	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 185, 2 (2022)	23-Aug-2022

Parent: ¹⁴⁹Tb: E=0.0; $J^{\pi}=1/2^+$; $T_{1/2}=4.12$ h 3; $Q(\varepsilon)=3639$ 4; $\%\varepsilon+\%\beta^+$ decay=83.3 17

¹⁴⁹Tb-J^{π},T_{1/2}: From ¹⁴⁹Tb Adopted Levels.

¹⁴⁹Tb-Q(ε): From 2021Wa16.

1978Ja14: ¹⁴⁹Tb sources were produced via ¹⁴¹Pr(¹²C,4n) with 78 MeV ¹²C beam from the LBNL 80-inch cyclotron for singles measurements and via spallation of tantalum with 800 MeV proton from the Clinton P. Anderson Meson Physics Facility (LAMPF) for more detailed singles and coincidence measurements. Measured E γ , I γ , $\gamma\gamma$ -coin with Ge(Li) detectors. Deduced levels, J^{π} , log *ft*, conversion coefficients, γ -ray multipolarities. Systematics of neighboring isotones.

1972Vy08 (also 1972Vy09): measured γ , ce. 1972Vy09 report $\gamma\gamma$ data.

1992T102: $\gamma\gamma(\theta)$ (7 Ge(Li) detector system).

Others:

 $\gamma\gamma(\theta)$: 1974Bu26 (Ge(Li)-NaI system).

 $\gamma\gamma(\theta,\mathrm{H})$: 1977 VaZJ, 1977 GrZF.

 $\gamma(\theta,t)$: 1985Fi06 (for 352 γ).

 $\beta^+\gamma$ coin: 1968Wi21.

 $\gamma(\theta,t)$: 1983Pr04.

ce data: 1987BaZB (also 1987BaYQ), 1968Wi21, 1967Ko09, 1964Da20.

 γ data: 1975SpZU, 1973St22, 1968Wi21, 1964Da20 (also 1962St20, 1961St15), 1961Bo19, 1960St33, 1960Ab08, 1960To10, 1959To27.

γγ: 1975SpZU, 1968Wi21.

 $\gamma\gamma$ (t): 1969Ba64.

 γ ce(t): 1971VaZV.

ce ce(t): 1969Ba64.

Q value measurement: 2001IzZY.

 $T_{1/2}(^{149}Tb)$: 1975SpZU, 1973St22, 1968St09, 1967Go32 (also 1967Ch28,1965Gr28), 1965Br10, 1960To10, 1957Su23, 1953Ra02. Production of ^{149}Tb : 1992Ca11, 1968St09, 1950Ra56.

Total decay energy deposit of 3026 keV 28 calculated by RADLIST code is in agreement with expected value of 3030 keV 62, indicating the completeness of the decay scheme.

149Gd Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	7/2-	9.28 d 10	
164.987 <i>15</i>	5/2-	1.7 [#] ns <i>1</i>	$T_{1/2}$: other: 1.35 ns 30 (1969Ba64).
352.234 <i>25</i> 796 2 5	$3/2^{-}$ $9/2^{-}$	0.43 [#] ns 5	J^{π} : 5/2 ruled out from combined results of $\gamma\gamma(\theta)$ and ce data.
817.100 <i>18</i> 1026.840 <i>23</i> 1085.5 <i>5</i> 1124.89 <i>3</i> 1144.08 <i>5</i> 1167.11 <i>6</i>	$3/2^{-}$ $3/2^{+}$ $(5/2^{-},7/2,9/2^{-})$ $1/2^{+},3/2^{+},5/2^{+}$ $(5/2)^{+}$ $(3/2^{+})$		J^{π} : 5/2 ruled out by combining results from $\gamma\gamma(\theta)$ and ce data. J^{π} : from consistency of results from $\gamma\gamma(\theta)$ and ce data.
1205.66 17	(1/2)-		J^{π} : consistency of $\gamma\gamma(\theta)$ and ce data favors 1/2, but 3/2 is not completely ruled out.
1348.73 9 1402.91 7 1487.60 7 1544.13 5 1557.38 6 1597.29 11 1614.05 6	$(1/2^-,3/2,5/2^-) (5/2^-) (1/2,3/2)^- (3/2^-,5/2^-) (1/2^-,3/2) (1/2,3/2,5/2^-) 3/2^+$		

Continued on next page (footnotes at end of table)

¹⁴⁹ Tb ε decay (4.12 h)	1978Ja14,1972Vy08,1992Tl02 (continued)
--	--

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J ^{π‡}	E(level) [†]	$J^{\pi \ddagger}$
1655.19 6	$(3/2)^+$	2768.0 4	$(1/2^+, 3/2, 5/2^-)$	3206.43 23	(3/2)
1750.59 9	$(3/2^{-}, 5/2^{-})$	2808.6 5	$(1/2, 3/2, 5/2^{-})$	3231.2 <i>3</i>	$(1/2^{-}, 3/2)$
1772.83 5	$(3/2^+, 1/2^+)$	2824.98 8	$(1/2,3/2)^{-}$	3258.4 6	(1/2, 3/2)
1844.31 7	$(1/2^{-}, 3/2, 5/2^{-})$	2830.6 10	$(1/2, 3/2, 5/2^{-})$	3272.9 6	(1/2, 3/2)
1992.49 4	3/2-	2861.8 5	$(1/2^{-}, 3/2)$	3294.9 10	(1/2, 3/2)
2088.47 9	$(1/2^{-}, 3/2, 5/2^{-})$	2913.08 10	(1/2,3/2)	3313.62 16	$(3/2^{-})$
2126.6 7	$(1/2^{-}, 3/2, 5/2^{-})$	2918.2 7	$(1/2^{-}, 3/2, 5/2^{-})$	3319.0 4	$(1/2^{-}, 3/2)$
2158.36 4	$(3/2)^+$	2922.7 <i>3</i>	(1/2, 3/2)	3340.6 6	$(1/2^+, 3/2)$
2199.90 9	$(1/2^-, 3/2, 5/2^-)$	2961.5 7	$(1/2^{-}, 3/2, 5/2^{-})$	3365.23 19	(3/2)
2261.54 9	$(3/2, 1/2^{-})$	2977.72 19	$(1/2^{-}, 3/2)$	3384.7 10	(1/2, 3/2)
2300.72 6	$(1/2^{-}, 3/2)$	2999.64 7	(3/2)	3403.4 5	$(1/2^{-}, 3/2)$
2314.1 7	$(1/2^{-}, 3/2, 5/2^{-})$	3003.4 5	$(1/2^{-}, 3/2)$	3418.8 5	$(1/2^{-}, 3/2)$
2482.74 19	$(1/2^+, 3/2, 5/2^-)$	3021.06 18	(3/2)	3431.4 4	$(1/2^{-}, 3/2)$
2503.71 20	$(1/2^-, 3/2, 5/2^-)$	3057.0 4	$(1/2^{-}, 3/2)$	3442.8 6	(1/2, 3/2)
2570.1 3	$(1/2, 3/2, 5/2^{-})$	3070.8 7	$(1/2^{-}, 3/2)$	3466.8 6	$(1/2^{-}, 3/2)$
2590.05 10	$(1/2^{-}, 3/2)$	3079.8 <i>3</i>	(1/2, 3/2)	3473.2 <i>3</i>	$(1/2^{-}, 3/2)$
2599.31 9	$(1/2^{-}, 3/2)$	3099.76 10	$(1/2^{-}, 3/2)$	3486.2 5	(1/2, 3/2)
2613.2 5	$(1/2^{-}, 3/2)$	3124.06 10	(1/2, 3/2)	3500.0 7	$(1/2^{-}, 3/2)$
2683.42 9	$(1/2^+, 3/2)$	3149.4 6	(1/2, 3/2)	3516.2 4	(1/2, 3/2)
2703.3 4	$(1/2^{-}, 3/2, 5/2^{-})$	3175.59 15	$(1/2^{-}, 3/2)$	3535.1 4	$(3/2^+)$
2757.20 9	(1/2,3/2)	3201.4 4	$(3/2, 1/2^{-})$	3543.9 4	$(1/2^-, 3/2)$

¹⁴⁹Gd Levels (continued)

[†] From a least-squares fit to γ-ray energies.
[‡] From the Adopted Levels.
[#] From ceγ(t) (1971VaZV).

ε, β^+ radiations

E(decay)	E(level)	$I\varepsilon^{\ddagger}$	Log ft	${\rm I}(\varepsilon\!+\!\beta^+)^{\dagger\ddagger}$	Comments
(95 4)	3543.9	0.015 6	6.4 2	0.015 6	εK=0.582 24; εL=0.314 17; εM+=0.104 7
(104 4)	3535.1	0.055 11	6.0 1	0.055 11	εK=0.622 17; εL=0.284 13; εM+=0.093 5
(123 4)	3516.2	0.0224 5	6.59 5	0.0224 5	εK=0.679 10; εL=0.243 7; εM+=0.078 3
(139 4)	3500.0	0.017 5	6.9 2	0.017 5	εK=0.709 7; εL=0.221 5; εM+=0.0702 18
(153 4)	3486.2	0.027 7	6.8 1	0.027 7	εK=0.727 5; εL=0.208 4; εM+=0.0653 13
(166 4)	3473.2	0.097 20	6.3 1	0.097 20	εK=0.740 4; εL=0.198 3; εM+=0.0618 10
(172 4)	3466.8	0.026 8	6.9 2	0.026 8	εK=0.746 4; εL=0.194 3; εM+=0.0604 9
(196 4)	3442.8	0.033 9	7.0 1	0.033 9	εK=0.7621 24; εL=0.1818 18; εM+=0.0561 7
(208 4)	3431.4	0.041 10	6.9 <i>1</i>	0.041 10	εK=0.7681 21; εL=0.1774 15; εM+=0.0545 6
(220 4)	3418.8	0.058 13	6.9 <i>1</i>	0.058 13	εK=0.7738 18; εL=0.1732 13; εM+=0.0530 5
(236 4)	3403.4	0.110 18	6.7 1	0.110 18	εK=0.7797 15; εL=0.1688 11; εM+=0.0515 4
(254 4)	3384.7	0.033 8	7.3 1	0.033 8	εK=0.7857 13; εL=0.1644 9; εM+=0.0499 4
(274 4)	3365.23	0.277 24	6.41 5	0.277 24	εK=0.7908 10; εL=0.1606 8; εM+=0.0486 3
(298 4)	3340.6	0.048 11	7.3 1	0.048 11	εK=0.7961 8; εL=0.1567 6; εM+=0.04719 21
(320 4)	3319.0	0.080 20	7.1 <i>I</i>	0.080 20	εK=0.8000 7; εL=0.1538 5; εM+=0.04618 18
(325 4)	3313.62	1.18 6	5.95 <i>3</i>	1.18 6	εK=0.8009 7; εL=0.1532 5; εM+=0.04596 17
(344 4)	3294.9	0.028 8	7.6 1	0.028 8	εK=0.8036 6; εL=0.1511 5; εM+=0.04524 15
(366 4)	3272.9	0.048 13	7.5 1	0.048 13	εK=0.8065 5; εL=0.1490 4; εM+=0.04451 13
(381 4)	3258.4	0.047 11	7.5 1	0.047 11	εK=0.8081 5; εL=0.1478 4; εM+=0.04409 12
(408 4)	3231.2	0.078 19	7.4 1	0.078 19	εK=0.8108 4; εL=0.1458 3; εM+=0.04338 10
(433 4)	3206.43	0.25 4	6.91 7	0.25 4	εK=0.8130 4; εL=0.14418 25; εM+=0.04283 9
(438 4)	3201.4	0.19 4	7.0 1	0.19 4	εK=0.8134 4; εL=0.14388 24; εM+=0.04272 9
(463 4)	3175.59	0.35 4	6.83 6	0.35 4	εK=0.8153 3; εL=0.14247 21; εM+=0.04223 8

Continued on next page (footnotes at end of table)

