#### <sup>150</sup>Tm εp decay:mixed 1988Ni02

| History         |                           |                   |                        |  |
|-----------------|---------------------------|-------------------|------------------------|--|
| Туре            | Author                    | Citation          | Literature Cutoff Date |  |
| Full Evaluation | Balraj Singh and Jun Chen | NDS 185, 2 (2022) | 23-Aug-2022            |  |

Parent: <sup>150</sup>Tm: E=0+x;  $J^{\pi}=(1^+)$ ; Q( $\varepsilon p$ )=7870 SY; % $\varepsilon p$  decay=1.2 3

Parent: <sup>150</sup>Tm: E=0+y;  $J^{\pi}=(6^{-})$ ;  $T_{1/2}=2.20 \text{ s} 6$ ;  $Q(\varepsilon p)=7870 SY$ ;  $\mathscr{H}\varepsilon p$  decay=1.2 3

<sup>150</sup>Tm(0+x)-J<sup> $\pi$ </sup>,T<sub>1/2</sub>: from 2021Ko07, where half-life of  $\approx$ 3 s is from systematic trend.

 $^{150}$ Tm(0+x)-Q( $\varepsilon$ p): 7870 200 (syst,2021Wa16),  $J^{\pi}$  assignment is cited from 1988Ni02 by 2021Ko07.

 $^{150}$ Tm(0+x)-% $\varepsilon$ p decay: % $\varepsilon$ p=1.2 +2-4 (1988Ni02) for the decay of both the states of  $^{150}$ Tm, with authors' estimated 80% contribution from the (6<sup>-</sup>) state and 20% from the (1<sup>+</sup>) state.

<sup>150</sup>Tm(0+y)-Q(εp): 7870 200 (syst,2021Wa16).

 $^{150}$ Tm(0+y)-J<sup> $\pi$ </sup>,T<sub>1/2</sub>: From  $^{150}$ Tm Adopted Levels in the ENSDF database (April 2013 update).

Includes decay of two states (6<sup>-</sup> and 1<sup>+</sup>).  $T_{1/2}=2.20$  s for high-spin isomer but  $T_{1/2}$  of low-spin state is not known. According to 2021Ko07 compilation, 1<sup>+</sup> is expected to be the g.s. of <sup>150</sup>Tm.

1988Ni02: <sup>150</sup>Tm ions were produced via <sup>96</sup>Ru(<sup>58</sup>Ni,3pn) with E=267 MeV <sup>58</sup>Ni beam from the Lawrence Berkeley

SuperHILAC, separated by the online mass separator OASIS, and implanted in a Mylar tape. Charged particles were detected with a Si  $\Delta$ E-E telescope and a plastic scintillator;  $\gamma$  rays were detected with Ge detectors. Measured E $\gamma$ , E(x-ray),  $\beta$ -delayed protons,  $\beta^+$  in singles and various coincidence modes. Deduced levels,  $\beta$ -delayed proton emission probabilities. Comparisons with theoretical calculations. Proton spectra measured from 2.5-7 MeV. The delayed proton decay is from both isomers; 1988Ni02 estimate that contribution to total proton spectra is  $\approx 80\%$  from high-spin (6<sup>-</sup>) isomer and  $\approx 20\%$  from low-spin (1<sup>+</sup>) isomer.

#### <sup>149</sup>Ho Levels

| E(level) <sup>†</sup> | Jπ‡          | T <sub>1/2</sub> ‡ | Comments                          |
|-----------------------|--------------|--------------------|-----------------------------------|
| 0                     | $(11/2^{-})$ | 21.0 s 2           |                                   |
| 48.8                  | $(1/2^+)$    | 56 s <i>3</i>      | $\%\varepsilon + \%\beta^+ = 100$ |
| 220.0                 | $(3/2^+)$    |                    |                                   |
| 563.9                 | $(5/2^+)$    |                    |                                   |
| 1000.8                | $(7/2^+)$    |                    |                                   |
| 1380                  | $(15/2^+)$   |                    |                                   |
| 1560                  | $(15/2^{-})$ |                    |                                   |
|                       |              |                    |                                   |

<sup>†</sup> As given in 1988Ni02.

<sup>‡</sup> From the Adopted Levels.

### $\gamma(^{149}\text{Ho})$

| $E_{\gamma}^{\dagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$ |
|------------------------|------------------------|----------------------|------------------|----------------------|
| 171.2                  | 220.0                  | $(3/2^+)$            | 48.8             | $(1/2^+)$            |
| 343.9                  | 563.9                  | $(5/2^+)$            | 220.0            | $(3/2^+)$            |
| 436.9                  | 1000.8                 | $(7/2^+)$            | 563.9            | $(5/2^+)$            |

<sup>†</sup> From 1988Ni02.

#### Delayed Protons (149Ho)

 $%\epsilon p=1.2 + 2-4$  (1988Ni02) for the decay of both the states, but the main contribution is expected from the decay of the (6<sup>-</sup>) state.

## <sup>150</sup>Tm *ɛ*p decay:mixed 1988Ni02 (continued)

# Delayed Protons (149Ho) (continued)

| E( <sup>149</sup> Ho) | I(p) <sup>†</sup> | Comments                                                   |
|-----------------------|-------------------|------------------------------------------------------------|
| 0                     | 78 <sup>‡</sup> 5 | Intensity/100 decays of mixed activities $\approx 0.94$ .  |
| 48.8                  |                   |                                                            |
| 220.0                 | 6.5 24            | Intensity/100 decays of mixed activities $\approx 0.078$ . |
| 563.9                 | 4.3 19            | Intensity/100 decays of mixed activities $\approx 0.052$ . |
| 1000.8                | 4.5 <i>13</i>     | Intensity/100 decays of mixed activities $\approx 0.054$ . |
| 1380                  | 5.4 27            | Intensity/100 decays of mixed activities $\approx 0.065$ . |
| 1560                  | 1.2 12            | Intensity/100 decays of mixed activities $\approx 0.014$ . |

<sup>†</sup> Intensities in percent of total proton intensity from 1988Ni02, with authors' estimated 80% contribution from the  $(6^-)$  state and 20% from the  $(1^+)$  state.

<sup>‡</sup> Combined for 0+49 levels.

<sup>150</sup>Tm εp decay:mixed 1988Ni02

### Decay Scheme

|                  | (6 <sup>-</sup> ) 0+y       | 2.20 s 6 |
|------------------|-----------------------------|----------|
| % <i>ɛp</i> =1.2 | Q=7870 SY                   |          |
|                  | (1 <sup>+</sup> ) 0+x       |          |
| % <i>ɛp</i> =1.2 | Q=7870 SY                   |          |
|                  | $^{150}_{69}\text{Tm}_{81}$ |          |



<sup>149</sup><sub>67</sub>Ho<sub>82</sub>