¹⁴⁹Er ε decay (9.6 s) 1989Fi01

History													
Туре	Author	Citation	Literature Cutoff Date										
Full Evaluation	Balraj Singh and Jun Chen	NDS 185, 2 (2022)	23-Aug-2022										

Parent: ¹⁴⁹Er: E=741.69 23; J^{π} =(11/2⁻); T_{1/2}=9.6 s 6; Q(ε)=7900 30; % ε +% β ⁺ decay=96.5 7

¹⁴⁹Er-E,J^{π},T_{1/2}: From ¹⁴⁹Er Adopted Levels.

¹⁴⁹Er-Q(ε): From 2021Wa16.

¹⁴⁹Er-% ε +% β ⁺ decay: %IT=3.5 7 (1989Fi01).

1989Fi01: ¹⁴⁹Er ions were produced by the ⁹⁴Mo(⁵⁸Ni,2pn) reaction with 242 MeV (center of target) ⁵⁸Ni beam from the Lawrence Berkeley Laboratory SuperHILAC, separated with the OASIS facility online and collected on a moving tape of the counting station. γ rays were detected with a HPGe and two n-Ge detectors; charged particles were detected with a Si Δ E-E telescope on one side of the tape and a plastic scintillator on the other side. Measured E γ , I γ , E(x-ray), I(x-ray), $\gamma\gamma$ -coin, γ (t), E β , β -delayed proton spectra. Deduced levels, J^{π} , parent T_{1/2}, decay branching ratios, log *ft*. The 9.6-s and 4-s activities are mixed.

1985To11: same setup and reaction as 1989Fi01, but with $E(^{58}Ni)=262$ MeV at the center of target. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin. Deduced levels.

1984To07: ^{149m}Er ions were produced via ¹⁴⁴Sm(¹²C,7n) with 155 MeV ¹²C beam from the Lawrence Berkeley Laboratory 88-inch cyclotron. Measured β -delayed protons with a Si Δ E-E telescope, decay-time distribution. Deduced T_{1/2}. No γ decay from the isomer is reported.

1984ScZT, 1984ScZU: source produced by 93 Nb(58 Ni,xnyp) E=5 MeV/nucleon. Measured γ , delayed protons.

Other: 1984ScZU (also 1984ScZT, 1985ZuZW). Three γ rays reported at 171.0, 343.7 and 436.6.

Total decay energy deposit of 7246 keV *197* calculated by RADLIST code is somewhat lower than the expected value of 8339 keV *67*, which indicates the incompleteness of the decay scheme.

149Ho Levels

E(level) [†]	J ^{π#}	T _{1/2} ^{<i>c</i>}	Comments
0.0 48.82 22 220.32 <i>19</i>	$\frac{(11/2^{-})^{a}}{(1/2^{+})^{a}}$ $(3/2^{+})^{a}$	21.0 s 2 56 s 3	$\%\varepsilon + \%\beta^+ = 100$
564.25 <i>19</i> 1000.99 <i>17</i> 1171 08 7	$(5/2^+)^{ab}$ $(7/2^+)^a$		
1183.71 <i>20</i>	@		
1277.11 <i>10</i> 1380.10 <i>10</i> 1415 0 3	$(9/2^{-})^{\&}$ $(15/2^{+})^{a}$ $(7/2^{+})^{a}$		
1530.94 8	(1/2) @ @		
1552.10 8 1560.11 <i>10</i>	(15/2 ⁻) ^{ab}		
1601.9 <i>5</i> 1648.91 <i>10</i>	@ @		
1706.92 20	@ @		
1735.31 20 1765.80 <i>10</i>	@		
1828.9 <i>3</i> 1997 46 <i>18</i>	@ @		
2071.92 20	@		
2135.0 5	@ @		
2146.72 20 2177.52 <i>10</i>	@		

1989Fi01 (continued)

¹⁴⁹Er ε decay (9.6 s)

				¹⁴⁹ Ho Le	evels (contin	nued)	
E(level) [†] 2209.1 <i>3</i> 2221.92 <i>10</i> 2226.86 <i>17</i> 2267.28 <i>10</i> 2297.3 <i>5</i> 2317.62 <i>20</i> 2321.72 <i>10</i> 2326.82 <i>20</i>	$\begin{array}{c} J^{\pi \#} \\ \hline (9/2^{-})^{\&} \\ @ \\ (9/2^{-})^{\&} \\ (9/2^{-})^{\&} \\ (9/2^{-})^{\&} \\ @ \\ \end{array}$	E(level) [†] 2633.3 4 2677.1 5 2714.8 3 2804.5? [‡] 5 2825.0 11 2851.2? [‡] 11 2901.7? [‡] 4 2914.0 11	$ \frac{J^{\pi \#}}{@} \\ \frac{(9/2^{-})^{\&}}{@} \\ \ddagger \\ \frac{(9/2^{-})^{\&}}{\ddagger} \\ \ddagger \\ \frac{(9/2^{-})^{\&}}{@} \\ \frac{1}{2} \\ 1$	$\frac{\text{E(level)}^{\dagger}}{3125.0 II}$ 3125.0 II 3174.9? ^{\ddagger} 5 3226.2? ^{\ddagger} 4 3263.1? ^{\ddagger} 3 3305.8? ^{\ddagger} 3 3325.2? ^{\ddagger} 4 3338.4? ^{\ddagger} 3 3536.3? ^{\ddagger} 8	$ \frac{J^{\pi \#}}{(9/2^{-})^{\&}} \\ $	$ E(level)^{\dagger} 4441.4 3 4552.5?^{\ddagger} 8 4616.8?^{\ddagger} 5 4622.4?^{\ddagger} 3 4645.6?^{\ddagger} 4 4652.1 4 4661.68 20 4676.7?^{\ddagger} 4 $	J ^{π#} @ \$ @ \$ 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
2368.0 <i>11</i> 2381.32 20 2449.8 6 2469.38 <i>19</i> 2493.3 6 2499.4? [‡] 5 2512.52 20 2580.42 20 2591.4 <i>4</i> 2607.41 <i>10</i>	@ (9/2 ⁻)& (9/2 ⁻)& (9/2 ⁻)& ‡ @ @ @ (9/2 ⁻)&	2935.7 6 2939.3? [‡] 9 2965.5 3 2977.8 3 2992.3 3 2996.66 25 3001.0 <i>11</i> 3005.0 3 3049.0 3 3061.0? [‡] 9	@ ‡ @ (9/2 ⁻)& @ (9/2 ⁻)& (9/2 ⁻)& @ ‡	$3795.1?^{\ddagger} 6$ $3828.3?^{\ddagger} 12$ $3885.6?^{\ddagger} 5$ $4003.2?^{\ddagger} 4$ $4037.3?^{\ddagger} 13$ $4086.4?^{\ddagger} 5$ $4236.0?^{\ddagger} 10$ $4386.0?^{\ddagger} 7$ 4413.5 3 $4433.9?^{\ddagger} 4$	* * * * * * @ *	4699.68 20 4706.1 10 4750.0? [‡] 8 4822.9? [‡] 6 4851.1? [‡] 9 5079.2 10 5098.7 10	@ @ ++ ++ @ @

[†] From a least-squares fit to γ -ray energies.