¹⁴⁹Tb ε decay (4.12 h) 1978Ja14,1972Vy08,1992Tl02 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Iβ ⁺ ‡	Ie‡	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
$(490 \ 4)$	3149.4		0.064 13	7.6 1	0.064 13	εK=0.8170 3; εL=0.14120 19; εM+=0.04179 7
(515 4)	3124.06		0.181 21	7.21 6	0.181 21	εK=0.8185 3; εL=0.14011 17; εM+=0.04142 6
(539 4)	3099.76		0.51 4	6.81 4	0.51 4	εK=0.8197 2; εL=0.13918 15; εM+=0.04109 6
(559 4)	3079.8		0.063 18	7.8 1	0.063 18	εK=0.8207 2; εL=0.1385 2; εM+=0.04085 5
(568 4)	3070.8		0.043 10	7.9 1	0.043 10	εK=0.8211 2; εL=0.1382 2; εM+=0.04075 5
(582 4)	3057.0		0.031 10	8.1 2	0.031 10	εK=0.8217 2; εL=0.1377 2; εM+=0.04060 5
(618 4)	3021.06		0.34 4	7.11 6	0.34 4	εK=0.8231 2; εL=0.1367 1; εM+=0.04024 4
(636 4)	3003.4		0.17 4	7.4 1	0.17 4	εK=0.8237 2; εL=0.1362 1; εM+=0.04008 4
(639 4)	2999.64		1.25 6	6.58 <i>3</i>	1.25 6	εK=0.8238 2; εL=0.1361 1; εM+=0.04004 4
(661 4)	2977.72		0.20 3	7.40 7	0.20 3	εK=0.8245 2; εL=0.1356 1; εM+=0.03986 4
(678 4)	2961.5		0.047 12	8.1 1	0.047 12	ε K=0.8250 2; ε L=0.13525 9; ε M+=0.03973 4
(716 4)	2922.7		0.116 <i>19</i>	7.7 1	0.116 <i>19</i>	ε K=0.8261 <i>1</i> ; ε L=0.13444 8; ε M+=0.03945 <i>3</i>
(721-4)	2918.2		0.057 20	8.0 2	0.057 20	$\varepsilon K = 0.8262 \ I; \ \varepsilon L = 0.13435 \ 8; \ \varepsilon M + = 0.03942 \ 3$
(726 4)	2913.08		0.46 4	7.13 4	0.46 4	$\varepsilon K = 0.8264 \ I; \ \varepsilon L = 0.13425 \ 8; \ \varepsilon M + = 0.03939 \ 3$
(///4)	2861.8		0.13 3	1.1 1	0.13 3	$\varepsilon K = 0.82/58$ 9; $\varepsilon L = 0.13335$ /; $\varepsilon M + = 0.03908$ 3
(808 4) (814 4)	2830.0		0.024 8	8.3 Z	0.024 8	$\varepsilon K = 0.82824 9$; $\varepsilon L = 0.13280 7$; $\varepsilon M + = 0.03891 3$
(814 4)	2824.98		1.16 J	0.85 2	1.16 J	EK = 0.0285; $EL = 0.132770$; $EW + = 0.038882$
(830.4) (871.4)	2768.0		0.100 22 0.045 12	831	0.100 22	cK = 0.0207, $cL = 0.13233$ 0, $cM + = 0.03000$ 2 cK = 0.8204; $cI = 0.13108$ 6; $cM + = 0.03861$ 2
(887.4)	2708.0		0.04512 0.484	7 20 1	0.043 12	cK = 0.0274, $bL = 0.131960$, $cM = -0.030012$
(002 +) (036 4)	2703.3		0.48 + 1	811	0.487	cK = 0.0250, $cL = 0.131035$, $cM + -0.0303052$
(956 4)	2683.42		0.00021 0.474	7 37 4	0.00021 0.474	$\kappa = 0.0304$, $\kappa = 0.131213$, $\kappa = 0.030342$ $\kappa = 0.8307$; $\kappa = 0.131005$; $\kappa = 0.038272$
(1026 4)	2613.2		0.43 4	7.47.5	0.43 4	$\epsilon K = 0.8317; \epsilon L = 0.130314; \epsilon M + = 0.038032$
$(1020 \ 1)$ $(1040 \ 4)$	2599.31		0.49 4	7.43 4	0.49 4	$\epsilon K = 0.8318; \epsilon L = 0.13019 4; \epsilon M + = 0.03799 2$
$(1049 \ 4)$	2590.05		0.35 5	7.58 7	0.35 5	εK=0.8319; εL=0.13010 4; εM+=0.03796 2
(1069 4)	2570.1		0.106 20	8.1 1	0.106 20	εK=0.8322; εL=0.12994 4; εM+=0.03790 2
(1135 4)	2503.71		0.098 21	8.2 1	0.098 21	εK=0.8329; εL=0.12942 3; εM+=0.03772 1
(1156 4)	2482.74		0.22 4	7.9 1	0.22 4	εK=0.8331; εL=0.12926 3; εM+=0.03767 1
(1325 4)	2314.1		0.063 13	8.5 1	0.063 13	εK=0.8341; εL=0.12819 3; εM+=0.037305 9
(1338 4)	2300.72		1.16 6	7.28 <i>3</i>	1.16 6	εK=0.8342; εL=0.12811 3; εM+=0.037278 8
(1377 4)	2261.54		0.66 5	7.55 4	0.66 5	εK=0.8342; εL=0.12787 3; εM+=0.037200 8
(1439 4)	2199.90	0.00082 9	0.59 6	7.64 5	0.59 6	av E β =201.4 18; ε K=0.8340; ε L=0.12750 3; ε M+=0.037076 9
(1481 4)	2158.36	0.0089 5	4.31 15	6.80 2	4.32 15	av E β =219.8 18; ε K=0.8337; ε L=0.12724 3; ε M+=0.036990 9
(1512 4)	2126.6	0.00035 8	0.13 3	8.3 1	0.13 3	av $E\beta$ =233.7 18; ε K=0.8334; ε L=0.12702 3; ε M+=0.036921 9
(1551 4)	2088.47	0.00083 11	0.23 3	8.12 6	0.23 3	av $E\beta$ =250.7 18; ε K=0.8328; ε L=0.12676 3;
(1647 4)	1992.49	0.059 3	8.4 <i>3</i>	6.61 2	8.5 <i>3</i>	$\epsilon_{\text{M}+=0.03084}$ <i>I</i> av E β =292.9 <i>18</i> ; ϵ K=0.8305 <i>2</i> ; ϵ L=0.12600 <i>4</i> ;
$(1795 \ 4)$	1844 31	0.0080.6	0.52.4	7894	0 53 4	εM +=0.03660 <i>I</i> av E _B =357.9 <i>I</i> 8; cK=0.8242 3; cI =0.12450 5;
(10((1)	1772.02	0.0000 0	1 44 7	7.40.2	1 47 7	$\varepsilon M += 0.03614 2$
(1866-4)	1//2.83	0.0305 10	1.44 /	7.49 3	1.4/ /	av $E\beta$ =389.2 18; ε K=0.8198 3; ε L=0.12360 6; ε M+=0.03587 2
(1888 4)	1750.59	0.011 1	0.47 4	7.98 4	0.48 4	av $E\beta$ =399.0 <i>18</i> ; ε K=0.8182 <i>3</i> ; ε L=0.12329 <i>6</i> ; ε M+=0.03578 <i>2</i>
(1984 4)	1655.19	0.0440 24	1.31 7	7.58 3	1.35 7	av E β =440.9 18; ε K=0.8102 4; ε L=0.12183 7; ε M+=0.03534 2
(2025 4)	1614.05	0.027 3	0.69 7	7.88 5	0.72 7	av $E\beta$ =458.9 <i>I8</i> ; ε K=0.8062 <i>5</i> ; ε L=0.12111 <i>8</i> ; ε M _± =0.03513 <i>3</i>
(2042 4)	1597.29	0.011 2	0.26 4	8.31 7	0.27 4	av $E\beta$ =466.3 <i>18</i> ; ε K=0.8045 <i>5</i> ; ε L=0.12081 <i>8</i> ; ε M ₊ =0.03504 <i>3</i>
(2082 4)	1557.38	0.052 3	1.10 7	7.70 3	1.15 7	av $E\beta$ =483.9 <i>I</i> 8; ε K=0.8000 <i>5</i> ; ε L=0.12005 <i>8</i> ; ε M=0.03481 3
(2095 4)	1544.13	0.014 3	0.29 6	8.3 1	0.30 6	av $E\beta$ =489.7 18; ε K=0.7985 5; ε L=0.11979 8; ε M+=0.03473 3

Continued on next page (footnotes at end of table)

$^{149}{\rm Tb}~\varepsilon$ decay (4.12 h) 1978Ja14,1972Vy08,1992Tl02 (continued)

E(decay)	E(level)	Ιβ ⁺ ‡	$I\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments
(2151 4)	1487.60	0.049 4	0.83 7	7.85 4	0.88 7	av E β =514.6 18; ε K=0.7915 6; ε L=0.11861 9; ε M+=0.03439 3
(2236 [#] 4)	1402.91					I($\varepsilon + \beta^+$)=-0.17 8 from γ -intensity balance is non-physical.
(2290 4)	1348.73	0.0159 19	0.183 21	8.56 6	0.199 23	av $E\beta = 575.9 \ 18; \ \varepsilon K = 0.7713 \ 7; \ \varepsilon L = 0.1153 \ I; \ \varepsilon M + = 0.03342 \ 3$
(2433 4)	1205.66	3.95 11	31.9 8	6.38 2	35.8 9	av Eβ=639.3 18; εK=0.7462 8; εL=0.11130 12; εM+=0.03225 4
(2472 [#] 4)	1167.11					I($\varepsilon + \beta^+$)=-0.12 8 from γ -intensity balance is non-physical.
(2495 [#] 4)	1144.08	0.032 10	0.23 7	8.5 2	0.26 8	av E β =666.6 18; ε K=0.7341 8; ε L=0.10941 13; ε M+=0.03169 4
						I($\varepsilon + \beta^+$): almost no $\varepsilon + \beta^+$ feeding is expected from $1/2^+$ parent to $(5/2)^+$; apparent feeding of 0.26% 8 is probably due to missing γ transitions feeding this level.
(2514 [#] 4)	1124.89	< 0.021	<0.14	>8.8	<0.16	av Eβ=675.2 18; εK=0.7302 9; εL=0.10880 13; εM+=0.03152 4
(2554 [#] 4)	1085.5	0.01 1	0.08 3	9.0 2	0.09 4	av Eβ=692.7 19; εK=0.7220 9; εL=0.10752 14; εM+=0.03114 4
(2612 4)	1026.840	0.74 3	4.02 15	7.34 2	4.76 18	av Eβ=718.9 18; εK=0.7094 9; εL=0.10555 14; εM+=0.03057 4
(2822 4)	817.100	1.0 1	3.8 <i>3</i>	7.43 4	4.8 4	av E β =812.7 18; ε K=0.6601 10; ε L=0.09798 15; ε M+=0.02837 5
(3287 4)	352.234	0.68 11	1.22 20	8.1 <i>1</i>	1.90 <i>31</i>	av Eβ=1022.4 19; εK=0.5397 11; εL=0.07977 16; εM+=0.02308 5
(3474 4)	164.987	0.35 12	1.4 5	9.7 ¹ <i>u</i> 2	1.8 6	av Eβ=1108.5 18; εK=0.6717 8; εL=0.10175 12; εM+=0.02955 4

ϵ, β^+ radiations (continued)

[†] From γ+ce intensity balance at each level.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

Iy normalization: from $\Sigma I(\gamma+ce)(g.s.)=100$, assuming no g.s. feeding, as expected from $1/2^+$ parent to $7/2^-$ g.s.

 \mathbf{v}

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	δ^{a}	α^{C}	Comments
98.1 2	17 2	1124.89	1/2+,3/2+,5/2+	1026.840	3/2+	M1		2.127 32	%Iγ=0.152 18 α (K)exp=3.3 17 α (K)=1.796 27; α (L)=0.259 4; α (M)=0.0564 9 α (N)=0.01298 20; α (O)=0.002012 31; α (P)=0.0001340 20
117.2	2 1	1144.08	$(5/2)^+$	1026.840	3/2+	[M1+E2]		1.35 7	%Iy=0.018 9 α (K)=0.92 16; α (L)=0.33 18; α (M)=0.08 4 α (K)=0.017 0; α (C)=0.0024 12; α (M)=5.0×10 ⁻⁵ .21
164.98 2	2985 35	164.987	5/2-	0.0	7/2-	M1+E2	-0.93 2	0.459 6	α(N)=0.017 9; α(O)=0.0024 12; α(P)=3.9×10 * 21 %Iy=26.7 6 α(K)exp=0.36 2; K/L=3.9 2; K/M=11.1 5; L/M=2.7 1 (1972Vy08) K/L=4.43 (1968Wi21); L1/L2=1.77 4; L1/L3=2.11 6 (1987BaZB) L1:L2:L3=135 15:70 10:54 7 (1972Vy08,1971GoZS) α(K)=0.350 5; α(L)=0.0853 13; α(M)=0.01934 31 α(N)=0.00438 7; α(O)=0.000624 10; α(P)=2.35×10 ⁻⁵ 4 δ: from precise L-subshell ratios measured by 1987BaZB. Other: 0.93 4 using all the ce data, except seemingly discrepant K/M and L/M ratios from 1972Vy08. Sign is from $\gamma\gamma(\theta)$ (1992TI02,1974Bu26). Other: 0.82 2 (1972Vy08)
187.22 2	487 6	352.234	3/2-	164.987	5/2-	M1+E2	+0.85 +19-16	0.316 8	with their measured K/L fails. %Iγ=4.36 11 $\alpha(K)=0.248$ 11; $\alpha(L)=0.0528$ 28; $\alpha(M)=0.0119$ 7 $\alpha(N)=0.00269$ 15; $\alpha(O)=0.000390$ 17; $\alpha(P)=1.70\times10^{-5}$ 11 $\alpha(K)\exp=0.27$ 1; K/L=5.4 3; L/M=3.1 4 (1972Vy08) K/L=3.1 4 (1968Wi21); K/L1=9.6 (1971GoZS); K/L=2.9 (1971GoZS) δ: from ce and $\gamma\gamma(\theta)$ data, with the sign from $\gamma\gamma(\theta)$ in 1992T102. (187 γ)(165 γ)(θ): A ₂ =-0.485 22, A ₄ =+0.06 5 1992T102). (187 γ)(165 γ)(θ): A ₂ =-0.22 3, A ₄ =-0.05 6 (1974Bu26). (187 γ)(165 γ)(θ): A ₂ =-0.396 16, A ₄ =0.00 4 (quoted by 1992T102 from a Ph.D. thesis by I. Kholbaev from JINR, Dubna (1977)).

