	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 185, 2 (2022)	23-Aug-2022

 $Q(\beta^{-}) = -1314 4$; S(n) = 8215 11; S(p) = 4394 4; $Q(\alpha) = 2401 5$ 2021Wa16 $Q(\varepsilon) = 695 4$, S(2n) = 15039 4, S(2p) = 11977 4 (2021Wa16).

¹⁴⁹Eu produced and identified by 1951Ho30, 1953Ma17 and 1959An36, followed by later studies of its decay.

Mass measurements (Penning-trap method): 2001Bo59, 2000Be42, 1997Be63.

Hyperfine structure and isotope shift measurements: 2000Tr07, 1997En08.

Additional information 1.

2018Qu01: theory: calculated low-energy levels, J^{π} , S(2n), B(E2), spectroscopic quadrupole moments, dominant configurations using microscopic core-quasiparticle coupling (CQC), and five-dimensional collective (5DCH) Hamiltonians, based on PC-PK1 energy density functional.

2017No07, 2016No13: theory: calculated single-particle energies, occupation probabilities of single-particle orbitals, levels, J^{π} , B(E2), B(M1), electric quadrupole and magnetic dipole moments using Interacting boson fermion model (IBFM).

1994Jo09: theory: analyzed high-spin levels, octupole correlations and strengths.

1988A119: theory: calculated levels, magnetic dipole moment, quadrupole moment, B(E2), isotope shifts using interacting boson model.

1982Sc19: theory: calculated levels, B(l), magnetic dipole moment, quadrupole moments, spectroscopic factors using interacting boson-fermion model.

Other theoretical studies: consult the NSR database at www.nndc.bnl.gov/nsr/ for 17 references for structure and one for radioactive decay listed under 'document records' which can be accessed through web retrieval of the ENSDF database at www.nndc.bnl.gov/ensdf/.

¹⁴⁹Eu Levels

The high-spin sequences are discussed by 1994Ur01 in 139 La(13 C, $3n\gamma$) in terms of multi-particle states coupled to even-even core and to octupole-phonon vibrations. The octupole correlations for some of the bands are suggested by presence of interband E1 and E3 transitions.

Cross Reference (XREF) Flags

E(level) [†]	J <i>π</i> ‡	A B C D T _{1/2}	 ¹⁴⁹Gd ε decay ¹³⁹La(¹³C,3nγ) ¹⁴⁵Nd(⁷Li,3nγ) ¹⁴⁸Sm(p,p),(p,p XREF 	(9.28 d) , ¹⁴⁶ Nd(⁶ Li,3nγ) ′),(p,n) IAR	E F G H	$ \begin{array}{cccccc} E & {}^{148} {\rm Sm}({}^{3} {\rm He}, d) & {\rm I} & {}^{150} {\rm Sm}(p, 2n\gamma) \\ F & {}^{148} {\rm Sm}(\alpha, t) & {\rm J} & {}^{150} {\rm Sm}(d, 3n\gamma) \\ {\rm G} & {}^{149} {\rm Sm}(d, 2n\gamma) & {\rm K} & {}^{151} {\rm Eu}(p, t) \\ {\rm H} & {}^{149} {\rm Sm}({}^{3} {\rm He}, t) \ {\rm IAS} & {\rm L} & {}^{152} {\rm Sm}(p, 4n\gamma) \\ \end{array} $					
0.0@	5/2+	93.1 d <i>4</i>	ABC EFG IJKL	%ε=100 μ =+3.565 6 (19 Q=+0.75 2 (198 Evaluated rms of Evaluated differ (2013An02). J ^π : spin from at T _{1/2} : from γ and d (D. Barr, L (1962Dz02), μ,Q: from collin 10 (collinear orientation,19 (collinear fast	285Ah 85Ah charge ence i tomic d x-ra os Ala 106 d near fa fast-bc 283Kr t-beam	02,2019StZV) 2,2021StZZ) radius=5.020 fm 10 n charge radius: $\delta < r^2$ beam (1972Ek05); pa y decay curve (19700 umos Scientific Lab, p 2 (1961Ha40), ≈120 ist-beam laser spectroscop eam laser spectroscop (9). Q=+0.716 17 (h <u>c</u> n laser spectroscopy,1	(2013. >(¹⁴⁵) rity fr Ch09). oriv. co d (19. scopy y,1985 yperfir 985A1	An02). Eu, ¹⁴⁹ Eu)=+0.5338 fm ² <i>1</i> om L(p,t)=0 from 5/2 ⁺ . Others: 93.1 d (1969Gu15); 93 omm. to 1970Ch09); 90 d <i>20</i> 59An36), \approx 120 d (1953Ma17). (1985Ah02). Others: μ =+3.576 5Al06,1986Al33); 2.5 <i>5</i> (nuclear he structure,1997En08); +0.70 <i>8</i> 06,1986Al33).			