[‡] Weakly populated uncertain level in ¹⁴⁹Er ε decay (9.6 s). Possible allowed or first-forbidden $\varepsilon + \beta^+$ feeding from (11/2⁻) parent and γ to (11/2⁻) g.s. suggests 9/2, 11/2, 13/2.

[#] As proposed in 1989Fi01, unless otherwise noted. All values are consistent with those in the Adopted Levels.

[@] Probable allowed or first-forbidden $\varepsilon + \beta^+$ feeding from (11/2⁻) parent suggests 9/2, 11/2, 13/2.

& Probable allowed or first-forbidden $\varepsilon + \beta^+$ feeding from (11/2⁻) parent and γ to 7/2⁺ suggest 9/2, 11/2⁺. $J^{\pi} = (9/2^-)$ is supported by expected dominance of h_{11/2} proton to h_{9/2} neutron component in the β transitions (1989Fi01).

^{*a*} From the Adopted Levels.

^b This J^{π} is inconsistent with log ft=6.2-6.4 from $(11/2^{-})$. Low log ft value may be due to unobserved γ transitions from higher levels.

^c From the Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	Ιβ ⁺ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
$(3.54 \times 10^3 \ 3)$	5098.7	≈0.053	≈0.087	≈6.2	≈0.14	av Eβ=1139 14; εK=0.520 7; εL=0.0788 11; εM+=0.0233 4
$(3.56 \times 10^3 \ 3)$	5079.2	≈0.054	≈0.086	≈6.2	≈0.14	av Eβ=1148 14; εK=0.515 7; εL=0.0781 11; εM+=0.0231 4
$(3.79 \times 10^{3 \#} 3)$	4851.1?	0.03 2	0.04 3	6.6 4	0.07 5	av Eβ=1252 14; εK=0.463 7; εL=0.0700 11; εM+=0.0207 3
$(3.82 \times 10^{3#} 3)$	4822.9?	0.03 2	0.04 3	6.6 4	0.07 5	av E β =1265 <i>14</i> ; ε K=0.456 <i>7</i> ; ε L=0.0691 <i>11</i> ; ε M+=0.0204 <i>3</i>
(3.89×10 ^{3#} 3)	4750.0?	0.06 3	0.06 3	6.4 2	0.12 6	av Eβ=1298 14; εK=0.440 7; εL=0.0666 10; εM+=0.0197 3
$(3.94 \times 10^3 \ 3)$	4706.1	0.06 3	0.07 4	6.4 <i>3</i>	0.13 7	av Eβ=1318 14; εK=0.431 7; εL=0.0652 10;

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+$ ‡	Ie‡	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
$(3.94 \times 10^3 \ 3)$	4699.68	0.78 19	0.82 21	5.3 1	1.6 4	εM +=0.0192 3 av E β =1321 14; εK =0.430 7; εL =0.0649 10; εM +=0.0192 3
(3.96×10 ^{3#} 3)	4676.7?	0.10 5	0.11 6	6.2 2	0.21 11	av E β =1332 14; ε K=0.425 7; ε L=0.0642 10; ε M+=0.0189 3
$(3.98 \times 10^3 \ 3)$	4661.68	0.21 11	0.22 11	5.9 2	0.43 22	av E β =1338 14; ε K=0.422 7; ε L=0.0637 10; ε M+=0.0188 3
$(3.99 \times 10^3 \ 3)$	4652.1	0.10 5	0.11 6	6.2 2	0.21 11	av E β =1343 14; ε K=0.420 7; ε L=0.0634 10; ε M+=0.0187 3
$(4.00 \times 10^{3#} 3)$	4645.6?	0.10 6	0.11 6	6.2 2	0.21 11	av E β =1346 <i>14</i> ; ε K=0.418 <i>7</i> ; ε L=0.0632 <i>10</i> ; ε M+=0.0187 3
(4.02×10 ³ [#] 3)	4622.4?	0.22 11	0.21 11	5.9 2	0.43 22	av E β =1356 14; ε K=0.413 7; ε L=0.0625 10; ε M+=0.0184 3
$(4.02 \times 10^{3\#} 3)$	4616.8?	0.05 3	0.04 2	6.6 <i>3</i>	0.09 5	av Eβ=1359 14; εK=0.412 7; εL=0.0623 10; εM+=0.0184 3
$(4.09 \times 10^{3\#} 3)$	4552.5?	0.03 1	0.02 1	6.9 2	0.05 2	av Eβ=1388 14; εK=0.399 6; εL=0.0603 10; εM+=0.0178 3
$(4.20 \times 10^3 \ 3)$	4441.4	0.18 6	0.14 5	6.1 2	0.32 11	av Eβ=1440 14; εK=0.377 6; εL=0.0569 9; εM+=0.0168 3
$(4.21 \times 10^{3#} 3)$	4433.9?	0.12 6	0.09 5	6.3 2	0.21 11	av E β =1443 14; ε K=0.376 6; ε L=0.0567 9; ε M+=0.0167 3
$(4.23 \times 10^3 \ 3)$	4413.5	0.24 12	0.19 10	6.0 2	0.43 22	av E β =1452 <i>14</i> ; ε K=0.372 <i>6</i> ; ε L=0.0561 <i>9</i> ; ε M+=0.0166 <i>3</i>
$(4.26 \times 10^{3#} 3)$	4386.0?	0.06 3	0.04 3	6.6 <i>3</i>	0.10 6	av E β =1465 14; ε K=0.367 6; ε L=0.0553 9; ε M+=0.0163 3
$(4.41 \times 10^{3\#} 3)$	4236.0?	0.03 2	0.02 2	7.0 4	0.05 4	av Eβ=1534 14; εK=0.339 6; εL=0.0512 8; εM+=0.01509 24
$(4.56 \times 10^{3#} 3)$	4086.4?	0.13 7	0.08 4	6.5 2	0.21 11	av $E\beta$ =1603 14; ε K=0.314 5; ε L=0.0473 8; ε M+=0.01395 23
$(4.60 \times 10^{3#} 3)$	4037.3?	0.02 1	0.01 1	7.3 3	0.03 2	av E β =1626 <i>14</i> ; ε K=0.306 <i>5</i> ; ε L=0.0461 <i>8</i> ; ε M+=0.01360 <i>22</i>
$(4.64 \times 10^{3#} 3)$	4003.2?	0.06 3	0.036 18	6.8 2	0.10 5	av Eβ=1642 14; εK=0.301 5; εL=0.0453 8; εM+=0.01336 22
$(4.76 \times 10^{3#} 3)$	3885.6?	0.3 3	0.2 1	6.2 4	0.5 4	av Eβ=1696 14; εK=0.283 5; εL=0.0426 7; εM+=0.01256 20
(4.81×10 ^{3#} 3)	3828.3?	0.07 4	0.036 20	6.8 <i>3</i>	0.11 6	av Eβ=1723 14; εK=0.275 5; εL=0.0413 7; εM+=0.01219 20
$(4.85 \times 10^{3#} 3)$	3795.1?	0.14 7	0.07 4	6.6 2	0.21 11	av $E\beta$ =1738 <i>14</i> ; ε K=0.270 <i>5</i> ; ε L=0.0406 <i>7</i> ; ε M+=0.01198 <i>19</i>
$(5.11 \times 10^{3 \#} 3)$	3536.3?	0.15 8	0.06 3	6.7 2	0.21 11	av E β =1859 14; ε K=0.236 4; ε L=0.0355 6; ε M+=0.01047 17
$(5.30 \times 10^{3#} 3)$	3338.4?	0.24 8	0.08 3	6.6 2	0.32 11	av E β =1951 14; ε K=0.214 4; ε L=0.0321 5; ε M+=0.00946 15
(5.32×10 ³ [#] 3)	3325.2?	0.08 4	0.028 15	7.0 3	0.11 6	av E β =1958 14; ε K=0.212 4; ε L=0.0319 5; ε M+=0.00940 15
(5.34×10 ^{3#} 3)	3305.8?	0.12 6	0.040 20	6.9 2	0.16 8	av E β =1967 14; ε K=0.210 4; ε L=0.0316 5; ε M+=0.00931 15
(5.38×10 ³ [#] 3)	3263.1?	0.24 8	0.08 3	6.6 2	0.32 11	av E β =1987 14; ε K=0.206 4; ε L=0.0309 5; ε M+=0.00911 14
(5.42×10 ³ [#] 3)	3226.2?	0.16 8	0.05 3	6.8 2	0.21 11	av E β =2004 14; ε K=0.202 3; ε L=0.0303 5; ε M+=0.00894 14

