¹⁵³Tm α decay (2.5 s) 1988To13

History

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh and Jun Chen NDS 185, 2 (2022) 23-Aug-2022

Parent: 153 Tm: E=43.2 2; J^{π} =(1/2⁺); $T_{1/2}$ =2.5 s 2; $Q(\alpha)$ =5248.3 15; % α decay=92 3

 153 Tm-E,J $^{\pi}$,T $_{1/2}$: From 153 Tm Adopted Levels in the ENSDF database (August 2020 update); no new references since this update. Half-life in the ENSDF database is adopted from 1988ScZV.

¹⁵³Tm-Q(α): From 2021Wa16.

¹⁵³Tm-%α decay: %α=92 3 (1989Ko02).

1988To13 (also 1991To12,1989Ko02): 153 Tm ions were produced with 92 Mo(64 Zn,3p) reaction with E=267 MeV (center of target) 64 Zn beam from the Lawrence Berkeley Laboratory SuperHILAC on 93.37% enriched 92 Mo foil target, followed by mass separation with the OASIS online facility, and collected in a moving table to a counting station. Charged particles were detected with a Si Δ E-E telescope and a plastic scintillator; γ rays were detected with Ge detectors. Measured E γ , I γ , E(α), I(α), $\alpha\gamma$ -coin. Deduced levels.

1988ScZV: measured E α , T_{1/2}.

¹⁴⁹Ho Levels

E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\dagger}$	Comments
49.0	$(1/2^+)$	56 s <i>3</i>	$\%\varepsilon + \%\beta^+ = 100$
220.4	$(3/2^+)$		
564.4	$(5/2^+)$		

[†] From the Adopted Levels.

α radiations

Εα	E(level)	Iα ^{†@}	HF [#]	Comments
4586 ^{‡&} 10		< 0.0045	>135	
4902 ^{‡&} 15	220.4	< 0.0018	$>1.8\times10^4$	
5096 4	49.0	100	1.9 2	$E\alpha$: 1988To13 quote value from 1988ScZV.

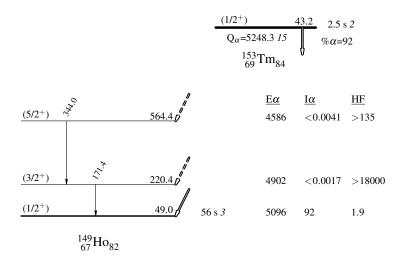
[†] From 1988To13. $I\alpha(4586)/I\alpha(5109+5096)=4.5\times10^{-5}$ 5, $I\alpha(4902)/I\alpha(5109+5096)=1.8\times10^{-5}$ 4 (1988To13). Values are relative to 100 for 5096α .

γ (149Ho)

$$\frac{\text{E}_{\gamma}^{\dagger}}{171.4}$$
 $\frac{\text{E}_{i}(\text{level})}{220.4}$ $\frac{\text{J}_{i}^{\pi}}{(3/2^{+})}$ $\frac{\text{E}_{f}}{49.0}$ $\frac{\text{J}_{f}^{\pi}}{(1/2^{+})}$ $\frac{344.0}{564.4}$ $\frac{(5/2^{+})}{(5/2^{+})}$ $\frac{220.4}{(3/2^{+})}$

 $^{^{\}ddagger}$ 1988To13 suggest that this peak is a doublet, with components from both the 1.48- and 2.5-s isomers; although transitions from 2.5-s, $(1/2^+)$ parent would be favored in view of low L value involved rather than much higher L value implied by the 1.48-s, $(11/2^-)$ parent.

[#] The nuclear radius parameter $r_0(^{149}\text{Ho})=1.5621\ 20$ is deduced from interpolation (or unweighted average) of radius parameters of the adjacent even-even nuclides in 2020Si16.


[@] For absolute intensity per 100 decays, multiply by 0.92 3.

[&]amp; Existence of this branch is questionable.

[†] From 1988To13. The γ rays are from the decay of either one of the activities of ¹⁵³Tm or both. However, (1/2⁺) parent would be favored in view of low L value involved rather than much higher L value implied by the 1.48-s, (11/2⁻) parent.

¹⁵³Tm α decay (2.5 s) 1988To13

Decay Scheme