Continued on next page (footnotes at end of table)

¹⁴⁹Eu Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2}	XREF	Comments
				$\delta < r^2 > (^{151}\text{Eu}, ^{149}\text{Eu}) = -0.302 \text{ fm}^2 21$ (1985Al06, also 1983Al14,
				1984A135 and 1986A133). See 1992He21 for systematics of
				root-mean square charge radii.
1.10 700 8 5	7/2+			Configuration= $\pi d_{5/2}$.
149.732°C 5	1/2+	0.32 ns 2	ABC EFG IJKL	J^{n} : M1+E2 γ to 5/2 ⁺ ; L(p,t)=4 from 5/2 ⁺ .
150 1	1/2+		E.C.	$I_{1/2}$: γ ce(t) (1962Be20).
438 4 459 826 8	$\frac{1}{2}$ $(3/2 5/2)^+$		A fG T I	J^{*} : L('He,u)=0; $\pi s_{1/2}$ state. I^{π} : M1(+F2) γ to $5/2^+$: L (α t)=(2)
406 380 [#] 6	(3/2, 3/2) 11/2 ⁻	2 15 45 5		y = 170.3 (1080 K107.2020 stZV)
490.369 0	11/2	2.45 µ8 5	ADC EFG IJ L	$\mu = +7.0.5$ (1980K107,2020S1ZV) μ : differential PAD method (1980K107,1979K102) Other: +6.11
				<i>17</i> (1970K107). 1980K107 (also 1979K102) used their
				experimentally determined paramagnetic correction, while
				1970Kl07 used theoretical value from 1964GuZZ.
				J^{π} : M2+E3 γ to 7/2 ⁺ , E3 γ to 5/2 ⁺ ; L(³ He,d)=5.
				Configuration= $\pi n_{11/2}$.
				$1_{1/2}$: $\gamma\gamma(t)$ III γ Od ε (1970K107 1969Iv02 1962Pr06 1961Be08 1961So04)
534.296 [@] 5	7/2+			I^{π} : M1(+F2) γ to 5/2 ⁺ : F1 γ from 9/2 ⁻
666 201 & 6	0/2+			J^{π} : M1 or to $7/2^+$ E1 + M2 or from $0/2^-$: AL=2. E2 or to $5/2^+$
691.8? <i>3</i>	$\frac{9}{2}$ (3/2.5/2.7/2)		ADC GIJKL	J^{π} : $\Lambda J=0.1 \gamma$ to $(3/2.5/2)^+$, $J=1/2$ not allowed by observed
071101 0	(0/=,0/=,1/=)		-	anisotropy.
748.602 6	7/2-		A EGIJL	J^{π} : E1+M2 γ to 5/2 ⁺ ; E2 γ to 11/2 ⁻ .
754 <i>3</i>	5/2+		K	J^{π} : L(p,t)=0 from 5/2 ⁺ .
767 4	1/2+		EF	J^{π} : L(³ He,d)=0.
$7/6.69\ 10$	(3/2 to 9/2)		A K	J [*] : γ to 5/2 ⁺ ; weak ε feeding (log $ft=10.1$) from $1/2$.
793.030 /	9/2		ADC GIJL	J. ET γ to $1/2$ (149.7 level), M1+E2 γ to $11/2$.
