ⁹Be(²³⁸U,F) reaction, followed by half-life measurement of ¹⁴⁹La decay.

Additional information 1.

Mass measurement using Penning-trap method: 2003SaZU.

Theoretical studies: consult the NSR database at www.nndc.bnl.gov/nsr/ for one references dealing with radioactive decay, listed under 'document record' which can be accessed through web retrieval of the ENSDF database at www.nndc.bnl.gov/ensdf/.

¹⁴⁹La Levels

Cross Reference (XREF) Flags

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0	(3/2)	1.091 s <i>34</i>	AB	$\%\beta^{-}=100; \ \%\beta^{-}n=1.41 \ 34$ XREF: B(?).
				J ^{π} : from 2002Sy01, 2004Sy01 and 2007Ur03, based on suggested β feeding to 3/2, 5/2 levels in ¹⁴⁹ Ce.
				T _{1/2} : weighted average of 1.11 s 4 (2017Wu04, implants-β correlated decay curve); 1.066 s 34 (1993Ru01, neutron decay curve); 1.10 s 3 (1986ReZU, neutron decay curve, earlier value of 1.04 s 4 in 1986Wa17); and 1.2 s 4 (1979En02, β timing). Other: 1.2 s (1987MaZY, γ timing). %β ⁻ n: unweighted average of 1.74 <i>13</i> (1993Ru01) and 1.07 <i>13</i> (1986ReZU,
				earlier value was 1.17 <i>12</i> in 1986Wa17). Other: 1.46 <i>29</i> (2002Pf04 compilation).
0+x [#]	(7/2 ⁻)		В	E(level): x<35 keV if 3/2 for g.s. and <20 keV if J=5/2 for g.s., estimated by 2007Ur03 from non-observation of a γ ray of this energy or enhanced intensity of x rays.
45 97 8	(1/2, 3/2, 5/2)		A	J [*] : probable //2 member of configuration= $\pi 3/2[541]$. I ^{π} : 46 0 γ M1+F2 to (3/2)
$81.5 + x^{\#} 3$	(1/2, 0, 2, 0, 2) $(11/2^{-})$		B	
83.00 10	(/-)		Α	
164.50 18			Α	
226.03 8			Α	
$280.8 + x^{\#} 5$	$(15/2^{-})$		В	
286.30 17			Α	
357.32 15			A	
516 53 22			A A	
$508.3 \pm x^{\#} 6$	$(10/2^{-})$		R	
843.6.5	(19/2)		A	
893.9 <i>3</i>			Α	
$1016.5 + x^{\#} 6$	$(23/2^{-})$		В	
$1510.3 + x^{\#} 7$	$(27/2^{-})$		В	
$2051.1 + x^{\#} 8$	$(31/2^{-})$		В	
$2606.7 \pm x^{\#}.8$	$(35/2^{-})$		- R	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁴⁹La Levels (continued)

 $\gamma(^{149}\text{La})$

[†] From a least-squares fit to $E\gamma$ values, assuming an uncertainty of 0.3 keV if not available.

[‡] $\Delta J=2$ high-spin band based on (7/2⁻) in ²⁴⁸Cm SF decay, also supported by a cascade of quadrupole transitions (most likely E2)

[#] Band(A): Probable $\pi 3/2[541], \alpha = -1/2$.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult.	α [@]	Comments
45.97	(1/2,3/2,5/2)	46.0 1	100	0.0	(3/2)	M1+E2 [‡]	23 13	
81.5+x	$(11/2^{-})$	81.5		0+x	(7/2 ⁻)	(E2)	4.15 6	Mult.: from ce data in ²⁴⁸ Cm SF decay.
83.00		83.0 1	100	0.0	(3/2)			2
164.50		81.5 2	100	83.00		M1,E2 [‡]	3.0 11	
226.03		180.1 <i>1</i> 226.0 <i>1</i>	100 5 87 6	45.97 0.0	(1/2,3/2,5/2) (3/2)			
280.8+x	$(15/2^{-})$	199.3		81.5+x	$(11/2^{-})$	(Q) [#]		
286.30		121.8 2	16 4	164.50				
257.22		286.3 2	100 24	0.0	(3/2)			
357.52		131.3 Z 357 3 2	27.5	226.03	(3/2)			
505 7		219.4.2	100 10	286 30	(3/2)			
516.53		290.5 2	100	226.03				
598.3+x	$(19/2^{-})$	317.5		280.8+x	$(15/2^{-})$	(Q) [#]		
843.6		617.6 5	100	226.03	. , ,			
893.9		607.6 2	100	286.30				
1016.5+x	$(23/2^{-})$	418.2		598.3+x	(19/2 ⁻)	(Q) [#]		
1510.3+x	$(27/2^{-})$	493.8		1016.5+x	$(23/2^{-})$	(Q) #		
2051.1+x	$(31/2^{-})$	540.8		1510.3+x	$(27/2^{-})$	(Q) [#]		
2000./+x	(35/2)	555.6		2051.1+x	(31/2)			

[†] From β^- decay or ²⁴⁸Cm SF decay.

[±] From conversion coefficients deduced based on I(γ +ce) intensity balance in ¹⁴⁹Ba β^- decay (2004Sy01).

[#] From $\gamma\gamma(\theta)$ in ²⁴⁸Cm SF decay. Mult=(Q) corresponds to $\Delta J=2$ transition, most likely E2.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

from $\gamma\gamma(\theta)$ data.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

1.091 s *34*

¹⁴⁹₅₇La₉₂

Adopted Levels, Gammas

¹⁴⁹₅₇La₉₂