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Iβ ⁺ ‡	I ε^{\ddagger}	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
$(5.47 \times 10^{3#} 3)$	3174.9?	0.16 8	0.05 3	6.8 2	0.21 11	av E β =2028 14; ε K=0.197 3; ε L=0.0296 5; ε M+=0.00871 14
$(5.52 \times 10^3 \ 3)$	3125.0	0.31 8	0.092 25	6.6 1	0.40 11	av E β =2051 14; ε K=0.192 3; ε L=0.0288 5; ε M+=0.00850 13
$(5.58 \times 10^{3#} 3)$	3061.0?	0.08 5	0.022 13	7.2 3	0.10 6	av E β =2081 14; ε K=0.186 3; ε L=0.0279 5; ε M+=0.00823 13
$(5.59 \times 10^3 \ 3)$	3049.0	0.42 17	0.12 5	6.5 2	0.54 22	av E β =2087 14; ε K=0.185 3; ε L=0.0278 5; ε M+=0.00818 13
$(5.64 \times 10^3 \ 3)$	3005.0	0.59 9	0.16 2	6.3 1	0.75 11	av $E\beta$ =2107 14; ε K=0.181 3; ε L=0.0272 4; ε M+=0.00801 12
$(5.64 \times 10^3 \ 3)$	3001.0	0.42 9	0.12 2	6.5 1	0.54 11	av Eβ=2109 14; εK=0.181 3; εL=0.0271 4; εM+=0.00799 12
$(5.65 \times 10^3 \ 3)$	2996.66	0.9 3	0.26 9	6.1 2	1.2 4	av Eβ=2111 14; εK=0.180 3; εL=0.0270 4; εM+=0.00797 12
$(5.65 \times 10^3 \ 3)$	2992.3	0.86 16	0.24 4	6.2 1	1.1 2	av Eβ=2113 14; εK=0.180 3; εL=0.0270 4; εM+=0.00796 12
$(5.66 \times 10^3 \ 3)$	2977.8	0.25 9	0.068 23	6.7 2	0.32 11	av Eβ=2120 14; εK=0.179 3; εL=0.0268 4; εM+=0.00790 12
$(5.68 \times 10^3 \ 3)$	2965.5	0.17 9	0.045 23	6.9 2	0.21 11	av Eβ=2126 14; εK=0.177 3; εL=0.0266 4; εM+=0.00785 12
$(5.70 \times 10^{3#} 3)$	2939.3?	0.11 5	0.029 13	7.1 2	0.14 6	av Eβ=2138 15; εK=0.175 3; εL=0.0263 4; εM+=0.00775 12
$(5.71 \times 10^3 \ 3)$	2935.7	0.17 9	0.044 23	6.9 2	0.21 11	av $E\beta$ =2140 <i>14</i> ; ε K=0.175 <i>3</i> ; ε L=0.0262 <i>4</i> ; ε M+=0.00774 <i>12</i>
$(5.73 \times 10^3 \ 3)$	2914.0	0.33 9	0.085 23	6.6 1	0.41 11	av Eβ=2150 15; εK=0.173 3; εL=0.0260 4; εM+=0.00766 12
$(5.74 \times 10^{3#} 3)$	2901.7?	0.17 9	0.043 23	6.9 2	0.21 11	av Eβ=2156 15; εK=0.172 3; εL=0.0258 4; εM+=0.00761 12
$(5.79 \times 10^{3#} 3)$	2851.2?	0.26 9	0.064 22	6.8 2	0.32 11	av E β =2180 15; ε K=0.1678 25; ε L=0.0252 4; ε M+=0.00742 11
$(5.82 \times 10^3 \ 3)$	2825.0	0.64 18	0.16 4	6.4 <i>1</i>	0.80 22	av E β =2192 15; ε K=0.1657 25; ε L=0.0249 4; ε M+=0.00733 11
$(5.84 \times 10^{3#} 3)$	2804.5?	0.09 5	0.022 12	7.2 3	0.11 6	av E β =2202 15; ε K=0.1641 24; ε L=0.0246 4; ε M+=0.00726 11
$(5.93 \times 10^3 \ 3)$	2714.8	0.35 18	0.08 4	6.7 2	0.43 22	av E β =2244 15; ε K=0.1572 23; ε L=0.0236 4; ε M+=0.00695 11
$(5.96 \times 10^3 \ 3)$	2677.1	0.5 3	0.1 1	6.5 <i>3</i>	0.6 4	av E β =2262 15; ε K=0.1544 23; ε L=0.0232 4; ε M+=0.00683 10
$(6.01 \times 10^3 \ 3)$	2633.3	0.17 9	0.038 20	7.0 2	0.21 11	av $E_{B}=2282$ 15; $\varepsilon K=0.1512$ 22; $\varepsilon L=0.0227$ 4; $\varepsilon M==0.00668$ 10
$(6.03 \times 10^3 \ 3)$	2607.41	1.5 3	0.32 7	6.1 <i>1</i>	1.8 4	av Eβ=2295 15; εK=0.1494 22; εL=0.0224 4; εM+=0.00660 10
$(6.05 \times 10^3 \ 3)$	2591.4	0.44 18	0.10 4	6.6 2	0.54 22	av Eβ=2302 15; εK=0.1483 22; εL=0.0222 4; εM+=0.00655 10
$(6.06 \times 10^3 \ 3)$	2580.42	0.53 18	0.11 4	6.5 2	0.64 22	av E β =2307 15; ϵ K=0.1475 21; ϵ L=0.0221 4; ϵ M+=0.00652 10
$(6.13 \times 10^3 \ 3)$	2512.52	0.71 18	0.15 4	6.4 1	0.86 22	av Eβ=2339 15; εK=0.1429 21; εL=0.0214 3; εM+=0.00631 9
$(6.14 \times 10^{3#} 3)$	2499.4?	0.27 9	0.054 19	6.9 2	0.32 11	av Eβ=2345 15; εK=0.1420 20; εL=0.0213 3; εM+=0.00627 9
$(6.15 \times 10^3 \ 3)$	2493.3	0.9 3	0.19 7	6.3 2	1.1 4	av E β =2348 15; ε K=0.1416 20; ε L=0.0212 3; ε M+=0.00626 9
$(6.17 \times 10^3 \ 3)$	2469.38	2.2 7	0.45 15	6.0 2	2.7 9	av Eβ=2360 15; εK=0.1400 20; εL=0.0210 3; εM+=0.00619 9

