153 Tm α decay (1.48 s) 1988To13

History

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh and Jun Chen NDS 185, 2 (2022) 23-Aug-2022

Parent: ¹⁵³Tm: E=0.0; $J^{\pi}=(11/2^{-})$; $T_{1/2}=1.48$ s 1; $Q(\alpha)=5248.3$ 15; $\%\alpha$ decay=91 3

 153 Tm- J^{π} , $T_{1/2}$: From 153 Tm Adopted Levels in the ENSDF database (August 2020 update); no new references since this update. Half-life in the ENSDF database is adopted from 1988ScZV.

 153 Tm- $T_{1/2}$: Additional information 1.

 153 Tm-Q(α): From 2021Wa16.

¹⁵³Tm-%α decay: From 1989Ko02. Others: %α=95 +5-8 (1981HoZM,1979Ho10), 99 23 (1989Wo02), 80 10 (1979Be52), 90 +10-20 (1977Ha48).

1988To13 (also 1991To12,1989Ko02): 153 Tm ions were produced with 92 Mo(64 Zn,3p) reaction with E=267 MeV (center of target) 64 Zn beam from the Lawrence Berkeley Laboratory SuperHILAC on 93.37% enriched 92 Mo foil target, followed by mass separation with the OASIS online facility, and collected in a moving table to a counting station. Charged particles were detected with a Si Δ E-E telescope and a plastic scintillator; γ rays were detected with Ge detectors. Measured E γ , I γ , E(α), I(α), $\alpha\gamma$ -coin. Deduced levels.

Others:

1996Pa01: measured $E\alpha$.

1989Wo02: measured $E\alpha$, $\%\alpha$ branching.

1988ScZW: measured E α , T_{1/2}.

1982Bo04: measured $T_{1/2}$.

1982De11: measured $E\alpha$.

1981HoZM, 1979Ho10: measured $E\alpha$, $\%\alpha$ branching.

1980Da09: measured $E\alpha$, $T_{1/2}$, production σ .

1979Be52, 1978AfZZ: measured $E\alpha$, $\%\alpha$ branching.

1977Ha48: measured $E\alpha$, $T_{1/2}$, $\%\alpha$ branching.

1964Ma45: measured E α , T_{1/2}.

149Ho Levels

E(level) [†]	J ^π ‡	$T_{1/2}^{\ddagger}$		Comments
0.0	$(11/2^{-})$	21.0 s 2		
49.0	$(1/2^+)$	56 s <i>3</i>	$\%\varepsilon + \%\beta^+ = 100$	
220.4	$(3/2^+)$		•	
564.4	$(5/2^+)$			

[†] As given in 1988To13 based on Eγ data.

α radiations

Εα	E(level)	$I\alpha^{\dagger @}$	HF [#]	Comments
4586 [‡] & 10 4902 [‡] & 15 5109 2	564.4 220.4 0.0	<0.0045 <0.0018 100	>48 >6.6×10 ³ 1.23 5	Eα: weighted average of 5112 5 (1996Pa01), 5111 2 (1982De11), 5103 3 (1982Bo04), 5109 5 (1981HoZM,1979Ho10), 5106 10 (1978AfZZ), 5112 10 (1977Ha48), 5113 20 (1964Ma45). Others: 5104 (1980Da09),
				1988To13

[†] From 1988To13. $I\alpha(4586)/I\alpha(5109+5096)=4.5\times10^{-5}$ 5, $I\alpha(4902)/I\alpha(5109+5096)=1.8\times10^{-5}$ 4 (1988To13).

[‡] From the Adopted Levels.

^{‡ 1988}To13 suggest that this peak is a doublet, with components from both the 1.48- and 2.5-s isomers; although transitions from

¹⁵³Tm α decay (1.48 s) **1988To13** (continued)

α radiations (continued)

2.5-s, $(1/2^+)$ parent would be favored in view of low L value involved rather than much higher L value implied by the 1.48-s, $(11/2^-)$ parent.

$$\gamma$$
(149Ho)

$$\frac{\text{E}_{\gamma}^{\dagger}}{171.4}$$
 $\frac{\text{E}_{i}(\text{level})}{220.4}$ $\frac{\text{J}_{i}^{\pi}}{(3/2^{+})}$ $\frac{\text{E}_{f}}{49.0}$ $\frac{\text{J}_{f}^{\pi}}{(1/2^{+})}$ $\frac{344.0}{564.4}$ $\frac{(5/2^{+})}{(5/2^{+})}$ $\frac{220.4}{(3/2^{+})}$

[†] From 1988To13. The γ rays are from the decay of either one of the activities of ¹⁵³Tm or both. However, (1/2⁺) parent would be favored in view of low L value involved rather than much higher L value implied by the 1.48-s, (11/2⁻) parent.

153 Tm α decay (1.48 s) 1988To13

Decay Scheme

[#] The nuclear radius parameter $r_0(^{149}\text{Ho})=1.5621\ 20$ is deduced from interpolation (or unweighted average) of radius parameters of the adjacent even-even nuclides in 2020Si16.

[@] For absolute intensity per 100 decays, multiply by 0.91 3.

[&]amp; Existence of this branch is questionable.