				149 Tb ε dec	ay (4.12 h) 19	78Ja14,197	2Vy08,199	2Tl02 (continu	ied)
					$\gamma(^{149}$	Gd) (conti	nued)		
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger b}$	E _i (level)	J_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. ^{&}	δ^{a}	α^{c}	Comments
219.7	1.2 6	1992.49	3/2-	1772.83	(3/2+,1/2+)	[E1]		0.0355 5	% $I\gamma$ =0.011 6 α (K)=0.0301 4; α (L)=0.00424 6; α (M)=0.000915 13
252.3 1	10 2	1655.19	(3/2)+	1402.91	(5/2 ⁻)	[E1]		0.02475 35	$\alpha(N)=0.0002086\ 29;\ \alpha(O)=3.14\times10^{-5}\ 4;\alpha(P)=1.858\times10^{-6}\ 26\%I\gamma=0.089\ 18\alpha(K)=0.02101\ 29;\ \alpha(L)=0.00294\ 4;\alpha(M)=0.000634\ 9$
289.3 <i>3</i> 307.79 <i>7</i>	8 2 30 2	1085.5 1124.89	(5/2 ⁻ ,7/2,9/2 ⁻) 1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺	796.2 817.100	9/2 ⁻ 3/2 ⁻	D [E1]		0.061 <i>44</i> 0.01494 <i>21</i>	$\begin{array}{l} \alpha(\mathrm{N})=0.0001447\ 20,\ \alpha(\mathrm{O})=2.190\times10^{-5}\ 51;\\ \alpha(\mathrm{P})=1.317\times10^{-6}\ 18\\ \%\mathrm{I}\gamma=0.072\ 18\\ \%\mathrm{I}\gamma=0.268\ 19\\ \alpha(\mathrm{K})=0.01270\ 18;\ \alpha(\mathrm{L})=0.001757\ 25;\\ \alpha(\mathrm{M})=0.000379\ 5 \end{array}$
317.4 321.9 347.7 352.24 2	7 2 2 <i>I</i> 15 [‡] 2 3333 <i>I</i> 0	1402.91 1348.73 1750.59 352.234	(5/2 ⁻) (1/2 ⁻ ,3/2,5/2 ⁻) (3/2 ⁻ ,5/2 ⁻) 3/2 ⁻	1085.5 1026.840 1402.91 0.0	(5/2 ⁻ ,7/2,9/2 ⁻) 3/2 ⁺ (5/2 ⁻) 7/2 ⁻	[D,E2] [D,E2] E2		0.046 <i>33</i> 0.038 <i>27</i> 0.0371 <i>5</i>	$\alpha(N)=8.66\times10^{-5} 12; \ \alpha(O)=1.317\times10^{-5} 18; \\ \alpha(P)=8.10\times10^{-7} 11 \\ \%I\gamma=0.063 18 \\ \%I\gamma=0.018 9 \\ \%I\gamma=0.134 18 \\ \%I\gamma=29.8 7 \\ \alpha(K)\exp=0.0292; \ K/L=4.3 2; \ L/M=3.4 5 \\ (1972Vy08) \\ \alpha(N)=0.000320 4; \ \alpha(O)=4.60\times10^{-5} 6; \\ (D)=0.000320 4;$
378.5 1	14 2	1992.49	3/2-	1614.05	3/2+	[E1]		0.00900 13	$\alpha(P)=1.868 \times 10^{-6} 26$ $\alpha(K)=0.0291 4; \ \alpha(L)=0.00627 9; \ \alpha(M)=0.001410$ 20 %Iy=0.125 18 $\alpha(K)=0.00767 11; \ \alpha(L)=0.001049 15;$ $\alpha(M)=0.0002262 32$
388.57 2	2080 15	1205.66	(1/2)-	817.100	3/2-	M1+E2	-0.21 9	0.0475 11	$\alpha(N)=5.17\times10^{-5} 7; \alpha(O)=7.90\times10^{-6} 11;$ $\alpha(P)=4.96\times10^{-7} 7$ %Iy=18.6 5 $\alpha(N)=0.000284 5; \alpha(O)=4.41\times10^{-5} 8;$ $\alpha(P)=2.95\times10^{-6} 8$ $\alpha(K)\exp=0.044 4; K/L=6.8 4; L/M=3.2 8$ (1972Vy08) $\alpha(K)=0.0403 9; \alpha(L)=0.00570 9; \alpha(M)=0.001236$ 20 δ : average of δ =-0.31 9 from (389 γ)(817 γ)(θ) and -0.12 4 for (389 γ)(652 γ)(θ) (1992T102). For I=3(2, δ =+0.21 11 and +0.49 8 (1992T102)

From ENSDF

 $^{149}_{64}\mathrm{Gd}_{85}$ -6

				149 Tb ε d	ecay (4.12 h)	1978Ja14,197	2Vy08,1992	CT102 (contin	nued)
					$\gamma(1)$	49Gd) (conti	nued)		
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger b}$	E _i (level)	J^π_i	E_f	${f J}_f^\pi$	Mult. ^{&}	δ^{a}	α^{c}	Comments
390.3 413.3 <i>I</i> 432.5 <i>2</i> 446.7 <i>6</i>	13 3 14 1 8 2 3 2	1557.38 1557.38 1557.38 1614.05	$(1/2^{-},3/2) (1/2^{-},3/2) (1/2^{-},3/2) (1/2^{-},3/2) (3/2^{+})$	1167.11 1144.08 1124.89 1167.11	$(3/2^+) (5/2)^+ 1/2^+, 3/2^+, 5/2^+ (3/2^+)$	[D.E2] [D.E2] [D.E2]		0.028 20 0.024 17 0.022 15	(1992Tl02). (389 γ)(165 γ)(θ): A ₂ =-0.12 3, A ₄ =-0.09 7 (1974Bu26). (389 γ)(352 γ)(θ): A ₂ =+0.01 3, A ₄ =+0.03 6 (1992Tl02). (389 γ)(465 γ)(θ): A ₂ =-0.09 4, A ₄ =-0.03 7 (1992Tl02). (389 γ)(652 γ)(θ): A ₂ =-0.10 3, A ₄ =+0.00 4 (1992Tl02). (389 γ)(652 γ)(θ): A ₂ =-0.19 3, A ₄ =-0.04 7 (1974Bu26). (389 γ)(817 γ)(θ): A ₂ =+0.010 23, A ₄ =-0.01 5 (1992Tl02). (389 γ)(817 γ)(θ): A ₂ =-0.10 5, A ₄ =+0.05 9 (1974Bu26). %I γ =0.12 3 %I γ =0.125 10 %I γ =0.072 18 %I γ =0.027 18
448.5 449.6 464.85 2 469.9 472.4 1	5 [#] 1 7 [#] 2 640 9 1.0 6 26 4	1992.49 1655.19 817.100 1614.05 1597.29	$3/2^{-}$ $(3/2)^{+}$ $3/2^{-}$ $3/2^{+}$ $(1/2,3/2,5/2^{-})$	1544.13 1205.66 352.234 1144.08 1124.89	$(3/2^{-},5/2^{-})$ $(1/2)^{-}$ $3/2^{-}$ $(5/2)^{+}$ $1/2^{+},3/2^{+},5/2^{+}$	M1(+E2)	-0.10 14	0.0303 7	%I γ =0.045 9 %I γ =0.063 18 %I γ =5.73 15 α (K)=0.0258 7; α (L)=0.00359 7; α (M)=0.000778 15 α (K)exp=0.026 2; K/L=7.0 4; L/M=3.9 15 (1972Vy08) α (N)=0.0001790 34; α (O)=2.78×10 ⁻⁵ 6; α (P)=1.89×10 ⁻⁶ 5 δ : from (465 γ)(352 γ)(θ) (1992T102). Others: (465 γ)(187 γ)(θ) (1992T102) gives δ =+0.03 13; ce data give δ (E2/M1)<0.5. (465 γ)(165 γ)(θ): A ₂ =+0.14 12, A ₄ =-0.08 21 (1992T102). (465 γ)(187 γ)(θ): A ₂ =-0.22 10, A ₄ =+0.00 18 (1992T102). (465 γ)(352 γ)(θ): A ₂ =+0.08 3, A ₄ =+0.05 5 (1992T102). %I γ =0.009 6 %I γ =0.23 4
488.1 2 544.3 ^x 570.5	10 2 3 <i>I</i> 1.8	1655.19 2158.36	$(3/2)^+$ $(3/2)^+$	1167.11 1614.05	(3/2 ⁺) 3/2 ⁺	. / .			$\%_{1\gamma} = 0.089 \ 18 \\ \%_{1\gamma} = 0.027 \ 9 \\ \%_{1\gamma} = 0.0161 \ 4$

 $^{149}_{64}\mathrm{Gd}_{85}$ -7

¹⁴⁹₆₄Gd₈₅-7

From ENSDF

					149 Tb ε dec	ay (4.12 h) 19	78Ja14,197	72Vy08,199	2T102 (continue	ed)
						$\gamma(^{14})$	⁹ Gd) (conti	nued)		
	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	J_i^π	E_f	${ m J}_f^\pi$	Mult. ^{&}	δ^{a}	α^{c}	Comments
58 60 61 62 62 64 65	37.2 16.7 14.2 <i>I</i> 20.7 25.7 <i>3</i> 28.4 2 18.0 <i>I</i> 52.12 <i>2</i>	6 2 2 1 19 2 8 2 2 2 9 2 69 6 1840 25	1614.05 1402.91 2158.36 2613.2 1750.59 1655.19 1772.83 817.100	$3/2^+$ (5/2 ⁻) (3/2) ⁺ (1/2 ⁻ ,3/2) (3/2 ⁻ ,5/2 ⁻) (3/2) ⁺ (3/2 ⁺ ,1/2 ⁺) 3/2 ⁻	1026.840 796.2 1544.13 1992.49 1124.89 1026.840 1124.89 164.987	3/2 ⁺ 9/2 ⁻ (3/2 ⁻ ,5/2 ⁻) 3/2 ⁻ 1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺ 3/2 ⁺ 1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺ 5/2 ⁻	M1+E2	-0.57 5	0.01154 25	E _γ : this γ ray was attributed to the decay of a 1557.4 level (1978Ja14); however, there is no level reported near 986.9 implied by this placement. %Iγ=0.054 18 %Iγ=0.018 9 %Iγ=0.018 9 %Iγ=0.018 18 %Iγ=0.018 18 %Iγ=0.081 18 %Iγ=0.081 18 %Iγ=0.085 10; K/L=7.8 11; L/M=2.9 11 (1972Vy08) α (K)=0.00978 21; α (L)=0.001381 26; α (M)=0.000300 6 α (N)=6.89×10 ⁻⁵ 13; α (O)=1.066×10 ⁻⁵ 21; α (P)=7.06×10 ⁻⁷ 16 δ : from (652γ)(165γ)(θ): A ₂ =+0.27 3, A ₄ =+0.01 5 (1992T102). Other: δ (E2/M1)=0.9 +7-4 from ce data. (652γ)(165γ)(θ): A ₂ =+0.20 2, A ₄ =-0.02 4 (1974Bu26).
67	70.4	7 # 2	1487.60	$(1/2, 3/2)^{-}$	817.100	3/2-				%Iγ=0.063 <i>18</i>
67	70.8	9 [#] 2	2158.36	$(3/2)^+$	1487.60	$(1/2, 3/2)^{-}$				%Iγ=0.081 <i>18</i>
67	74.61 6	77 2	1026.840	3/2+	352.234	3/2-	E1		2.47×10 ⁻³ 4	% $I\gamma$ =0.689 23 α (K)exp<0.0038 α (K)=0.002110 30; α (L)=0.000280 4; α (M)=6.03×10 ⁻⁵ 8 α (N)=1.383×10 ⁻⁵ 19; α (O)=2.133×10 ⁻⁶ 30; α (P)=1.405×10 ⁻⁷ 20 M k α (K) = 2.20(FL) + 0.25
67 68 68 72 72 74 74 74	77.2 <i>1</i> 35.6 36.66 8 23.7 23.8 40.2 <i>1</i> 46.0 <i>1</i> 72.65 <i>3</i>	20 2 2.2 8 22 2 8 [#] 2 12 [#] 2 45 2 34 2 182 4	1844.31 2088.47 2300.72 2126.6 1750.59 1557.38 1772.83 1124.89	$(1/2^{-},3/2,5/2^{-})$ $(1/2^{-},3/2,5/2^{-})$ $(1/2^{-},3/2)$ $(1/2^{-},3/2,5/2^{-})$ $(3/2^{-},5/2^{-})$ $(1/2^{-},3/2)$ $(3/2^{+},1/2^{+})$ $1/2^{+},3/2^{+},5/2^{+}$	1167.11 1402.91 1614.05 1402.91 1026.840 817.100 1026.840 352.234	(3/2 ⁺) (5/2 ⁻) 3/2 ⁺ (5/2 ⁻) 3/2 ⁺ 3/2 ⁻ 3/2 ⁺ 3/2 ⁻	E1		1.87×10 ⁻³ 3	Mult: $\alpha(\mathbf{K})\exp \text{ gives } \delta(\mathbf{M2/E1}) < 0.25$. $\% I\gamma = 0.179 \ 19$ $\% I\gamma = 0.020 \ 8$ $\% I\gamma = 0.197 \ 19$ $\% I\gamma = 0.072 \ 18$ $\% I\gamma = 0.403 \ 20$ $\% I\gamma = 0.304 \ 19$ $\% I\gamma = 1.63 \ 5$ $\alpha(\mathbf{K})\exp < 0.0016$ $\alpha(\mathbf{K}) = 0.001602 \ 221 \ \alpha(\mathbf{L}) = 0.0002115 \ 201$