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+$ ‡	$I\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments
$(6.19 \times 10^3 3)$	2449.8	0.8 4	0.1 1	6.4 3	0.9 5	av Eβ=2369 15; εK=0.1387 20; εL=0.0208 3; εM+=0.00613 9
$(6.26 \times 10^3 \ 3)$	2381.32	0.5 3	0.10 6	6.6 <i>3</i>	0.6 4	av Eβ=2401 15; εK=0.1344 19; εL=0.0201 3; εM+=0.00594 9
$(6.27 \times 10^3 \ 3)$	2368.0	1.2 2	0.22 3	6.3 1	1.4 2	av $E\beta$ =2408 15; ϵ K=0.1336 19; ϵ L=0.0200 3; sM+-0.00590 9
$(6.31 \times 10^3 \ 3)$	2326.82	1.0 4	0.19 8	6.4 2	1.2 5	av $E\beta$ =2427 15; ϵ K=0.1311 19; ϵ L=0.0196 3; ϵ M=-0.00579 8
$(6.32 \times 10^3 \ 3)$	2321.72	2.7 5	0.50 9	5.9 1	3.2 6	av $\mathcal{E}\beta$ =2429 15; \mathcal{E} K=0.1308 19; \mathcal{E} L=0.0196 3; $\mathcal{E}\beta$ =2429 75; \mathcal{E} K=0.0578 8
$(6.32 \times 10^3 \ 3)$	2317.62	1.4 3	0.26 6	6.2 1	1.7 4	av $E\beta$ =2431 15; ϵ K=0.1305 18; ϵ L=0.0196 3; ϵ M=0.00577 8
$(6.34 \times 10^3 \ 3)$	2297.3	0.54 20	0.10 4	6.6 2	0.64 24	av $E\beta = 2441$ 15; $\varepsilon K = 0.1293$ 18; $\varepsilon L = 0.0194$ 3; $\varepsilon M = -0.00571$ 8
$(6.37 \times 10^3 \ 3)$	2267.28	1.0 3	0.18 5	6.4 1	1.2 3	av E β =2455 15; ε K=0.1276 18; ε L=0.0191 3; sM+-0.00563 8
$(6.41 \times 10^3 \ 3)$	2226.86	1.9 3	0.33 6	6.1 <i>1</i>	2.2 4	av $E\beta$ =2474 15; ϵ K=0.1253 18; ϵ L=0.0188 3; ϵ M=-0.00553 8
$(6.42 \times 10^3 \ 3)$	2221.92	1.28 20	0.22 3	6.3 1	1.50 23	av $\mathcal{E}\beta$ =2477 15; ε K=0.1250 18; ε L=0.0187 3; ε M+=0.00552 8
$(6.43 \times 10^3 \ 3)$	2209.1	0.73 21	0.13 4	6.5 1	0.86 25	av $E\beta$ =2483 15; ϵ K=0.1243 17; ϵ L=0.0186 3; ϵ M+=0.00549 8
$(6.46 \times 10^3 \ 3)$	2177.52	1.7 3	0.29 6	6.2 1	2.0 4	av $E\beta$ =2498 15; ε K=0.1225 17; ε L=0.0183 3; ε M+=0.00541 8
$(6.49 \times 10^3 \ 3)$	2148.72	0.55 19	0.09 3	6.7 2	0.64 22	av $E\beta$ =2511 15; ε K=0.1209 17; ε L=0.01811 25; ε M+=0.00534 8
$(6.51 \times 10^3 \ 3)$	2135.0	0.37 19	0.06 3	6.9 2	0.43 22	av $E\beta$ =2518 <i>15</i> ; ε K=0.1202 <i>17</i> ; ε L=0.01800 <i>25</i> ; ε M+=0.00530 <i>8</i>
$(6.57 \times 10^3 \ 3)$	2071.92	0.28 9	0.045 15	7.0 2	0.32 11	av $E\beta$ =2548 15; ε K=0.1168 16; ε L=0.01750 24; ε M+=0.00516 7
$(6.64 \times 10^3 \ 3)$	1997.46	1.4 3	0.22 4	6.3 1	1.6 3	av $E\beta$ =2583 15; ϵ K=0.1130 16; ϵ L=0.01693 23; ϵ M+=0.00499 7
$(6.81 \times 10^3 \ 3)$	1828.9	0.66 19	0.09 <i>3</i>	6.7 1	0.75 22	av $E\beta$ =2663 15; ε K=0.1050 14; ε L=0.01572 21; ε M+=0.00463 7
$(6.88 \times 10^3 \ 3)$	1765.80	4.0 4	0.55 6	6.0 1	4.5 5	av $E\beta$ =2693 15; ε K=0.1022 14; ε L=0.01529 20; ε M+=0.00451 6
$(6.91 \times 10^3 \ 3)$	1735.31	3.8 4	0.52 6	6.0 1	4.3 5	av $E\beta$ =2707 15; ε K=0.1009 13; ε L=0.01509 20; ε M+=0.00445 6
$(6.93 \times 10^3 \ 3)$	1706.92	3.6 4	0.49 6	6.0 1	4.1 5	av $E\beta$ =2721 15; ε K=0.0996 13; ε L=0.01491 20; ε M+=0.00439 6
$(6.99 \times 10^3 \ 3)$	1648.91	4.1 5	0.53 7	6.0 1	4.6 6	av $E\beta=2748$ 15; $\varepsilon K=0.0972$ 13; $\varepsilon L=0.01454$ 19; $\varepsilon M=0.00429$ 6
$(7.04 \times 10^3 \ 3)$	1601.9	1.6 4	0.20 6	6.4 1	1.8 5	av $E\beta=2771$ 15; $\varepsilon K=0.0953$ 13; $\varepsilon L=0.01426$ 19; $\varepsilon M=0.00420$ 6
$(7.08 \times 10^3 \ 3)$	1560.11	3.0 4	0.38 5	6.2 1	3.4 4	av $E\beta$ =2791 15; ε K=0.0936 12; ε L=0.01401 18; ε M+=0.00413 6
						Log <i>fi</i> : too low for $\Delta J=(2)$, $\Delta \pi=no$. Apparent ε feeding is probably due to missing γ transitions to this level.
$(7.09 \times 10^3 \ 3)$	1552.10	2.8 4	0.35 4	6.2 1	3.1 4	av Eβ=2795 15; εK=0.0933 12; εL=0.01396 18; εM+=0.00411 6
$(7.11 \times 10^3 \ 3)$	1530.94	5.2 6	0.65 8	5.9 1	5.9 7	av Eβ=2805 15; εK=0.0925 12; εL=0.01384 18; εM+=0.00408 6
(7.23×10 ^{3#} 3)	1415.0	0.3 3	0.08 8	9.1 ¹ <i>u</i> 5	0.4 4	av Eβ=2802 14; εK=0.1750 21; εL=0.0265 4; εM+=0.00783 10