198.934 15	(9/2)		AB GIJKL	$\Delta J = 1$, (M1) γ to $7/2$; possible band member; (M2) assignment proposed by 1996Vv02 for 798 9v is inconsistent
812.631 7	5/2+		A EFG I KL	J^{π} : M1(+E2) γ to 7/2 ⁺ : L(³ He.d)=2.
875.939 10	5/2+		A EFG KL	J^{π} : L(p,t)=0 from 5/2 ⁺ .
910.88 <mark>&</mark> <i>3</i>	$11/2^{+}$		ABC GIJL	J^{π} : $\Delta J=2$, E2 γ to 7/2 ⁺ ; dipole γ to 9/2 ⁺ .
913 <i>3</i>	3/2+,5/2+		E K	J^{π} : L(³ He,d)=2.
933.120 8	$(9/2)^+$		A GIKL	J ^{π} : E2 γ to 5/2 ⁺ ; (M1,E2) γ to 9/2 ⁺ ; (E1+M2) γ to 9/2 ⁻ ; γ
025.2	$(1/2^{+})$			to $11/2^{-}$.
955 5	$(1/2^{+})$		EF K	$\pi_{1} I (^{3}H_{2} d) = 0$
938 609 6	7/2+		A GT kL	I^{π} : M1+E2 γ to 5/2 ⁺ : M1+E2 γ to 9/2 ⁺
952.667 18	$(3/2^+ \text{ to } 9/2^+)$		A	J^{π} : γ s to $5/2^+$ and $7/2^+$.
955 <i>3</i>	5/2+		K	J^{π} : L(p,t)=0 from 5/2 ⁺ .
992.203 10	$(3/2^+ \text{ to } 9/2^+)$		Α	J ^{π} : γ to 5/2 ⁺ ; weak ε feeding (log <i>ft</i> =9.2) from 7/2 ⁻ .
994.79 [#] 6	(15/2)-		BC GIJL	$J^{\pi}: \Delta J=2, E2 \gamma 11/2^{-}.$
1012.594 10	(5/2,7/2,9/2)		A G	J^{π} : γ s to 5/2 ⁺ and 7/2 ⁺ ; log <i>ft</i> =8.4 from 7/2 ⁻ . Negative parity
				is suggested by (M2) γ to $1/2^{\circ}$, but multipolarity of this γ is considered suspect
1059.68 22	$(9/2^{-}, 11/2, 13/2^{-})$		BC L	J^{π} : γ to $9/2^{-}$: γ from (13/2 ⁻).
1064 3	$(5/2^+)$		K	J^{π} : L(p,t)=(0) from 5/2 ⁺ .
1097.590 10	(9/2)-		A GI	J^{π} : E1 γ s to 7/2 ⁺ and 9/2 ⁺ ; γ to 11/2 ⁺ .
1135 4			EF	J^{π} : L(³ He,d)=4,(5) suggest a doublet with $J^{\pi}=7/2^{+},9/2^{+}$ and
1150 2	5/2+		77	$J^{n} = 9/2^{-}, 11/2^{-}.$
1150 5	S/Z^{2}		K A	J: $L=(p,t)=0$ from $5/2^{-1}$. I^{π} : weak a feeding (log $f=9.8$ log $f^{10}t<9.5$) from $7/2^{-1}$
1103.04 3 1177.32 ^{<i>a</i>} 6	(3/2,7/2,9/2) $(13/2^{-})$		л В GTI	J. weak ε recurling (log μ = 0.0, log μ = (0.3) from $\mu/2$. J ^{π} : AJ=1 γ to $11/2^{-1}$: γ to $9/2^{-1}$: dipole γ to $(15/2)^{-1}$
$118453^{@}7$	$(11/2^+)$		B C KI	XRFF K(1190)
1101.55 /	(11/2)			J^{π} : γ s to $7/2^+$ and $9/2^+$; probable band member.