 ∞

From ENSDF

			-	⁴⁹ Tb ε deca	y (4.12 h)	1978Ja14,1	972Vy08,1992	2Tl02 (continue	<u>d)</u>
					<u>)</u>	v(¹⁴⁹ Gd) (con	tinued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	J_i^{π}	E_f	J_f^{π}	Mult. ^{&}	δ^{a}	α^{c}	Comments
774.0 780.2 786.8 <i>I</i> 791.8 796.2	1.8 9 2.4 6 15 <i>I</i> 7 3 11 3	2261.54 1597.29 1992.49 1144.08 796.2	(3/2,1/2 ⁻) (1/2,3/2,5/2 ⁻) 3/2 ⁻ (5/2) ⁺ 9/2 ⁻	1487.60 817.100 1205.66 352.234 0.0	(1/2,3/2) ⁻ 3/2 ⁻ (1/2) ⁻ 3/2 ⁻ 7/2 ⁻	(M1+E2)	+0.18 2	0.00783 11	$\begin{array}{c} \alpha(\mathrm{M}) = 4.55 \times 10^{-5} \ 6 \\ \alpha(\mathrm{N}) = 1.043 \times 10^{-5} \ 15; \ \alpha(\mathrm{O}) = 1.611 \times 10^{-6} \ 23; \\ \alpha(\mathrm{P}) = 1.070 \times 10^{-7} \ 15 \\ \% \mathrm{Iy} = 0.016 \ 8 \\ \% \mathrm{Iy} = 0.021 \ 6 \\ \% \mathrm{Iy} = 0.021 \ 6 \\ \% \mathrm{Iy} = 0.134 \ 10 \\ \% \mathrm{Iy} = 0.06 \ 3 \\ \% \mathrm{Iy} = 0.10 \ 3 \\ \alpha(\mathrm{K}) = 0.00666 \ 10; \ \alpha(\mathrm{L}) = 0.000912 \ 13; \\ \alpha(\mathrm{M}) = 0.0001971 \ 28 \\ \alpha(\mathrm{N}) = 4 \ 54 \times 10^{-5} \ 6; \ \alpha(\mathrm{O}) = 7.07 \times 10^{-6} \ 10; \end{array}$
796.9 797.0 817.1 2	2 [#] 1 2 [#] 1 1313 [@] 20	1614.05 2199.90 817.100	3/2 ⁺ (1/2 ⁻ ,3/2,5/2 ⁻) 3/2 ⁻	817.100 1402.91 0.0	3/2 ⁻ (5/2 ⁻) 7/2 ⁻	E2		0.00425 6	$\alpha(N)=4.34\times10^{-7}$ 7 Mult., δ : from the Adopted Gammas. %I γ =0.018 9 %I γ =0.018 9 %I γ =0.108 9 %I γ =11.8 3 $\alpha(K)$ exp=0.0035 5 $\alpha(N)=2.70\times10^{-5}$ 4; $\alpha(O)$ =4.10×10 ⁻⁶ 6; $\alpha(P)$ =2.458×10 ⁻⁷ 34
817.5 825.4 838.1 2 853.43 <i>I</i>	7 [#] 2 7 2 8 <i>I</i> 1750 25	1844.31 1992.49 1655.19 1205.66	(1/2 ⁻ ,3/2,5/2 ⁻) 3/2 ⁻ (3/2) ⁺ (1/2) ⁻	1026.840 1167.11 817.100 352.234	3/2 ⁺ (3/2 ⁺) 3/2 ⁻ 3/2 ⁻	E2+M1	-8 +6-23	0.0039 <i>5</i>	

From ENSDF

 $^{149}_{64}\mathrm{Gd}_{85}$ -9

				149 Tb ε dec	ay (4.12 h) 19	78Ja14,1972	Vy08,1992	Tl02 (continued	<u>I)</u>
					$\gamma(^{149})$	⁹ Gd) (continu	ued)		
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger b}$	E _i (level)	J_i^π	E_f	J_f^π	Mult. ^{&}	δ^{a}	α^{c}	Comments
858.6 861.86	8 2 2 849 12	2261.54 1026.840	(3/2,1/2 ⁻) 3/2 ⁺	1402.91 164.987	(5/2 ⁻) 5/2 ⁻	E1(+M2)	-0.05 6	0.00155 15	% I γ =0.072 18 % I γ =7.60 19 α (K)exp=0.0009 2 α (K)=0.00132 12; α (L)=0.000175 19; α (M)=3.8×10 ⁻⁵ 4 α (N)=8.6×10 ⁻⁶ 9; α (O)=1.33×10 ⁻⁶ 15; α (P)=8.9×10 ⁻⁸ 10 δ : from (862 γ)(165 γ)(θ): A ₂ =-0.13 4, A ₄ =+0.18 11 (1992Tl02).
867.6 920.5 944.4 2 952.7 1 955.71	4.5 9 3 <i>I</i> 5 2 18 2 5 53 3	1992.49 1085.5 2088.47 2158.36 1772.83	3/2 ⁻ (5/2 ⁻ ,7/2,9/2 ⁻) (1/2 ⁻ ,3/2,5/2 ⁻) (3/2) ⁺ (3/2 ⁺ ,1/2 ⁺)	1124.89 164.987 1144.08 1205.66 817.100	1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺ 5/2 ⁻ (5/2) ⁺ (1/2) ⁻ 3/2 ⁻	(E1)		1.24×10 ⁻³ 2	$(862\gamma)(165\gamma)(\theta): A_2=-0.11 3, A_4=-0.03 7 (1974Bu26).$ %Iy=0.040 8 %Iy=0.027 9 %Iy=0.045 18 %Iy=0.161 19 %Iy=0.47 3 α (K)exp=0.0018 7 α (K)=0.001060 15; α (L)=0.0001387 19; α (M)=2.98×10 ⁻⁵ 4
963.6 965.63 .	4 2 5 60 3	2088.47 1992.49	(1/2 ⁻ ,3/2,5/2 ⁻) 3/2 ⁻	1124.89 1026.840	1/2+,3/2+,5/2+ 3/2+				$\alpha(N)=6.84\times10^{-6} \ 10; \ \alpha(O)=1.059\times10^{-6}$ 15; $\alpha(P)=7.12\times10^{-8} \ 10$ Mult.: $\alpha(K)$ exp favors E1 over E2. %I γ =0.036 18 %I γ =0.024 8 Mult.: $\alpha(K)$ exp gives E2(+M1), δ <1.5 but ΔI^{σ}_{r} requires E1
979.09	5 56 <i>3</i>	1144.08	(5/2) ⁺	164.987	5/2-	E1		1.18×10 ⁻³ 2	$%I_{\gamma}=0.50 \ 3$ $\alpha(K)\exp<0.0017$ $\alpha(K)=0.001013 \ 14; \ \alpha(L)=0.0001324 \ 19;$ $\alpha(M)=2.84\times10^{-5} \ 4$ $\alpha(N)=6.53\times10^{-6} \ 9; \ \alpha(O)=1.011\times10^{-6} \ 14;$ $\alpha(P)=6 \ 81\times10^{-8} \ 10$
994.3 996.5 <i>1</i> 1001.7 ^{<i>d</i>} 1002.1 1027.2 <i>2</i> 1032.8	$ \begin{array}{c} 4 \\ 1 \\ 14 \\ 2 \\ 32 \\ 2 \\ 1 \\ 10 \\ 3 \end{array} $	2199.90 1348.73 2126.6 1167.11 1844.31 2199.90	$(1/2^{-},3/2,5/2^{-}) (1/2^{-},3/2,5/2^{-}) (1/2^{-},3/2,5/2^{-}) (3/2^{+}) (1/2^{-},3/2,5/2^{-}) (1/2^{-},3/2,5/2^{-})$	1205.66 352.234 1124.89 164.987 817.100 1167.11	$(1/2)^{-}$ 3/2 ⁻ 1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺ 5/2 ⁻ 3/2 ⁻ (3/2 ⁺)				%Iy=0.036 9 %Iy=0.125 10 %Iy≤0.027 %Iy=0.286 19 %Iy=0.018 9 %Iy=0.09 3
1033.4	28 [#] 5	2158.36	$(3/2)^+$	1124.89	1/2+,3/2+,5/2+	(M1)		0.00423 6	%I γ =0.25 5 α (K)exp=0.0058 12 α (N)=2.426×10 ⁻⁵ 34; α (O)=3.78×10 ⁻⁶ 5;