ϵ, β^+ radiations (continued)												
E(decay)	E(level)	Ιβ ⁺ ‡	I $arepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments						
$(7.26 \times 10^3 \ 3)$	1380.10	1.9 3	0.50 8	8.4 ¹ <i>u</i> 1	2.4 4	av Eβ=2818 14; εK=0.1727 21; εL=0.0262 3; εM+=0.00773 10						
$(7.36 \times 10^3 \ 3)$	1277.11	2.2 5	0.24 5	6.4 1	2.4 5	av Eβ=2926 15; εK=0.0833 11; εL=0.01246 16; εM+=0.00367 5						
$(7.46 \times 10^3 \ 3)$	1183.71	0.58 20	0.061 21	7.0 2	0.64 22	av Eβ=2970 15; εK=0.0802 10; εL=0.01199 15; εM+=0.00353 5						
$(7.47 \times 10^3 \ 3)$	1171.08	7.2 11	0.76 11	5.9 1	8.0 12	av Eβ=2976 15; εK=0.0798 10; εL=0.01193 15; εM+=0.00352 5						
$(7.64 \times 10^{3 \text{\#}} 3)$	1000.99	<1.3	<0.29	>8.7 ¹ <i>u</i>	<1.6	av E β =2994 14; ε K=0.1494 17; ε L=0.0226 3; ε M+=0.00667 8 I(ε + β ⁺): -0.3 19 from intensity balance.						
(8.08×10 ^{3#} 3)	564.25	3.1 12	0.26 10	6.5	3.4 13	av $E\beta=3267$ 15; $\varepsilon K=0.0631$ 8; $\varepsilon L=0.00942$ 11; $\varepsilon M+=0.00278$ 4 Log ft: too low for $\Delta J^{\pi}=3$. Apparent ε feeding is probably due to missing γ transitions to this level.						
(8.64×10 ^{3#} 3)	0.0	<4	<0.2	>6.5	<4	av E β =3538 15; ε K=0.0514 6; ε L=0.00767 9; ε M+=0.002259 25 I(ε + β ⁺): from log $ft \ge 6.5$ (based on measured TAGS spectrum in 1985Al08) for a similar (11/2 ⁻ isomer in ¹⁴⁷ Dy to 11/2 ⁻ , 50.6 level in ¹⁴⁷ Tb) ε transition, as also assumed by 1989Fi01. For other N=81 isotones, 11/2 ⁻ isomer decay to 11/2 ⁻ daughter state, following are the log ft values, as given in the ENSDF database: 6.2 for ¹⁴⁵ Gd isomer to ¹⁴⁵ Eu decay, 6.5 for ¹⁴³ Sm isomer to ¹⁴³ Pm decay, and >6.9 for ¹⁴¹ Nd isomer to ¹⁴¹ Pr decay.						

[†] Deduced from gamma-intensity balance at each level. There is a gap of about 3 MeV between Q value and last known level at 5098.7, which allows the possibility that there may be additional levels and associated γ transitions populated by ¹⁴⁹Er decay. For this reason, the decay scheme is considered incomplete; weak feedings (<0.5% or so) should be treated as upper limits and associated log *ft* values as lower limits.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

$\gamma(^{149}\text{Ho})$

I γ normalization: $\Sigma(I(\gamma+ce) \text{ of } \gamma \text{ rays to g.s.}+49)=97.8 \ 20$; assuming $\%(\varepsilon+\beta^+)$ (to g.s.)<4% and $\%\varepsilon p=0.18 \ 2 \ (1989Fi01)$.

Observed Ho X-ray intensities (relative to 100 for 1171γ): I(K α_1 x-ray)=137 4, I(K α_2 x-ray)=242 5, I(K β_2 x-ray)=70 15, I(K β_1 x-ray)=21 2 (1989Fi01). A systematic uncertainty of 15% should be added to the statistical uncertainty given here, as stated by 1989Fi01.

 $I(\varepsilon)=510 \ 40$, $I(\beta^+)=550 \ 140 \ (1989Fi01)$ relative to 100 for 1171 γ . Total ε is from K x-ray intensity and β^+ is from γ^{\pm} intensity. I(delayed protons from 8.9 s and 4 s isomers)=5.2 6 (1989Fi01) relative to 100 for 1171 γ . 1989Fi01 estimate that 63% 7 of the

protons are from the decay of the 4-s isomer and 37% 7 proton intensity is associated with 8.9-s isomer.

From singles and delayed proton intensities, $\varepsilon/\beta^+=0.83~4~(1989Fi01)$ for delayed proton decay.

				¹⁴⁹ Εrε	⁴⁹ Er ε decay (9.6 s) 1989Fi01 (continued)											
					$\gamma(^{149})$	Ho) (conti	nued)									
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. ^d	α^f	Comments								
106.0 10	≈3 ^b	1277.11	(9/2 ⁻)	1171.08				%Iy≈0.32								
163.1 10	≈4 ^b	1765.80		1601.9				%I <i>γ</i> ≈0.43								
171.5 1	69 9	220.32	(3/2+)	48.82	(1/2+)	M1	0.566 8	%Iγ=7.4 10 α(N)=0.00360 5; $α$ (O)=0.000524 7; α(P)=2.94×10 ⁻⁵ 4 α(K)=0.476 7; $α$ (L)=0.0702 10; α(M)=0.01549 22 I _γ : total intensity from 9.6-s and 4-s isomers=76 9 (1989Fi01) out of which 7 3 is assigned to 4-s isomer. Mult.: $α$ (K)exp=0.57 7, from summed x ray and $α$ ray intensity								
172 4 10	≈3 ^b	1552 10		1380-10	$(15/2^+)$			$\%$ Iv ≈ 0.32								
222.0.10	~5 ≈6 ^b	1601.9		1380.10	$(15/2^+)$			%Iy≈0.52 %Iy≈0.64								
323.8 10	3^{b}	1601.9		1277.11	$(10/2^{-})$			%[y=0.32 1]								
327.1 10	≈3 ^b	1706.92		1380.10	$(15/2^+)$			%Iy≈0.32								
343.9 1	67 8	564.25	(5/2+)	220.32	(3/2 ⁺)	(M1)	0.0853 12	%1y=7.2 9 $\alpha(K)=0.0720 \ 10; \ \alpha(L)=0.01043 \ 15; \ \alpha(M)=0.002297 \ 32$ $\alpha(N)=0.000534 \ 7; \ \alpha(O)=7.78\times10^{-5} \ 11; \ \alpha(P)=4.41\times10^{-6} \ 6$ L : total intensity from 8 9-s and 4-s								
359.9 <i>1</i> 380.9 <i>1</i>	8 2 7 2	1530.94 1552.10	(7/0+)	1171.08 1171.08	(7,0+)			isomers=69 8 (1989Fi01) out of which 2 <i>I</i> is assigned to 4-s isomer. Mult.: $\alpha(K)\exp(344\gamma+437\gamma)=0.14$ 3 consistent with M1 for both transitions. $\alpha(K)\exp$ is deduced from summed x-ray and γ -intensity. %I γ =0.86 22 %I γ =0.75 22 %I γ =0.21 4 <i>I</i>								
413.0 <i>10</i> 436.7 <i>1</i>	2 <i>1</i> 42 7	1415.0 1000.99	$(7/2^+)$ $(7/2^+)$	564.25	$(7/2^+)$ $(5/2^+)$	(M1)	0.0456 6									
515 12	.10	564.05	(5/2+)	40.00	$(1/2^{+})$			Mult.: see comment for 343.9γ .								
515.4 *8 780.7 # -1	<12	504.25 1000.00	$(3/2^{+})$ $(7/2^{+})$	48.82	$(1/2^+)$			$\frac{901}{1.5}$								
826.4 2	7 2	1997.46	(1/2)	1171.08	(3/2)			$\%_{1}^{\gamma} = 0.75 22$								
851.0 5	3 1	1415.0	$(7/2^+)$	564.25	$(5/2^+)$			%Iγ=0.32 <i>11</i>								
1045.6 10	4 ^b 2	2321.72	$(9/2^{-})$	1277.11	$(9/2^{-})$			%Iy=0.43 21								
1171.0 1	100 10	1171.08		0.0	$(11/2^{-})$			$\%$ I γ =10.7 11								
1185.72 1104.5#5	0 Z	1185./1	$(7/2^{+})$	0.0	(11/2)			$\%1\gamma = 0.64\ 22$								
1208.5.5	31	2209.1	(1/2) $(9/2^{-})$	1000.99	(3/2) $(7/2^+)$			$\%1\gamma = 0.04 22$ %Iy=0.32.11								
1225.8 2	93	2226.86	$(9/2^{-})$	1000.99	$(7/2^+)$			%Iγ=0.96 <i>32</i>								
1267.9 5	42	2267.28	(9/2 ⁻)	1000.99	$(7/2^+)$			%Iy=0.43 21								
1277.1 1	26 3	1277.11	$(9/2^{-})$	0.0	$(11/2^{-})$ $(7/2^{+})$			$\%1\gamma=2.78$ 34 % $1\alpha=0.21$ 11								
1295.0 10	6°	2297.3 2321 72	(9/2) $(9/2^{-})$	1000.99	(1/2) $(7/2^+)$			$\sqrt{1} \sqrt{-0.21}$ 11 $\sqrt{1} \sqrt{-0.64}$ 32								
1367.0 10	≈0.8	2368.0	(9/4)	1000.99	$(7/2^{+})$			%Iγ≈0.086								
1380.1 <i>I</i>	34 3	1380.10	$(15/2^+)$	0.0	$(11/2^{-})$			%Iγ=3.64 <i>35</i>								