Continued on next page (footnotes at end of table)

¹⁴⁹Eu Levels (continued)

E(level) [†]	J ^{π‡}	XREF	Comments
1207.72 3	(5/2,7/2,9/2)	A K	XREF: K(1212).
1220.56 10	5/2+	A EF K	J^{π} : γ s to $5/2^+$ and $7/2^+$; weak ε feeding (log <i>ft</i> =8.9, log $f^{4u}t < 8.5$) from $7/2^-$. XREF: K(1226).
			J^{π} : L(p,t)=0 from 5/2 ⁺ . Also L=2 from (³ He,d)/(α ,t) ratio.
1231.253 9	9/2-	A	J^{π} : M1(+E2) γ s to 11/2 ⁻ and 7/2 ⁻ .
1246.41 5	(5/2,7/2,9/2)	A	J^{n} : γ s to $5/2^{+}$ and $7/2^{+}$; weak ε feeding (log <i>ft</i> =8.4) from $7/2^{-}$.
1294 5	5/2+	FF K	I^{π} . I (n t)=0 from 5/2 ⁺
$1312 + 1332 57 \times 7$	$(13/2^+)$		J^{π} : dipole of to $11/2^{+}$
1356.3	(13/2)	K GIL	J . upole <i>y</i> to 11/2 .
1398 4	$1/2^{+}$	EF	J^{π} : L(³ He,d)=0.
1440 4	1/2+	EF K	J^{π} : L(³ He,d)=0.
1471.75 [@] 20	$(13/2^+)$	B G	J^{π} : $\Delta J=2$, (E2) γ to (9/2 ⁺).
1495 4	3/2+,5/2+	Ef	J^{π} : L(³ He,d)=2.
1503.5 <i>3</i>	$(11/2^{-})$	fG K	J^{π} : L(α ,t)=(5), possibly h _{11/2} orbital.
1529.05 ^b 8	$(15/2)^+$	BC G L	J ^π : ΔJ=0, E1 γ to (15/2) ⁻ ; ΔJ=1 γ to (13/2 ⁻).
1538 4	$1/2^{+}$	EF	$J^{\pi}: L(^{3}He,d)=0.$
1550 3		K	
1595 4		E	-
1610.13" 11	$(19/2)^{-}$	BCGIJL	J^{π} : $\Delta J=2$, E2 γ to $(15/2)^{-}$.
1625 4		E	
1650 47 <mark>&</mark> 8	$(15/2^{+})$		$I\pi$: A I-2 or to 11/2 ⁺
1680 4	(15/2)	F	$J': \Delta J = 2 \gamma (0 11/2 .$
1718? 4	$(7/2^+, 9/2^+)$	F	J^{π} : L(α ,t)=(4).
1743.8 <mark>&</mark> 6	$(15/2^+)$	В	J^{π} : γ to $11/2^+$.
1752 4	(E	
1764.62 ^a 13	$(17/2^{-})$	B G L	J^{π} : $\Delta J=1$, (M1+E2) γ to (15/2) ⁻ .
1819 4		EF	
1833.9 ^{^w} 3	$(15/2^+)$	В	J^{π} : γ s to (11/2 ⁺) and (13/2 ⁺).
1857 4		E	
1890 4 1898 977 ^C 24	$(17/2^+)$	R	I^{π} : γ to $(15/2)^{-1}$
1945 4	(17/2)	E	<i>s</i> · <i>f</i> to (15/2) .
1998.48 <mark>&</mark> 21	$(17/2^+)$	В	J^{π} : $\Delta J=(2) \gamma$ to $(13/2^+)$: γ to $(15/2^+)$.
1999.40 ^b 16	$(19/2)^+$	BC G I.	$I^{\pi}: AI=2$, E2 γ to $(15/2)^+: E1 \gamma$ to $(19/2)^-$.
2029 4	(1)]=)	E	
2060 4		E	
2062.60 ^{&} 24	$(17/2^+)$	В	J^{π} : γ s to (13/2 ⁺) and (15/2 ⁺).
2092 4		E	
2118 4		E	
2144 4		E	
2180.84 20	$(19/2^{-})$	B	I^{π} : $\Lambda I = (2) \gamma$ to $(15/2)^{-1}$: (M1) γ to $(19/2)^{-1}$
2199 4	(E	
2247.0 ^{&} 6	(19/2+)	В	$19/2^+$ band member is 2247 or 2396 level. J^{π} : γ s to $(15/2^+)$ and $(17/2^+)$.
2335 78 [#] 18	$(23/2)^{-}$	BC G I	I^{π} : $\Lambda I=2$ E2 γ to 1610 (19/2) ⁻
2342.75 ^c 20	$(21/2)^+$	BC L	J^{π} : $\Delta J=1$, M1+E2 γ to 1999.3, (19/2) ⁺ ; dipole γ to 1610. (19/2) ⁻ .
2396.27 ^{&} 25	$(19/2^+)$	В	J^{π} : $\Delta J=(2) \gamma$ to 1659, $(15/2^+)$; γ to 1998.9, $(17/2)^+$.
2453.40 ^{<i>a</i>} 22	$(21/2^{-})$	B	J^{π} : γ s to $(17/2^{-})$ and $(19/2)^{+}$.
2497.10 20	$(23/2)^{-}$	BC L	J^{π} : $\Delta J=2$, E2 γ from 2752, (27/2) ⁻ ; γ to (23/2) ⁻ .