From ENSDF

 $^{149}_{64}\mathrm{Gd}_{85}\text{--}10$

				149 Tb ε de	cay (4.12 h) 19	978Ja14,197	2Vy08,1	992Tl02 (contin	nued)	
γ ⁽¹⁴⁹ Gd) (continued)										
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	J_i^π	E_f	\mathbf{J}_f^π	Mult. ^{&}	δ^{a}	α^{c}	Comments	
					ź		_		$\alpha(P)=2.60\times10^{-7} \ 4$ $\alpha(K)=0.00361 \ 5; \ \alpha(L)=0.000488 \ 7;$ $\alpha(M)=0.0001054 \ 15$ Mult.: $\alpha(K)$ exp gives M1 or M2+E3. The conversion electron line is is unresolved from that of another γ , but probably dominated by this transition	
1040.65 4	165 5	1205.66	(1/2)-	164.987	5/2-	(E2)		2.53×10 ⁻³ 4	%Iy=1.48 6 $\alpha(K)$ exp=0.0026 3 $\alpha(K)$ =0.002141 30; $\alpha(L)$ =0.000308 4; $\alpha(M)$ =6.68×10 ⁻⁵ 9 $\alpha(N)$ =1.532×10 ⁻⁵ 21; $\alpha(O)$ =2.349×10 ⁻⁶ 33; $\alpha(P)$ =1.483×10 ⁻⁷ 21 Mult.: $\alpha(K)$ exp gives E2+M1 with $\delta(E2/M)$ =1.5 + 14-5, but ΔJ^{π} requires E2.	
1045.9 1055.1 1055.8 1061.6 <i>I</i> 1069.6 1075.0 <i>I</i> 1085.5 1094.3 <i>3</i> 1102.5 1111.7 1117.5 1131.65 <i>7</i>	4 2 3 [#] 1 14 [#] 4 7 1 3 1 8 1 6 3 3 1 3 1 1.6 8 12 2 89 3	2590.05 2599.31 2199.90 2088.47 2683.42 2199.90 1085.5 2261.54 2590.05 2599.31 2261.54 2158.36	$(1/2^{-},3/2)$ $(1/2^{-},3/2,5/2^{-})$ $(1/2^{-},3/2,5/2^{-})$ $(1/2^{+},3/2,5/2^{-})$ $(1/2^{+},3/2,5/2^{-})$ $(5/2^{-},7/2,9/2^{-})$ $(3/2,1/2^{-})$ $(1/2^{-},3/2)$ $(1/2^{-},3/2)$ $(3/2,1/2^{-})$ $(3/2)^{+}$	1544.13 1544.13 1144.08 1026.840 1614.05 1124.89 0.0 1167.11 1487.60 1487.60 1144.08 1026.840	$(3/2^{-},5/2^{-})$ $(3/2^{-},5/2^{-})$ $(5/2)^{+}$ $3/2^{+}$ $3/2^{+}$ $1/2^{+},3/2^{+},5/2^{+}$ $7/2^{-}$ $(3/2^{+})$ $(1/2,3/2)^{-}$ $(1/2,3/2)^{-}$ $(5/2)^{+}$ $3/2^{+}$	(M1)		0.00341 <i>5</i>	%Iy=0.036 18 %Iy=0.027 9 %Iy=0.027 9 %Iy=0.027 9 %Iy=0.027 9 %Iy=0.027 9 %Iy=0.027 9 %Iy=0.027 9 %Iy=0.027 9 %Iy=0.027 9 %Iy=0.027 9 %Iy=0.014 8 %Iy=0.014 8 %Iy=0.107 18 %Iy=0.107 18 %Iy=0.80 4 α (K)exp=0.0049 α (K)=0.00291 4; α (L)=0.000392 5; α (M)=8.47×10 ⁻⁵ 12 α (N)=1.950×10 ⁻⁵ 27; α (O)=3.04×10 ⁻⁶ 4;	
1135.3 <i>1</i>	134 4	1487.60	(1/2,3/2)-	352.234	3/2-	M1(+E2)	<0.7	0.00317 <i>21</i>	$\alpha(P)=2.095\times10^{-7}\ 29;\ \alpha(IPF)=1.042\times10^{-6}$ <i>I</i> 5 Mult.: $\alpha(K)$ exp gives M1 or M2+E3. %I γ =1.20 5 $\alpha(K)$ exp=0.0039 <i>I</i> 3 $\alpha(K)$ =0.00271 <i>I</i> 8; $\alpha(L)$ =0.000367 23; $\alpha(M)$ =7.9 $\times10^{-5}$ 5 $\alpha(N)$ =1.82 $\times10^{-5}$ <i>I</i> 1; $\alpha(O)$ =2.84 $\times10^{-6}$ <i>I</i> 8;	
1136.6 1139.5	3 2 4 1	2261.54 2683.42	$(3/2,1/2^-)$ $(1/2^+,3/2)$	1124.89 1544.13	1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺ (3/2 ⁻ ,5/2 ⁻)				$\alpha(P)=1.94\times10^{-7}$ 14; $\alpha(IPF)=1.154\times10^{-6}$ 26 %I γ =0.027 18 %I γ =0.036 9	

From ENSDF

 $^{149}_{64}\mathrm{Gd}_{85}$ -11

				¹⁴⁹ Tb ε deca	ay (4.12 h) 19	78Ja14,197	2Vy08,1992Tl0	2 (continued)
					$\gamma(^{149})$	Gd) (contin	nued)	
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger b}$	E _i (level)	${ m J}^{\pi}_i$	E_f	${ m J}_f^\pi$	Mult. <mark>&</mark>	α^{c}	Comments
1144.09 9	33 3	1144.08	(5/2)+	0.0	7/2-	D,E2	0.0021 12	% $I\gamma$ =0.30 3 α (K)exp<0.0029 Mult : α (K)exp gives M1.E2 or E1.
1167.10 7	55 3	1167.11	(3/2 ⁺)	0.0	7/2-	(M2)	0.00762 11	%Iy=0.49 3 α (K)exp=0.0069 23 α (K)=0.00645 9; α (L)=0.000922 13; α (M)=0.0002006 28 α (N)=4.62×10 ⁻⁵ 6; α (O)=7.19×10 ⁻⁶ 10; α (P)=4.86×10 ⁻⁷ 7; α (IPF)=5.77×10 ⁻⁷ 8 Mult.: α (K)exp gives δ (E3/M2)<0.7.
1175.4	370 [#] 15	1992.49	3/2-	817.100	3/2-	M1	0.00312 4	%Iγ=3.31 <i>15</i> α (K)exp=0.0030 <i>3</i> α (N)=1.780×10 ⁻⁵ <i>25</i> ; α (O)=2.78×10 ⁻⁶ <i>4</i> ; α (P)=1.914×10 ⁻⁷ <i>27</i> ; α (IPF)=3.60×10 ⁻⁶ <i>5</i> α (K)=0.00266 <i>4</i> ; α (L)=0.000358 <i>5</i> ; α (M)=7.73×10 ⁻⁵ <i>11</i> Mult.: from α (K)exp; ce(K) contains some contribution from another transition (2300 level to 1124 level).
1175.8 1183.7 2 1187.1 1191.89 8 1205.20 8 1205.6 ^d 1234.7 2 1245.1 1261.7 2 1269.7 1273.9 1277.0 1280.8 <i>I</i> 1302.92 8	$21^{\#} 4$ 8 2 5 3 42 3 43 4 ≤ 2 7.5 13 3 1 13 2 1.6 9 1.6 8 4 2 10 1 91 3	2300.72 1348.73 2590.05 1544.13 1557.38 1205.66 2261.54 1597.29 1614.05 2757.20 2300.72 2482.74 2824.98 1655.19	$\begin{array}{c} (1/2^-,3/2) \\ (1/2^-,3/2,5/2^-) \\ (1/2^-,3/2) \\ (3/2^-,5/2^-) \\ (1/2^-,3/2) \\ (1/2)^- \\ (3/2,1/2^-) \\ (1/2,3/2,5/2^-) \\ 3/2^+ \\ (1/2,3/2) \\ (1/2^+,3/2,5/2^-) \\ (1/2,3/2)^- \\ (3/2)^+ \end{array}$	$1124.89 \\ 164.987 \\ 1402.91 \\ 352.234 \\ 0.0 \\ 1026.840 \\ 352.234 \\ 1487.60 \\ 1026.840 \\ 1205.66 \\ 1544.13 \\ 352.234 \\ 152.234 \\ 1026.840 \\ 1205.66 \\ 1544.13 \\ 352.234 \\ 1026.840 \\ 1026.$	$\frac{1/2^+, 3/2^+, 5/2^+}{5/2^-}$ $\frac{5/2^-}{3/2^-}$ $\frac{3/2^-}{3/2^+}$ $\frac{3/2^-}{3/2^-}$ $\frac{1/2, 3/2^-}{3/2^+}$ $\frac{1/2, 3/2)^-}{3/2^+}$ $\frac{3/2^-}{(1/2, 3/2)^-}$ $\frac{3/2^+}{3/2^-}$ $\frac{3/2^-}{3/2^-}$	E1	0.000777 11	$\% I_{\gamma} = 0.19 4$ $\% I_{\gamma} = 0.072 18$ $\% I_{\gamma} = 0.04 3$ $\% I_{\gamma} = 0.38 3$ $\% I_{\gamma} = 0.38 4$ $\% I_{\gamma} = 0.018$ $\% I_{\gamma} = 0.067 12$ $\% I_{\gamma} = 0.017 9$ $\% I_{\gamma} = 0.014 8$ $\% I_{\gamma} = 0.014 8$ $\% I_{\gamma} = 0.036 18$ $\% I_{\gamma} = 0.036 18$ $\% I_{\gamma} = 0.089 10$ $\% I_{\gamma} = 0.81 4$ $\alpha (K) \exp < 0.00107$ $\alpha = 0.0000777 1!: \alpha (K) = 0.000604 8: \alpha (I) = 7.81 \times 10^{-5} 1!:$
1320.9 1322.7 <i>1</i> 1337.5 1338.6 1341.19 <i>6</i>	$ \begin{array}{c} 1.3 & 6 \\ 10 & l \\ 2.2 & 8 \\ 5 & 2 \\ 260 & l0 \end{array} $	2808.6 1487.60 2824.98 2482.74 2158.36	$(1/2,3/2,5/2^{-})$ $(1/2,3/2)^{-}$ $(1/2,3/2)^{-}$ $(1/2^{+},3/2,5/2^{-})$ $(3/2)^{+}$	1487.60 164.987 1487.60 1144.08 817.100	$(1/2,3/2)^{-}$ $5/2^{-}$ $(1/2,3/2)^{-}$ $(5/2)^{+}$ $3/2^{-}$	E1	0.000765 11	$\begin{aligned} \alpha(M) &= 1.675 \times 10^{-5} \ 23 \\ \alpha(N) &= 3.85 \times 10^{-6} \ 5; \ \alpha(O) &= 5.98 \times 10^{-7} \ 8; \ \alpha(P) &= 4.07 \times 10^{-8} \\ 6; \ \alpha(IPF) &= 7.37 \times 10^{-5} \ 10 \\ \% I\gamma &= 0.012 \ 6 \\ \% I\gamma &= 0.020 \ 8 \\ \% I\gamma &= 0.020 \ 8 \\ \% I\gamma &= 0.045 \ 18 \\ \% I\gamma &= 2.33 \ 10 \\ \alpha(K) &= xp = 0.00074 \ 30 \\ \alpha &= 0.000765 \ 11; \ \alpha(K) &= 0.000575 \ 8; \ \alpha(L) &= 7.42 \times 10^{-5} \ 10; \end{aligned}$