γ ⁽¹⁴⁹Ho) (continued)</sup>

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Comments
1448.8 5	8 4	2449.8	$(9/2^{-})$	1000.99	$(7/2^+)$	%Iy=0.9 4
1468.1 5	14 7	2469.38	$(9/2^{-})$	1000.99	$(7/2^+)$	%Iγ=1.5 8
1492.3 5	4 2	2493.3	$(9/2^{-})$	1000.99	$(7/2^+)$	%Iy=0.43 21
1530.9 <i>1</i>	47 5	1530.94		0.0	$(11/2^{-})$	%Iy=5.0 <i>6</i>
1552.2 <i>I</i>	19 <i>3</i>	1552.10		0.0	$(11/2^{-})$	%Iy=2.04 <i>33</i>
1560.1 <i>1</i>	32 <i>3</i>	1560.11	$(15/2^{-})$	0.0	$(11/2^{-})$	%Iy=3.43 <i>35</i>
1581.6 2	73	2996.66		1415.0	$(7/2^+)$	%Iγ=0.75 <i>32</i>
1602.0 ^{&} 10	12 4	1601.9		0.0	$(11/2^{-})$	%Iy=1.3 4
1605.0 10	≈2	2607.41	$(9/2^{-})$	1000.99	$(7/2^+)$	%Iγ≈0.21
1648.9 <i>1</i>	43 5	1648.91		0.0	$(11/2^{-})$	%Iy=4.6 6
1676.1 4	63	2677.1	$(9/2^{-})$	1000.99	$(7/2^+)$	%Iy=0.64 <i>32</i>
1706.9 2	35 4	1706.92		0.0	$(11/2^{-})$	%Iy=3.7 5
1735.3 2	40 4	1735.31		0.0	$(11/2^{-})$	%Iy=4.3 5
1765.8 <i>1</i>	38 4	1765.80		0.0	$(11/2^{-})$	%Iγ=4.1 5
1824.0 10	≈0.5	2825.0	$(9/2^{-})$	1000.99	$(7/2^{+})$	%Iy≈0.054
1828.9 <i>3</i>	72	1828.9		0.0	$(11/2^{-})$	%Iγ=0.75 22
1913.0 10	≈0.8	2914.0	$(9/2^{-})$	1000.99	$(7/2^+)$	%Iy≈0.086
1991.0 10	≈6	2992.3	$(9/2^{-})$	1000.99	$(7/2^+)$	%lγ≈0.64
1997.4 3	82	1997.46	$\langle 0 2 \rangle$	0.0	$(11/2^{-})$	$\%1\gamma = 0.86\ 22$
2000.0 10	≈3	3001.0	(9/2)	1000.99	$(1/2^{+})$	$\%1\gamma\approx0.321$
2004.0.10	4	2005.0	(0/2-)	1000.00	(7/2+)	$\%1\gamma\approx0.28$
2004.0 10	≈4 2 1	3005.0	(9/2)	1000.99	$(1/2^{+})$	$\%1\gamma\approx0.43$
20/1.9 2	31	2071.92	(0/2-)	0.0	(11/2)	$\%1\gamma = 0.32$ 11 % Inc. 0.075
$2124.0\ 10$	≈0.7	3123.0	(9/2)	1000.99	$(1/2^{+})$	$\%1\gamma \approx 0.075$
2155.0 5	42	2155.0		0.0	(11/2) $(11/2^{-})$	$\%1\gamma = 0.45 21$
2177 5 1	10.3	2140.72		0.0	$(11/2^{-})$	$\frac{1}{2} = 0.04 22$
2209.0.3	52	2209 1	$(9/2^{-})$	0.0	$(11/2^{-})$	%Iy=0.54.22
2207.0 5	14 2	2202.1	$(\gamma 2)$	0.0	$(11/2^{-})$	%Iy=1.50.22
2226.9.2	12.2	2226.86	$(9/2^{-})$	0.0	$(11/2^{-})$	%Iy=1.29.22
2267.2 1	7 2	2267.28	$(9/2^{-})$	0.0	$(11/2^{-})$	$\%$ I γ = 0.75 22
2297.6 5	42	2297.3	$(9/2^{-})$	0.0	$(11/2^{-})$	$\% I \gamma = 0.43 21$
2317.6 2	16 3	2317.62		0.0	$(11/2^{-})$	%Iγ=1.71 <i>33</i>
2321.7 <i>I</i>	20 3	2321.72	$(9/2^{-})$	0.0	$(11/2^{-})$	%Iγ=2.14 <i>33</i>
2326.8 2	11 4	2326.82		0.0	$(11/2^{-})$	$\%I\gamma = 1.2.4$
2368.3 <mark>8</mark> 2	12 2	2368.0		0.0	$(11/2^{-})$	%Iy=1.29 22
2381.3 2	63	2381.32		0.0	$(11/2^{-})$	%Iy=0.64 <i>32</i>
2469.4 2	11 3	2469.38	$(9/2^{-})$	0.0	$(11/2^{-})$	%Iγ=1.18 <i>32</i>
2491.9 <mark>8</mark> 5	63	2493.3	$(9/2^{-})$	0.0	$(11/2^{-})$	%Iy=0.64 <i>32</i>
2499.4 <mark>8</mark> 5	31	2499.4?		0.0	$(11/2^{-})$	%Iγ=0.32 <i>11</i>
2512.5 2	82	2512.52		0.0	$(11/2^{-})$	%Iγ=0.86 22
2580.4 2	62	2580.42		0.0	$(11/2^{-})$	%Iγ=0.64 22
2591.4 4	52	2591.4	(0.12-)	0.0	$(11/2^{-})$	$\%1\gamma = 0.54$ 22
2607.4 1	15 3	2607.41	(9/2)	0.0	(11/2)	$\%1\gamma = 1.6133$
2633.3 4	21	2633.3		0.0	(11/2)	$\%1\gamma = 0.21$ 11
2/14.8 3	42	2/14.8		0.0	(11/2)	$\%1\gamma = 0.43 21$
2604.3° 3	1.0.5	2804.37	$(0/2^{-1})$	0.0	(11/2)	$\%1\gamma = 0.11 J$ $\%1_{1-0} 75 22$
2824.984	12	2823.0	(9/2)	0.0	(11/2)	$\%1\gamma = 0.75 22$
2031.2° 11 2001.7 [°] 4	51	2001.22		0.0	(11/2)	$701\gamma = 0.52$ 11 0^{2} Ly = 0.21 11
2701.704	2 I 3 I	2901.77	$(0/2^{-})$	0.0	(11/2)	$\frac{1}{2} \frac{1}{2} \frac{1}$
2913.3° 3 2035 7 6	5 I 2 I	2914.0 2035 7	(9/2)	0.0	(11/2) $(11/2^{-})$	$\frac{701\gamma = 0.32}{11}$
2933.10 2939.3 <mark>8</mark> 0	$\frac{2}{135}$	2933.1		0.0	(11/2) $(11/2^{-})$	$\frac{1}{2} - 0.21$ 11 $\frac{1}{2} - 0.14$ 5
2965 5 3	2.1	2965 5		0.0	$(11/2^{-})$	%Iv=0.21.11
	- 1			0.0	(14/4)	,,