Continued on next page (footnotes at end of table)

¹⁴⁹Eu Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	X	REF	Comments
2562.16 ^b 20	$(23/2)^+$		BC	L	J^{π} : $\Delta J=2$, E2 γ to $(19/2)^+$; E1 γ to $(23/2)^-$.
2576.84 19	$(25/2)^{-}$		BC	GJL	J ^π : Δ J=1, dipole γ to (23/2) ⁻ ; M1 γ from 2752, (27/2) ⁻ .
2609.1 ^{&} 3	$(21/2^+)$		В		J ^π : Δ J=1, D+Q γ to (19/2 ⁺); γ to (17/2 ⁺).
2752.10 ^d 22	$(27/2)^{-}$		BC	JL	J^{π} : $\Delta J=2$, E2 γ from 3428, $(31/2)^{-}$; γ to $(25/2^{-})$.
2828.16 ^C 21	$(25/2)^+$		В		J ^π : ΔJ=1, E1 γ to $(23/2)^{-}$; ΔJ=(2) γ to $(21/2)^{+}$.
3144.02 [#] 24	$(27/2)^{-}$		В		J ^π : ΔJ=2, E2 γ to $(23/2)^{-}$; γ to $(25/2^{+})$.
3218.90 ^b 25	$(27/2)^+$		В		J^{π} : $\Delta J=2$, E2 γ to $(23/2)^+$; γ to $(25/2^+)$.
3249.16 [°] 24	$(29/2)^+$		В		J ^π : ΔJ=2, E2 γ to $(25/2)^+$; γ to $(27/2^-)$.
3427.8 ^d 3	$(31/2)^{-}$		В		J ^π : ΔJ=1, E1 γ from $(33/2)^+$; ΔJ=2, E2 γ to $(27/2)^-$.
3442.6 3	(29/2)		В		J^{π} : $\Delta J=2$, E2 γ to $(25/2)^{-}$.
3542.6 ^e 3	$(31/2)^+$		В		J^{π} : $\Delta J=(2)$, (E2) γ to $(27/2)^+$; $\Delta J=1$, M1 γ to $(29/2)^+$.
3616.3° 3	$(33/2)^{+}$		В		$J^*: \Delta J=2, E2 \gamma \text{ to } (29/2)^+; \gamma \text{ to } (31/2)$.
3950.6 [#] 3	$(31/2^{-})$		В		$J^{n}: \Delta J = (2) \gamma \text{ to } (27/2)^{-}.$
3991.6 ⁰ 4	$(31/2^+)$		В		$J^{\pi}: \Delta J = (2) \gamma \text{ to } (27/2)^+.$
4099.9° 4	(33/21)		В		$J^{n}: \Delta J=2, (E2) \gamma$ to $(29/2)^{+}$.
4188.5 ^{<i>a</i>} 4	$(35/2)^{-}$		B		$J^{n}: \Delta J=2, E2 \gamma \text{ to } 3428, (31/2)^{-}.$
4222.5° 4	$(35/2)^{-}$		B		$J^{*}: \Delta J = 2, E2 \gamma \text{ to } (31/2)^{*}.$ $I^{\pi}: \Delta J = (2) \gamma \text{ to } (20/2)^{-}$
$4359.8^{e}.4$	$(35/2)^+$		B		I^{π} : $\Delta I = 2$ $E^{2} \gamma$ to $(33/2)^{+}$: γ to $(35/2)^{-}$
4404.3 4	$(33/2^{-})$		B		J^{π} : $\Delta J = (2) \gamma$ to $(29/2)^{-}$.
4422.4 4	(33/2-)		В		J^{π} : $\Delta J = (2) \gamma$ to $(29/2)^{-}$.
4684.6 [#] 3	(35/2-)		В		E(level): the 35/2 band member is 4685 or 4705 level. $I^{\pi} \cdot \Delta I = (2) \propto t_0 (31/2)^{-1} \propto t_0 (35/2^{-1})$
4705.3 4	(35/2)		В		J^{π} : γ s to $(31/2)^{-}$ and $(31/2^{-})$.
4970.0 ^e 5	$(39/2)^+$		В		J^{π} : $\Delta J=2$, E2 γ to $(35/2)^+$.
4995.3 [°] 5	$(37/2^+)$		В		J^{π} : $\Delta J=(2) \gamma$ to $(33/2^{+})$.
5049.8 ^e 5	$(41/2)^+$		В		J^{π} : $\Delta J=2$, E2 γ to $(37/2)^+$.