From ENSDF

 $^{149}_{64}\mathrm{Gd}_{85}$ -12

 $^{149}_{64}\mathrm{Gd}_{85}$ -12

	$\frac{^{149}\text{Tb}\ \varepsilon\ \text{decay}\ (4.12\ \text{h})}{1978\text{Ja}14,1972\text{Vy}08,1992\text{Tl}02}\ (\text{continued})$									
γ ⁽¹⁴⁹ Gd) (continued)										
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger b}$	E _i (level)	J^{π}_i	E_{f}	J_f^π	Mult.&	α ^C	Comments		
1344.5 1357.8 1363.8 1366.0 1368.9 1379.1 <i>I</i> 1384.4 1392.3 <i>3</i> 1398.3 <i>3</i> 1402.4 1402.4 1402.4 1402.91 <i>9</i> 1420.6 <i>I</i> 1422.1 1425.6 <i>3</i> 1444.4 1449.10 <i>8</i>	$\begin{array}{c} 2 \ 1 \\ 1.3 \ 8 \\ 2.8 \ 7 \\ 2 \ 1 \\ 5 \ 1 \\ 42 \ 2 \\ 2 \ 1 \\ 6 \ 2 \\ 1.0 \ 5 \\ 0.9 \ 5 \\ 49 \ 3 \\ 10 \ 1 \\ 5 \ 2 \\ 7 \ 2 \\ 9 \ 2 \\ 106 \ 4 \end{array}$	2999.64 2482.74 2570.1 3021.06 2913.08 1544.13 2590.05 1557.38 1750.59 2570.1 2999.64 1402.91 1772.83 2824.98 2913.08 2261.54 1614.05	$\begin{array}{c} (3/2) \\ (1/2^+, 3/2, 5/2^-) \\ (1/2, 3/2, 5/2^-) \\ (3/2) \\ (1/2, 3/2) \\ (3/2^-, 5/2^-) \\ (1/2^-, 3/2) \\ (3/2^-, 5/2^-) \\ (1/2, 3/2, 5/2^-) \\ (1/2, 3/2, 5/2^-) \\ (3/2) \\ (5/2^-) \\ (3/2^+, 1/2^+) \\ (1/2, 3/2)^- \\ (1/2, 3/2)^- \\ (1/2, 3/2) \\ (3/2, 1/2^-) \\ 3/2^+ \end{array}$	1655.19 1124.89 1205.66 1655.19 1544.13 164.987 1205.66 164.987 352.234 1167.11 1597.29 0.0 352.234 1402.91 1487.60 817.100 164.987	$(3/2)^{+}$ $1/2^{+},3/2^{+},5/2^{+}$ $(1/2)^{-}$ $(3/2^{-},5/2^{-})$ $5/2^{-}$ $(1/2)^{-}$ $5/2^{-}$ $3/2^{-}$ $(3/2^{+})$ $(1/2,3/2,5/2^{-})$ $7/2^{-}$ $3/2^{-}$ $(5/2^{-})$ $(1/2,3/2)^{-}$ $3/2^{-}$ $5/2^{-}$	E1	0.000753 11	$\begin{array}{c} \alpha(\mathrm{M}) = 1.591 \times 10^{-5} \ 22 \\ \alpha(\mathrm{N}) = 3.65 \times 10^{-6} \ 5; \ \alpha(\mathrm{O}) = 5.68 \times 10^{-7} \ 8; \ \alpha(\mathrm{P}) = 3.88 \times 10^{-8} \ 5; \\ \alpha(\mathrm{IPF}) = 9.57 \times 10^{-5} \ 13 \\ \% \mathrm{Iy} = 0.018 \ 9 \\ \% \mathrm{Iy} = 0.018 \ 9 \\ \% \mathrm{Iy} = 0.025 \ 7 \\ \% \mathrm{Iy} = 0.018 \ 9 \\ \% \mathrm{Iy} = 0.018 \ 9 \\ \% \mathrm{Iy} = 0.045 \ 9 \\ \% \mathrm{Iy} = 0.018 \ 9 \\ \% \mathrm{Iy} = 0.054 \ 18 \\ \% \mathrm{Iy} = 0.054 \ 18 \\ \% \mathrm{Iy} = 0.0045 \ 18 \\ \% \mathrm{Iy} = 0.008 \ 5 \\ \% \mathrm{Iy} = 0.003 \ 18 \\ \% \mathrm{Iy} = 0.003 \ 18 \\ \% \mathrm{Iy} = 0.003 \ 18 \\ \% \mathrm{Iy} = 0.001 \ 18 \\ \% \mathrm{Iy} = 0.000 \ 9 \\ \alpha = 0.000753 \ 11; \ \alpha(\mathrm{K}) = 0.000503 \ 7; \ \alpha(\mathrm{L}) = 6.48 \times 10^{-5} \ 9; \\ \alpha(\mathrm{M}) = 1.389 \times 10^{-5} \ 19 \\ \alpha(\mathrm{N}) = 3.19 \times 10^{-6} \ 4; \ \alpha(\mathrm{O}) = 4.96 \times 10^{-7} \ 7; \ \alpha(\mathrm{P}) = 3.40 \times 10^{-8} \ 5; \\ \alpha(\mathrm{IPF}) = 0.0001680 \ 24 \end{array}$		
1465.1 1474.3 1477.7 2 1483.6 <i>I</i> 1488.3 1490.3 2 1492.2 <i>3</i> 1497.0 1497.6 1512.1 2 1515.3	1.2 7 2 1 8 2 27 3 7 2 20 3 12 2 4 1 1.8 7 9 2 4 2	2590.05 2599.31 2683.42 2300.72 2613.2 1655.19 1844.31 2314.1 2703.3 2999.64 2918.2	$(1/2^{-},3/2)$ $(1/2^{-},3/2)$ $(1/2^{+},3/2)$ $(1/2^{-},3/2)$ $(1/2^{-},3/2)$ $(3/2)^{+}$ $(1/2^{-},3/2,5/2^{-})$ $(1/2^{-},3/2,5/2^{-})$ $(1/2^{-},3/2,5/2^{-})$ $(3/2)$ $(1/2^{-},3/2,5/2^{-})$	1124.89 1124.89 1205.66 817.100 1124.89 164.987 352.234 817.100 1205.66 1487.60 1402.91	$\frac{1/2^{+},3/2^{+},5/2^{+}}{1/2^{+},3/2^{+},5/2^{+}}$ $\frac{1/2^{+},3/2^{+},5/2^{+}}{1/2^{+},3/2^{+},5/2^{+}}$ $\frac{5/2^{-}}{3/2^{-}}$ $\frac{3/2^{-}}{(1/2)^{-}}$ $\frac{(1/2)^{-}}{(5/2^{-})}$			$\%$ I γ =0.011 7 $\%$ I γ =0.018 9 $\%$ I γ =0.072 18 $\%$ I γ =0.024 3 $\%$ I γ =0.063 18 $\%$ I γ =0.063 18 $\%$ I γ =0.107 18 $\%$ I γ =0.016 7 $\%$ I γ =0.016 7 $\%$ I γ =0.081 18 $\%$ I γ =0.036 18		
1536.2 1539.6 4 1543.4 3 1544.1 2 1558.5 1 1563.2 1572.4	3 <i>1</i> 6 2 8 2 9 2 11 2 1.4 8 1.5 8	2703.3 2683.42 2570.1 1544.13 2683.42 2590.05 2599.31	$\begin{array}{c} (1/2^-, 3/2, 5/2^-) \\ (1/2^+, 3/2) \\ (1/2, 3/2, 5/2^-) \\ (3/2^-, 5/2^-) \\ (1/2^+, 3/2) \\ (1/2^-, 3/2) \\ (1/2^-, 3/2) \end{array}$	1167.11 1144.08 1026.840 0.0 1124.89 1026.840 1026.840	$(3/2^+) (5/2)^+ 3/2^+ 7/2^- 1/2^+,3/2^+,5/2^+ 3/2^$			%Iy=0.027 9 %Iy=0.054 18 %Iy=0.072 18 %Iy=0.081 18 %Iy=0.098 18 %Iy=0.013 8 %Iy=0.013 8		

From ENSDF

¹⁴⁹₆₄Gd₈₅-13

	¹⁴⁹ Tb ε decay (4.12 h) 1978Ja14,1972Vy08,1992Tl02 (continued)										
	γ (¹⁴⁹ Gd) (continued)										
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger b}$	E_i (level)	J_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^{&}	δ ^a	α^{c}	Comments		
1574.8 1585.6 <i>1</i> 1586.4 1592.4 1623.8 1632.3 1640.26 <i>6</i>	6 2 19 <i>I</i> 4 <i>I</i> 5 2 2.0 9 3 <i>I</i> 360 <i>I</i> 0	2977.72 1750.59 2613.2 3206.43 2768.0 2757.20 1992.49	$(1/2^-,3/2) (3/2^-,5/2^-) (1/2^-,3/2) (3/2) (1/2^+,3/2,5/2^-) (1/2,3/2) 3/2^-$	1402.91 164.987 1026.840 1614.05 1144.08 1124.89 352.234	$ \begin{array}{r} (5/2^{-})\\ 5/2^{-}\\ 3/2^{+}\\ 3/2^{+}\\ (5/2)^{+}\\ 1/2^{+},3/2^{+},5/2^{+}\\ 3/2^{-} \end{array} $	E2(+M1)	>1	0.00127 11	$\% I_{Y}=0.054 \ I8$ $\% I_{Y}=0.170 \ I0$ $\% I_{Y}=0.036 \ 9$ $\% I_{Y}=0.045 \ I8$ $\% I_{Y}=0.018 \ 8$ $\% I_{Y}=0.027 \ 9$ $\% I_{Y}=3.22 \ I1$ $\alpha(K)=0.00097 \ 9; \ \alpha(L)=0.000130 \ I1;$ $\alpha(M)=2.81\times10^{-5} \ 24$ $\alpha(N)=6.5\times10^{-6} \ 6; \ \alpha(O)=1.00\times10^{-6} \ 9;$ $\alpha(P)=6 \ 8\times10^{-8} \ 7; \ \alpha(PE)=0.000130 \ 5$		
1641.3 1651.0 1656.2 1656.8 1657.3 1662.3 1679.3 <i>I</i> 1694.7 1699.5 1707.5 <i>3</i> 1718.9 1730.4 1736.3 <i>2</i>	1.6 8 0.8 5 2# 1 21# 2 2.4# 9 2 1 18 2 3 2 3 1 3 1 1.0 6 2.5 6.5 9	2808.6 2999.64 2861.8 2683.42 3201.4 3206.43 1844.31 2861.8 3313.62 2913.08 3206.43 2757.20 2088.47	$(1/2,3/2,5/2^{-})$ $(3/2)$ $(1/2^{-},3/2)$ $(1/2^{+},3/2)$ $(3/2,1/2^{-})$ $(3/2)$ $(1/2^{-},3/2,5/2^{-})$ $(1/2^{-},3/2)$ $(3/2^{-})$ $(1/2,3/2)$ $(3/2)$ $(1/2,3/2)$ $(1/2^{-},3/2,5/2^{-})$	1167.11 1348.73 1205.66 1026.840 1544.13 1544.13 164.987 1167.11 1614.05 1205.66 1487.60 1026.840 352.234	$(3/2^+) (1/2^-,3/2,5/2^-) (1/2)^- 3/2^+ (3/2^-,5/2^-) (3/2^-,5/2^-) 5/2^- (3/2^+) 3/2^+ (1/2)^- (1/2,3/2)^- 3/2^+ 3/2^- 3/2^- (3/2^+) 3/2^- (3/2^+) 3/2^- (3/2^+) 3/2^+ 3/2^- (3/2^+) 3/2^+ 3/2^- (3/2^+) $				$\alpha(P)=6.8\times10^{-6}7$; $\alpha(PF)=0.000130.5$ %Iy=0.014.8 %Iy=0.007.5 %Iy=0.018.9 %Iy=0.018.9 %Iy=0.021.8 %Iy=0.018.9 %Iy=0.018.9 %Iy=0.027.18 %Iy=0.027.9 %Iy=0.027.9 %Iy=0.009.6 %Iy=0.0224.5 %Iy=0.058.9		
1751.0 ^d 4 1755.6 1755.8 1769.4 1772.7 1772.8 ^d 1772.9 1774.4 1782.2 <i>I</i> 1788.1 1794.1 1797.8 1798.2 1798.2 1798.5 1803.5 1806.0 <i>I</i>	$\begin{array}{c} 4 & 2 \\ 2.3 & 2 \\ 2.3 & 9 \\ 2 & 1 \\ 2^{\#} & 1 \\ 2^{@} & 2 \\ 6^{\#} & 2 \\ 6 & 2 \\ 25 & 2 \\ 3 & 1 \\ 1.7 & 8 \\ 2 & 1 \\ 16^{\#} & 2 \\ 3^{\#} & 2 \\ 1.7 & 9 \\ 50 & 3 \end{array}$	1750.59 2922.7 2961.5 3313.62 3175.59 1772.83 2590.05 2126.6 2599.31 2913.08 2999.64 3003.4 2824.98 3201.4 3206.43 2158.36	$\begin{array}{c} (3/2^-,5/2^-) \\ (1/2,3/2) \\ (1/2^-,3/2,5/2^-) \\ (3/2^-) \\ (1/2^-,3/2) \\ (3/2^+,1/2^+) \\ (1/2^-,3/2) \\ (1/2^-,3/2) \\ (1/2^-,3/2) \\ (1/2^-,3/2) \\ (1/2^-,3/2) \\ (1/2^-,3/2) \\ (1/2,3/2)^- \\ (3/2,1/2^-) \\ (3/2)^+ \end{array}$	$\begin{array}{c} 0.0\\ 1167.11\\ 1205.66\\ 1544.13\\ 1402.91\\ 0.0\\ 817.100\\ 352.234\\ 817.100\\ 1124.89\\ 1205.66\\ 1205.66\\ 1205.66\\ 1026.840\\ 1402.91\\ 1402.91\\ 1402.91\\ 352.234\\ \end{array}$	$7/2^{-}$ $(3/2^{+})$ $(1/2)^{-}$ $(3/2^{-},5/2^{-})$ $(5/2^{-})$ $7/2^{-}$ $3/2^{-}$ $3/2^{-}$ $3/2^{-}$ $1/2^{+},3/2^{+},5/2^{+}$ $(1/2)^{-}$ $(1/2)^{-}$ $3/2^{+}$ $(5/2^{-})$ $(5/2^{-})$ $3/2^{-}$				$\% I_{\gamma} = 0.036 \ 18$ $\% I_{\gamma} = 0.0206 \ 19$ $\% I_{\gamma} = 0.021 \ 8$ $\% I_{\gamma} = 0.018 \ 9$ $\% I_{\gamma} = 0.018 \ 18$ $\% I_{\gamma} = 0.054 \ 18$ $\% I_{\gamma} = 0.054 \ 18$ $\% I_{\gamma} = 0.054 \ 18$ $\% I_{\gamma} = 0.024 \ 19$ $\% I_{\gamma} = 0.027 \ 9$ $\% I_{\gamma} = 0.018 \ 9$ $\% I_{\gamma} = 0.018 \ 9$ $\% I_{\gamma} = 0.0143 \ 19$ $\% I_{\gamma} = 0.015 \ 8$ $\% I_{\gamma} = 0.015 \ 8$ $\% I_{\gamma} = 0.45 \ 3$		