$\gamma(^{149}\text{Ho})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger e}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Comments
2977.8 3	31	2977.8		0.0	$(11/2^{-})$	%Iy=0.32 <i>11</i>
2992.3.3	42	2992.3	$(9/2^{-})$	0.0	$(11/2^{-})$	$\%$ [$\gamma = 0.43$ 2]
2996.7 3	42	2996.66		0.0	$(11/2^{-})$	%Iy=0.43 21
3001.1 <mark>8</mark> 4	21	3001.0	$(9/2^{-})$	0.0	$(11/2^{-})$	%Iy=0.21 11
3005.0 <i>3</i>	31	3005.0	$(9/2^{-})$	0.0	$(11/2^{-})$	%Iy=0.32 11
3049.0 <i>3</i>	52	3049.0		0.0	$(11/2^{-})$	%Iy=0.54 22
3061.0 <mark>8</mark> 9	0.9 5	3061.0?		0.0	$(11/2^{-})$	%Iγ=0.10 5
3125.3 <mark>8</mark> 3	31	3125.0	$(9/2^{-})$	0.0	$(11/2^{-})$	%Iγ=0.32 <i>11</i>
3174.9 <mark>8</mark> 5	21	3174.9?		0.0	$(11/2^{-})$	%Iγ=0.21 11
3226.2 <mark>8</mark> 4	21	3226.2?		0.0	$(11/2^{-})$	%Iy=0.21 11
3263.1 <mark>8</mark> 3	31	3263.1?		0.0	$(11/2^{-})$	%Iγ=0.32 <i>11</i>
3305.8 <mark>8</mark> <i>3</i>	1.5 7	3305.8?		0.0	$(11/2^{-})$	%Iγ=0.16 8
3325.2 <mark>8</mark> 4	1.0 5	3325.2?		0.0	$(11/2^{-})$	%Iγ=0.11 5
3338.4 <mark>8</mark>	3 1	3338.4?		0.0	$(11/2^{-})$	%Iγ=0.32 <i>11</i>
3536.3 <mark>8</mark> 8	21	3536.3?		0.0	$(11/2^{-})$	%Iγ=0.21 11
3795.0 <mark>8</mark> 6	21	3795.1?		0.0	$(11/2^{-})$	%Iγ=0.21 11
3828.2 <mark>8</mark> 12	1.0 5	3828.3?		0.0	$(11/2^{-})$	%Iγ=0.11 5
3885.5 <mark>8</mark> 5	53	3885.6?		0.0	$(11/2^{-})$	%Iγ=0.54 <i>32</i>
4003.1 <mark>8</mark> 4	0.9 4	4003.2?		0.0	$(11/2^{-})$	%Iγ=0.10 4
4037.2 ⁸ 13	0.3 2	4037.3?		0.0	$(11/2^{-})$	%Iγ=0.032 21
4086.3 <mark>8</mark> 5	21	4086.4?		0.0	$(11/2^{-})$	%Iγ=0.21 11
4235.9 <mark>8</mark> 10	0.5 3	4236.0?		0.0	$(11/2^{-})$	%Iγ=0.054 32
4385.9 <mark>8</mark> 7	0.9 5	4386.0?		0.0	$(11/2^{-})$	%Iy=0.10 5
4413.4 <i>3</i>	4 2	4413.5		0.0	$(11/2^{-})$	%Iy=0.43 21
4433.8 <mark>8</mark> 4	2 1	4433.9?		0.0	$(11/2^{-})$	%Iy=0.21 11
4441.3 <i>3</i>	31	4441.4		0.0	$(11/2^{-})$	%Iy=0.32 11
4552.4 <mark>8</mark> 8	0.5 2	4552.5?		0.0	$(11/2^{-})$	%Iγ=0.054 22
4616.7 <mark>8</mark> 5	0.8 4	4616.8?		0.0	$(11/2^{-})$	%Iy=0.09 4
4622.3 <mark>8</mark> 3	4 2	4622.4?		0.0	$(11/2^{-})$	%Iy=0.43 21
4645.5 <mark>8</mark> 4	2 1	4645.6?		0.0	$(11/2^{-})$	%Iγ=0.21 <i>11</i>
4652.0 4	21	4652.1		0.0	$(11/2^{-})$	%Iy=0.21 11
4661.6 2	4 2	4661.68		0.0	$(11/2^{-})$	%Iy=0.43 21
4676.6 <mark>8</mark> 4	21	4676.7?		0.0	$(11/2^{-})$	%Iy=0.21 11
4699.6 2	15 <i>3</i>	4699.68		0.0	$(11/2^{-})$	%Iy=1.61 <i>33</i>
4706.0 10	1.2 ^C 6	4706.1		0.0	$(11/2^{-})$	%Iy=0.13 6
4749.9 <mark>8</mark> 8	1.1 5	4750.0?		0.0	$(11/2^{-})$	%Iγ=0.12 5
4822.8 <mark>8</mark> 6	0.7 4	4822.9?		0.0	$(11/2^{-})$	%Iγ=0.07 <i>4</i>
4851.0 <mark>8</mark> 9	0.7 4	4851.1?		0.0	$(11/2^{-})$	%Iγ=0.07 <i>4</i>
5079.1 10	≈1.3 ^C	5079.2		0.0	$(11/2^{-})$	%I <i>γ</i> ≈0.14
5098.6 10	≈1.3 ^C	5098.7		0.0	$(11/2^{-})$	%Iγ≈0.14

[†] From 1989Fi01.