From ENSDF

 $^{149}_{64}\mathrm{Gd}_{85}$ -14

 $^{149}_{64}\mathrm{Gd}_{85}$ -14

	¹⁴⁹ Tb ε decay (4.12 h) 1978Ja14,1972Vy08,1992Tl02 (continued)										
γ ⁽¹⁴⁹ Gd) (continued)											
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	J_i^π	E_f	${ m J}_f^\pi$	Mult. ^{&}	δ^{a}	α^{c}	Comments		
1810.6 2	71	2977.72	$(1/2^{-},3/2)$	1167.11	$(3/2^+)$				%Iy=0.063 9		
1826.0	9 [#] 2	3313.62	$(3/2^{-})$	1487.60	$(1/2,3/2)^{-}$				%Iy=0.081 18		
1826.9	1.0 [#] 4	3175.59	$(1/2^{-}, 3/2)$	1348.73	$(1/2^-, 3/2, 5/2^-)$				$\%$ I γ =0.009 4		
1827.5	124 [@] 6	1992.49	3/2-	164.987	5/2-	M1(+E2)	<1	0.00128 8	% Iy=1.11 6 α (K)exp=0.0012 3 α (K)=0.00090 6; α (L)=0.000120 8; α (M)=2.58×10 ⁻⁵ 17 α (N)=5.9×10 ⁻⁶ 4; α (O)=9.3×10 ⁻⁷ 6; α (P)=6.4×10 ⁻⁸ 5; α (IPE)=0.000229 8		
									Mult., δ : α (K)exp agrees with mult=E3 also.		
1835.0	2.5 8	2861.8	$(1/2^{-}, 3/2)$	1026.840	3/2+				%Iy=0.022 8		
1847.7	91	2199.90	$(1/2^{-}, 3/2, 5/2^{-})$	352.234	3/2-				$\%$ I γ =0.081 10		
1852.8	21	2977.72	$(1/2^{-},3/2)$	1124.89	$1/2^+, 3/2^+, 5/2^+$				$\%_{1\gamma=0.018}$ 9 $\%_{1\gamma=0.027}$ 18		
1855.0	32	2999.04	(3/2) $(1/2^{-} 3/2)$	1544.08	(3/2) $(3/2^{-} 5/2^{-})$				$\%1\gamma = 0.02778$ $\%1\gamma = 0.0279$		
1874.6 <i>1</i>	30 2	2999.64	(3/2) $(3/2)$	1124.89	$1/2^+, 3/2^+, 5/2^+$				%Iy=0.268 19		
1877.1	32	3021.06	(3/2)	1144.08	$(5/2)^+$				$\%$ I γ =0.027 18		
1877.7	21	3365.23	(3/2)	1487.60	$(1/2,3/2)^{-}$				$\%$ I γ =0.018 9		
1878.5	82	3003.4	$(1/2^{-},3/2)$	1124.89	$1/2^+, 3/2^+, 5/2^+$				$\%_{1\gamma=0.072}$ 18 $\%_{1\gamma=0.006}$ 4		
1895.9	0.74 269	2922.7	(1/2, 5/2) (3/2)	1020.840	$\frac{3}{2^{+}}$ $\frac{1}{2^{+}}$ $\frac{3}{2^{+}}$ $\frac{5}{2^{+}}$				$\%1\gamma=0.0004$ $\%1\gamma=0.023.8$		
1909.3 <i>I</i>	25 2	2261.54	$(3/2)^{(3/2,1/2^{-})}$	352.234	$3/2^{-}$				$\%1\gamma = 0.025$ ° ° $\%1\gamma = 0.224$ 19		
1912.7 <i>3</i>	72	3079.8	(1/2,3/2)	1167.11	$(3/2^+)$				$\%$ I γ =0.063 18		
1915.8	3 1	3403.4	$(1/2^{-}, 3/2)$	1487.60	$(1/2, 3/2)^{-}$				$\%$ I γ =0.027 9		
1916.1	42	3319.0	$(1/2^{-},3/2)$	1402.91	$(5/2^{-})$				$\%_{1\gamma=0.036}$ 18		
1918.4	1.2.0	3124.00 2088.47	(1/2, 3/2) $(1/2^{-} 3/2 5/2^{-})$	1205.00	(1/2) $5/2^{-1}$				$\%1\gamma = 0.011 0$ % $I_{2} = 0.010 6$		
1925.4	1.1 0	3418.8	$(1/2^{-},3/2)$	1487.60	$(1/2,3/2)^{-}$				%Iy=0.010 0 %Iy=0.011 6		
1940.1 <i>1</i>	35 <i>3</i>	2757.20	(1/2,3/2)	817.100	3/2-				%Iy=0.31 <i>3</i>		
1943.7	0.6 4	3149.4	(1/2,3/2)	1205.66	$(1/2)^{-}$				$\%$ I γ =0.005 4		
1948.5 <i>1</i>	46 2	2300.72	$(1/2^{-},3/2)$	352.234	$3/2^{-}$				%Iy=0.412 20		
1950.9	1.6 8	2977.72	(1/2, 3/2) $(1/2^{-} 3/2)$	1026.840	$\frac{3}{2}$				$\%1\gamma = 0.014 \ \delta$ % I ₂ = 0.036 0		
1970.0	18 2	2999.64	(1/2, 3/2) (3/2)	1026.840	$3/2^+$				%1y=0.050 y %1y=0.161 19		
1976.6	3 2	3003.4	$(1/2^-, 3/2)$	1026.840	3/2+				$\%$ I γ =0.027 18		
1991.8	4 # 2	2808.6	$(1/2, 3/2, 5/2^{-})$	817.100	3/2-				$\%$ I γ =0.036 18		
1992.5 <mark>d</mark>	2 [@] 2	1992.49	3/2-	0.0	7/2-				%Iγ=0.018 <i>18</i>		
1993.3	6 ^{#} 2	2158.36	$(3/2)^+$	164.987	5/2-				$\%$ I γ =0.054 18		
1994.4	3 1	3021.06	(3/2)	1026.840	3/2+				$\% I_{\gamma} = 0.027 \ 9$		
2000.8	2 1	3206.43	(3/2)	1205.66	$(1/2)^{-}$			2	%Iγ=0.018 <i>9</i>		
2007.9 1	88 <i>3</i>	2824.98	$(1/2, 3/2)^{-}$	817.100	3/2-	E2(+M1)	>2	1.03×10^{-3} 3	%Iy=0.79 <i>4</i>		

 $^{149}_{64}\mathrm{Gd}_{85}$ -15

Т

¹⁴⁹₆₄Gd₈₅-15

From ENSDF

				¹⁴⁹ Τb ε ά	lecay (4.12 h)	1978Ja14,1972Vy08,1992Tl02 (continued)
					γ	(¹⁴⁹ Gd) (continued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger b}$	E _i (level)	J_i^π	E_{f}	${ m J}_f^\pi$	Comments
					J	α (K)exp=0.00055 10
						$\alpha(K)=0.000625 \ 19; \ \alpha(L)=8.29\times10^{-5} \ 25; \ \alpha(M)=1.78\times10^{-5} \ 5$
.						$\alpha(N)=4.10\times10^{-6}$ 13; $\alpha(O)=6.38\times10^{-7}$ 20; $\alpha(P)=4.35\times10^{-8}$ 15; $\alpha(IPF)=0.000295$ 6
2008.5	32	3175.59	$(1/2^{-},3/2)$ (1/2,3/2)	1107.11	$(3/2^{+})$ $1/2^{+} 3/2^{+} 5/2^{+}$	$\%1\gamma = 0.027/18$ $\%1\gamma = 0.014/8$
2024.4	5 [#] 3	3201 4	(1/2, 3/2) $(3/2, 1/2^{-})$	1124.09	$(3/2^+)$	$\%_{1y} = 0.014.8$
2034.3	10 [#] 3	2100.00	(3/2, 1/2) $(1/2^{-} 3/2 5/2^{-})$	164 087	(3/2)	%1y = 0.04.5
2034.8	1,7.8	2861.8	$(1/2^{-},3/2,3/2^{-})$ $(1/2^{-},3/2)$	817.100	3/2-	%1y=0.17.5 %1y=0.015.8
2050.7 4	5 2	3175.59	$(1/2^{-},3/2)$	1124.89	$1/2^+, 3/2^+, 5/2^+$	$\% I \gamma = 0.045 \ I 8$
2062.3	1.1 7	3206.43	(3/2)	1144.08	$(5/2)^+$	%Iγ=0.010 7
2073.0	3 1	3099.76	$(1/2^{-}, 3/2)$	1026.840	3/2+	%Iy=0.027 9
2076.4	4 1	3201.4	$(3/2, 1/2^{-})$	1124.89	$1/2^+, 3/2^+, 5/2^+$	%Iγ=0.036 <i>9</i>
2096.5	4 [#] 1	2261.54	$(3/2, 1/2^{-})$	164.987	5/2-	%Iγ=0.036 <i>9</i>
2097.1	4 # 1	3124.06	(1/2, 3/2)	1026.840	3/2+	$\%$ I γ =0.036 9
2105.6 3	10 2	2922.7	(1/2,3/2)	817.100	$3/2^{-}$	$\%_{1}\gamma = 0.089 \ I8$
2108.2.3	92 142	3313.02 2482 74	(3/2) $(1/2^+ 3/2 5/2^-)$	1205.00	(1/2) $3/2^{-}$	$\%1\gamma = 0.081$ 18 $\%1\alpha = 0.125$ 18
2135.0	1.4 7	3340.6	$(1/2^+, 3/2, 3/2^-)$	1205.66	$(1/2)^{-}$	%[y=0.12576 %[y=0.0137
2135.7 2	12 2	2300.72	$(1/2^{-},3/2)$	164.987	5/2-	$\%$ I γ = 0.107 18
2148.8	4 1	3175.59	$(1/2^{-}, 3/2)$	1026.840	3/2+	%Iγ=0.036 <i>9</i>
2149.1	31	2314.1	$(1/2^-, 3/2, 5/2^-)$	164.987	5/2-	%Iy=0.027 9
2151.5	21	2503.71	$(1/2^{-}, 3/2, 5/2^{-})$	352.234	3/2-	$\%$ I γ =0.018 9
2160.6	2.3 9	2977.72	(1/2, 3/2)	817.100	$\frac{3}{2}$	$\%1\gamma = 0.021 8$
2179.0	48 3	200.43 2999 64	(3/2) (3/2)	817 100	$\frac{3}{2}$	$\%1\gamma = 0.043$ 9 $\%1\gamma = 0.43$ 3
2186.3	3 2	3003.4	$(1/2^{-},3/2)$	817.100	$3/2^{-}$	$\%$ I γ =0.027 18
2188.6	3 1	3313.62	$(3/2^{-})$	1124.89	$1/2^+, 3/2^+, 5/2^+$	%Iy=0.027 <i>9</i>
2196.5	2.1 7	3340.6	$(1/2^+, 3/2)$	1144.08	$(5/2)^+$	%Iy=0.019 7
2204.1	31	3021.06	(3/2)	817.100	3/2-	$\%$ I γ =0.027 9
2212.9	2.2 /	3418.8	(1/2, 3/2)	1205.66	(1/2) $(5/2)^+$	$\%1\gamma = 0.020$ / $\%1\gamma = 0.000$ 6
2221.1	1.00 246	3258.4	(3/2) (1/2 3/2)	1026 840	(3/2) $3/2^+$	%1y=0.009.0
2237.8 1	17 2	2590.05	(1/2,3/2) $(1/2^-,3/2)$	352.234	3/2-	%Iy=0.152 19
2246.1	1.4 7	3272.9	(1/2,3/2)	1026.840	3/2+	%Iγ=0.013 7
2247.0 2	17 2	2599.31	$(1/2^{-}, 3/2)$	352.234	3/2-	%Iγ=0.152 <i>19</i>
2253.7	2.9 8	3070.8	$(1/2^{-},3/2)$	817.100	3/2-	%lγ=0.026 8
2261.0	16 # 2	2613.2	$(1/2^{-}, 3/2)$	352.234	3/2-	%Iγ=0.143 <i>19</i>
2261.5 ^d	3 [@] 3	2261.54	$(3/2, 1/2^{-})$	0.0	7/2-	%Iy=0.03 <i>3</i>
2282.6 <i>1</i>	43 3	3099.76	$(1/2^{-}, 3/2)$	817.100	$3/2^{-1}$	$\%1\gamma = 0.38$ 3 (74) - 0.017 7
2317.9	1.9 /	3442.8 3486 2	(1/2, 3/2) (1/2, 3/2)	1124.89	$1/2^+, 3/2^+, 3/2^+$	$\%1\gamma = 0.017$ / $\%1\gamma = 0.0105$
2338 7 2	9.2	2503 71	(1/2, 3/2) $(1/2, 3/2, 5/2^{-})$	164 987	5/2-	$\%_{1\gamma=0.081}$ /8
2358.5	0.8 5	3175.59	$(1/2^{-},3/2)$	817.100	3/2-	$\%$ I γ = 0.007 5