[‡] Transition uncertain since a possible 514 line is masked by intense γ^{\pm} line. Intensity quoted here is an upper limit (1989Fi01).

[#] Coin with 344γ is inconsistent with this placement.

[@] Contribution from ¹⁴⁹Ho ε decay subtracted by 1989Fi01.

& Coin with 171γ , 344γ , 437γ is inconsistent with this placement.

^{*a*} Possible coin with 172γ is inconsistent with this placement.

^{*b*} From $\gamma\gamma$ -coin.

^{*c*} From (x-ray) γ -coin.

$\gamma(^{149}\text{Ho})$ (continued)

 d From the Adopted Gammas. Supporting evidence from this study is given under comments, where available.

^e For absolute intensity per 100 decays, multiply by 0.107 4.

f Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^g Placement of transition in the level scheme is uncertain.

Legend

_ .

 $(11/2^{-})$

(11/2⁻) 741.69 9.6 s 6

<u>I</u>£

0.04

0.04

0.06

 $\approx 0.053 \approx 0.087$

 $\approx 0.054 \approx 0.086$

 $\mathrm{Log}\ ft$

 ≈ 6.2

 ≈ 6.2

6.6

6.6

6.4

Qε=7900 30

¹⁴⁹₆₈Er₈₁

 $I\beta^+$

0.03

0.03

0.06

0.0

21.0 s 2

<4

< 0.2

>6.5

¹⁴⁹Er ε decay (9.6 s) 1989Fi01

Decay Scheme Intensities: I_{γ} per 100 parent decays $\begin{array}{l} I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \end{array}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $\gamma \text{ Decay (Uncertain)}$ $\%\epsilon + \%\beta^+=96.5$ + 2008.6 - 2014 <0;0; 5098.7 5079.2 38 1 8-2-3 2-3-2-3-1 _____4851.1 10.0% ^{de}0 0.13 1 ___4822.9 ___4750.0 /

			<u>_i</u> _	*	6.	_6	<u>></u> _	_																		4	4706.1	<i>.</i> //		0.06	0.07	6.4
				,	\$	9	- 0.5	5																		40	599.68	, / /		0.78	0.82	5.3
 			 _ _		4	ç` 	6	2																		 	4 <u>676.7</u>	;/		0.10	0.11	6.2
	_i	i	 _ _			200	_~~	<u>.</u>	<u>?</u>																	4	561.68	//		0.21	0.22	5.9
		j_	_i				¢,	-5) 	%	_															4	4652.1	,		0.10	0.11	6.2
 	 _ L	j.	Ļ.		_		_ _	\$° 1	<u>_</u> ?	- 0	<u>}</u>															 	4 <u>6</u> 4 <u>5</u> . <u>6</u>	1		0.10	0.11	6.2
 	 _ -	۱ . د	Ĺ		_		_ _	41	\$°'	6.	- 0;	r														 	4 <u>622.4</u>	, /		0.22	0.21	5.9
 			_ _				_ _	i.	*	ور 1 - کر	× _	°;-														 	4 <u>616.8</u>	1		0.05	0.04	6.6
 			 -		_		_ _	 	-	- т ~	- 5	2	<u>?</u>	_												 	4 <u>552.5</u>	1		0.03	0.02	6.9
	Ļ		 _ _	_				_	י ו 	_i_	*		-0	<u>?</u>	_											4	1441.4	J (0.18	0.14	6.1
 	_ į	į.	-		_		_ _		 -	÷.	_ _`	∛ ⊤ ∹	er -	07:-												 '	4 <u>433</u> .9	•/		0.12	0.09	6.3
	_ _		į_	_				j	י י וו			1	~_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~													4	4413.5	¥į'		0.24	0.19	6.0
 		- I-	j_		_		_ _	÷.	;-¦		_ _	į, 1			0. 1 – 1	·										 	4 <u>386.0</u>	11		0.06	0.04	6.6
		I I	į					1	i i			i	i.	£.	ې ن	5.	ŝ										4236 (, <u>, </u>		0.03	0.02	7.0
 • -	- r 1		-		-		- -		1-1		- -	1		T T		 . ?	5 ⁻	0								 	1086 /			0.05	0.02	1.0 6 5
 · -	- j	-1 -	-		-		- -	· ·l	1-1	j-	- -	·		ή –	-	\$`-	-0	: ~								 	1027.2			0.15	0.08	0.5
 · -		ņ,	- 1-		-		- -		_ 		- -	1		÷-	;- ;	\$	§: -	5.0								 	+ <u>0.57</u> .2			0.02	0.01	1.5
 · -		÷	- i-		-		- -	÷÷-	- 	l 1	- -	ή-	- - 	1 -	¦-		3862	§.–	. 0:- ?	5						 	+ <u>005.2</u> 3885 6			0.06	0.036	0.8 6 2
 · -	- -	1-	÷		-		- -	ή÷-	- I - I		- -	行日	- -	-!- 	 	h	- -	ۍ. مې	 ب	0' -						 ;	2828 3			0.5	0.2	0.2 6 0
 · -	- -	- -	- !		-		- -	֠ -	i-i		- -	수는	-i-	+ -	1 – 1 1 – 1	ו 	÷	Т	-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		2					 ;	2705 1	1		0.07	0.036	0.8
 · -	- j	-1 -	-		-		- -	l	÷		- -	+ -			1-1	 		Ϋ́	-1-	_°.	°	م				 	<u>195</u> .1	.,		0.14	0.07	0.0
	÷	÷.						I I		÷				į.	į		1	i	Ì	ŝ	8.4	, .	7				3536.3	11		0.15	0.06	6.7
 . –			i.		-				ו – ו ו – ו			Î -		1	1		-1-	- 1-	-1-	- e	<u></u>	- ° 	- '*	,		 	3338.4			0.24	0.08	6.6
								Î.	1 - 1 1 - 1			1		1	1			Ť	_ _	רח נו	<u>ج</u>	y -	~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,	 	3325.2	11		0.08	0.028	7.0
		1	1					I.		1		1		т- 1	1		1	I L		СЭ СЭ		ŝ		?_	2	 	3305.8	11		0.12	0.040	6.9
		1						1				T T		Î L			1	I				T	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6.	×	 	3263.1	11		0.24	0.08	6.6
										1		T T		1	1			1	1			T L		ŝ			3226.2	,		0.16	0.05	6.8
 . –		1		-	_			i i	1 - 1			Î I	- -		1		-1-	1				ï		 		 						
	į	i						l I		÷		1		į.				ì	i			Ì	T T	T T								
	Ì	į	į.					i -		÷		i		į.	i			Ì	I I			į	T T	T T								
		I	į					i i						I I	I I		Ì		I I			į	i	T T								
		I I	I I					i.	i I			i i		1			į	ł	I I			Ì	i	į.								

¹⁴⁹₆₇Ho₈₂

¹⁴⁹Er ε decay (9.6 s) 1989Fi01

¹⁴⁹Er ε decay (9.6 s) 1989Fi01