$\gamma(^{149}\text{Gd})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	J^{π}_i	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
2384.3	1.6 6	3201.4	$(3/2, 1/2^{-})$	817.100 3/2-	%Iv=0.014 6
2389.3 3	51	3206.43	(3/2)	817.100 3/2-	%Iy=0.045 9
2404.9 2	11 2	2757.20	(1/2, 3/2)	352.234 3/2-	$\%$ I γ =0.098 18
2414.0	0.8 5	3231.2	$(1/2^{-}, 3/2)$	817.100 3/2-	%Iy=0.007 5
2415.8 <i>4</i>	31	2768.0	$(1/2^+, 3/2, 5/2^-)$	352.234 3/2-	%Iy=0.027 9
2434.5 4	51	2599.31	$(1/2^{-},3/2)$	164.987 5/2-	%Iy=0.045 <i>9</i>
2440.0	0.7 4	3466.8	$(1/2^{-}, 3/2)$	1026.840 3/2+	%Iy=0.006 4
2441.3	1.5 7	3258.4	(1/2, 3/2)	817.100 3/2	%Iy=0.013 7
2446.4	0.7 4	3473.2	$(1/2^{-},3/2)$	$1026.840 \ 3/2^+$	$\%$ I γ =0.006 4
2448.2	13 [#] 2	2613.2	$(1/2^-, 3/2)$	164.987 5/2-	%Iγ=0.116 <i>18</i>
2455.8	3# 1	3272.9	(1/2, 3/2)	817.100 3/2-	%Iy=0.027 9
2456.2	5 # 1	2808.6	$(1/2, 3/2, 5/2^{-})$	352.234 3/2-	%Iy=0.045 <i>9</i>
2472.7 2	11 2	2824.98	$(1/2, 3/2)^{-}$	352.234 3/2-	%Iy=0.098 18
2478.3	2.7 8	2830.6	$(1/2, 3/2, 5/2^{-})$	352.234 3/2-	%Iy=0.024 8
2496.4 2	11 2	3313.62	$(3/2^{-})$	817.100 3/2-	%Iy=0.098 <i>18</i>
2508.3	0.7 4	3535.1	$(3/2^+)$	$1026.840 \ 3/2^+$	%Iy=0.006 4
2523.5	1.9 7	3340.6	$(1/2^+, 3/2)$	817.100 3/2-	%Iy=0.017 7
2538.3 4	52	2703.3	$(1/2^-, 3/2, 5/2^-)$	164.987 5/2-	%1y=0.045 18
2548.1	31	3365.23	(3/2)	817.100 3/2-	%ly=0.027 9
2560.8 1	33.2	2913.08	(1/2,3/2)	352.234 3/2	%ly=0.295 <i>19</i>
2586.3	31	3403.4	(1/2, 3/2)	817.100 3/2	%ly=0.027 9
2625.7	1.0.5	3442.8	(1/2, 3/2)	817.100 3/2	%ly=0.009 5
2647.6	23 1	2999.64	(3/2) (1/2 - 2/2)	352.234 3/2	%17=0.206 <i>10</i>
2049.7	1.0.5	3400.8	(1/2, 3/2) (1/2, 2/2)	817.100 3/2	%1Y=0.009 5 (7 L+ 0.010 6
2030.1	1.10	3473.2	(1/2, 3/2)	$317.100 \ 3/2$	%1Y=0.010 0 %Ly=0.124 18
2009.1	5 2	2861.8	(3/2) $(1/2^{-} 3/2)$	$164.087 5/2^{-1}$	7017 - 0.13 + 10 7017 - 0.045 18
2090.8	074	2535 1	(1/2, 3/2) $(3/2^+)$	$104.987 \ 3/2$ 817 100 $3/2^{-}$	/dly=0.045 10 %Ly=0.006 /
2713.0	248	2918.2	(3/2) $(1/2^{-} 3/2 5/2^{-})$	$164.987 5/2^{-1}$	%Iv=0.001 8
2771.8.7	15.2	3124.06	$(1/2 \ 3/2)$	$352 234 3/2^{-1}$	$\%_{1} = 0.134$ 18
2796.5	$3^{\#}$ 1	2961.5	$(1/2^{-}, 3/2, 5/2^{-})$	$164.987 \ 5/2^{-1}$	%Iy=0.027 9
2797 1	5# 1	3149.4	(1/2 3/2)	352 234 3/2-	%1/=0.045.9
2812 7	41	2977 72	$(1/2^{-} 3/2)$	$164.987 5/2^{-1}$	%1y=0.036 9
2823.3 2	92	3175.59	$(1/2^{-},3/2)$	352.234 3/2-	%1/-0.081 <i>18</i>
2834.7	31	2999.64	(3/2)	$164.987 \ 5/2^{-1}$	%1/==0.027.9
2838.4	3 2	3003.4	$(1/2^{-}, 3/2)$	164.987 5/2-	%17=0.027 18
2849.2	1.8 7	3201.4	$(3/2, 1/2^{-})$	352.234 3/2-	%ly=0.016 7
2854.2	3 1	3206.43	(3/2)	352.234 3/2-	%Iy=0.027 9
2856.0 2	92	3021.06	(3/2)	164.987 5/2-	$\%I\gamma = 0.081$ 18
2878.9 <i>3</i>	72	3231.2	$(1/2^{-}, 3/2)$	352.234 3/2-	%Iy=0.063 18
2892.0 4	3.5 11	3057.0	$(1/2^{-}, 3/2)$	164.987 5/2-	%Iy=0.031 10
2905.8	1.9 7	3070.8	$(1/2^{-}, 3/2)$	164.987 5/2-	%Iy=0.017 7

17

 $^{149}_{64}\mathrm{Gd}_{85}\text{--}17$

 $^{149}_{64}\mathrm{Gd}_{85}$ -17

	¹⁴⁹ Tb ε decay (4.12 h) 1978Ja14,1972Vy08,1992Tl02 (continued)								
γ ⁽¹⁴⁹ Gd) (continued)									
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E_i (level)	J_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^{&}	α ^C	Comments	
2906.1	1.4 7	3258.4	(1/2,3/2)	352.234	3/2-			%Iy=0.013 7	
2920.7	1.0 6	3272.9	(1/2, 3/2)	352.234	$3/2^{-}$			%Iγ=0.009 6	
2935.1 3	11.2	3099.76	$(1/2^{-},3/2)$	164.987	5/2-			$\%1\gamma = 0.098$ 18	
2942.6	3.1 8	3294.9	(1/2, 3/2)	352.234	3/2			%1γ=0.028 8	
2959.0 ^a	≤3 [™]	3124.06	(1/2,3/2)	164.987	5/2-		0.00116 7	%Iγ=0.013 14	
2961.3	934	3313.62	(3/2)	352.234	3/2	(M1,E2)	0.00116 7	$\%1\gamma = 0.834$	
								$\alpha(\mathbf{K}) \exp = 0.00042 \ I0$	
								$\alpha(\mathbf{K}) = 0.000318 \ 14; \ \alpha(\mathbf{L}) = 4.15 \times 10^{-5} \ 21; \ \alpha(\mathbf{M}) = 8.9 \times 10^{-5} \ 4$	
								$\alpha(N)=2.05\times10^{\circ} 10; \alpha(O)=3.20\times10^{\circ} 17; \alpha(P)=2.23\times10^{\circ} 12;$	
								$\alpha(\text{IFF}) = 0.00079.0$ Mult : $\alpha(\text{K})$ eve gives M1 E2 or E3	
2061 1d	~2 @	2061 5	(1/2 - 2/2 - 5/2 -)	0.0	7/2-			$\mathcal{A}_{1,1,2} = 0.027$	
2901.4	<3	2901.5	(1/2, 3/2, 3/2)	352 234	3/2-			$\frac{901}{400}$	
3010.6.3	10.2	3175 59	$(1/2^{-}, 3/2)$ $(1/2^{-}, 3/2)$	164 987	$5/2^{-}$			%Iy=0.020 /	
3032.4	3.7.8	3384.7	(1/2, 3/2)	352.234	$3/2^{-}$			$\%$ I γ =0.033 8	
3036.4 5	31	3201.4	$(3/2, 1/2^{-})$	164.987	$5/2^{-}$			$\%$ I γ =0.027 9	
3041.4	2 1	3206.43	(3/2)	164.987	5/2-			%Iy=0.018 9	
3051.2	1.8 7	3403.4	$(1/2^{-}, 3/2)$	352.234	$3/2^{-}$			%Iγ=0.016 7	
3066.1	0.9 5	3231.2	$(1/2^{-}, 3/2)$	164.987	$5/2^{-}$			%Iγ=0.008 5	
3066.3	1.6 7	3418.8	$(1/2^{-}, 3/2)$	352.234	$3/2^{-}$			%Iγ=0.014 7	
3078.9	31	3431.4	$(1/2^{-},3/2)$	352.234	3/2-			%Iγ=0.027 9	
3090.6	0.8 4	3442.8	(1/2,3/2)	352.234	3/2-			$\%1\gamma = 0.007/4$	
3133.9 5	1.9.5	3486.2	(1/2, 3/2) (1/2 = 2/2)	352.234	$\frac{3}{2}$			$\%1\gamma = 0.0175$	
3147.8	0.94	3313.62	(1/2, 3/2) $(3/2^{-})$	164 087	5/2 5/2-			$\%1\gamma = 0.0084$	
3154.0.5	2.7.7	3319.02	(3/2) $(1/2^{-} 3/2)$	164.987	$5/2^{-}$			%Iy=0.014 0 %Iy=0.024 7	
3163.9 4	2.5	3516.2	(1/2, 3/2)	352.234	$3/2^{-}$			$\%$ I γ =0.0224.5	
3182.8 4	4 1	3535.1	$(3/2^+)$	352.234	$3/2^{-}$			%Iy=0.036 9	
3200.2 2	25 2	3365.23	(3/2)	164.987	$5/2^{-}$			%Iy=0.224 19	
3201.2 ^d	<2 [@]	3201.4	$(3/2, 1/2^{-})$	0.0	$7/2^{-}$			%Iy<0.018	
3238.4	1.5 5	3403.4	$(1/2^-, 3/2)$	164.987	5/2-			%Iy=0.013 5	
3254.5	1.5 7	3418.8	$(1/2^{-}, 3/2)$	164.987	$5/2^{-}$			%Iy=0.013 7	
3266.4 4	1.6 4	3431.4	$(1/2^-, 3/2)$	164.987	$5/2^{-}$			%Iy=0.014 4	
3301.8	1.2 6	3466.8	$(1/2^{-}, 3/2)$	164.987	5/2-			%Iγ=0.011 6	
3308.2 3	92	3473.2	$(1/2^{-}, 3/2)$	164.987	5/2-			$\%1\gamma = 0.081$ 18	
3335.0	1.0 3	3500.0	(1/2, 3/2)	164.987	5/2			$\%1\gamma = 0.009 3$	
33/0.1	0.84	3333.1 2542.0	$(3/2^+)$ $(1/2^-, 2/2)$	164.987	5/2			$\%1\gamma = 0.0074$	
33/0.94	1./ 0	5545.9	(1/2, 3/2)	104.98/	3/2			701Y=0.015 0	

[†] From 1978Ja14. When no energy uncertainty is given, γ rays were seen only in the $\gamma\gamma$ coin. The energies given in these cases are the level differences rounded

From ENSDF

$\gamma(^{149}\text{Gd})$ (continued)

to the nearest 0.1 keV. Their intensities are deduced from $\gamma\gamma$ -coin.

- [‡] The intensity has been obtained after correcting for the decay of the ¹⁴⁹Gd daughter.
- [#] γ ray is member of a multiplet. Intensity was obtained from coincidence data.
- [@] The intensity was obtained by subtracting all other components from the total multiplet intensity.
- [&] From $\alpha(K)$ exp data, deduced by 1978Ja14 using I(ce(K)) values from 1972Vy08 and I γ values from 1978Ja14, normalized to $\alpha(K)$ =0.0292 for 352 γ taken as E2, unless otherwise noted. Assignments in the Adopted Gammas are the same.
- ^{*a*} From $\gamma\gamma(\theta)$ data (1992Tl02,1974Bu26) with data reanalyzed by the evaluators, unless otherwise noted. The values are the same in the Adopted Levels, Gammas dataset.
- ^b For absolute intensity per 100 decays, multiply by 0.00895 19.
- ^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^d Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

149 64 Gd₈₅

¹⁴⁹Tb ε decay (4.12 h) 1978Ja14,1972Vy08,1992Tl02

¹⁴⁹₆₄Gd₈₅

 $^{149}_{64}\text{Gd}_{85}$