5070.2 5	$(35/2,37/2,39/2^{-})$		B		J^{n} : γ to $(35/2^{-})$.
5338 2 5	(37/2) (39/2)		BR		J^{*} : $\Delta J = 1 \gamma to (33/2)$. I^{π} : $\Delta J = (2) \gamma to (35/2)^{-1}$
5373 02 [#] 5	(39/2) $(30/2^{-})$		R		I^{π} : $\Delta J = (2)^{\pi} V (35/2)^{\pi}$. I^{π} : $\Delta t_{0} (35/2)^{-}$): probable hand member
5538 6 ^e 6	$(35/2)^+$		B		I^{π} : $\Lambda I=2$ E2 γ to $(41/2)^{+}$
5607.8 5	(39/2)		B		J^{π} : $\Delta J = (2) \gamma$ to $(35/2)^{-}$.
5963.4 6	(41/2)		В		J^{π} : $\Delta J = (2) \gamma$ to (37/2); γ to (39/2).
6030.2? 11	(43/2)		В		J^{π} : γ to (39/2).
6289.1 ^e 6	(47/2)		В		J^{π} : $\Delta J = 1 \gamma \text{ to } (45/2)^+$.
6809.4 ^e 6	(49/2)		B		J^{π} : γ to $(45/2)^+$; possible band member.
6996.8° /	(51/2) (45/2) $(45/2)$ $(45/2)$ $(45/2)$		В		J [*] : $\Delta J = 2$, (E2) γ to (4//2). I ^{π} : α to (45/2) ⁺
7684.1^{e} 7	(45/2, 47/2, 49/2)		B		J^{π} : $\Lambda I=(2) \gamma to (51/2)$
14287	$(7/2^{-})$	102 keV	D		J^{π} : analog of $7/2^{-}$, g.s. in ¹⁴⁹ Sm and L=3.
14635	$(3/2^{-})$		р		1 ITOM 196/J004. M_{\star} analog of $3/2^{-}$ 350 in ¹⁴⁹ Sm
14804	$(3/2^{-})$	≈50 keV	ע		I^{π} : analog of $3/2^{-}$, 528 in ¹⁴⁹ Sm and I -1
1 1007		~50 KU V	U		Γ from 1967Jo04.
15002	$(1/2^-, 3/2^-)$		D		J^{n} : analog of (3/2) ⁻ , 696 or (3/2 ⁻ ,5/2 ⁺), 710 in ¹⁴⁹ Sm. Also L=(1).
15310	$(1/2^-, 3/2^-)$		D		J^{π} : L=(1).
15449	(5/2-)		D		J^{π} : analog of 5/2 ⁻ , 1187 in ¹⁴⁹ Sm and L=(3).
15787			D		

¹⁴⁹Eu Levels (continued)

- [†] From a least-squares fit to $E\gamma$ data for levels populated in γ -studies, assuming $\Delta E\gamma$ =0.3 keV for $E\gamma$ values quoted to tenth of a keV and 1 keV otherwise, where not available. For levels known only from particle transfer reactions, weighted averages have been taken where more than one value is available.
- [‡] Above 1250, for levels populated in in-beam γ -ray studies (generally J>11/2), together with supporting $\gamma(\theta)$, $\gamma\gamma(\theta)$ (DCO ratios) and $\gamma(\text{lin pol})$ data, ascending spins are assumed as as the excitation energy increases (which is consistent with the decay pattern of the levels). Also, probable band assignments are used in several cases where angular data do not give unique values.
- [#] Band(A): $\pi h_{11/2} \otimes ({}^{148}$ Sm core). Octupole correlations are indicated by E3 transitions to $\pi d_{5/2}$ and $\pi g_{7/2}$ states from the $11/2^{-1}$ bandhead.
- [@] Band(B): $\pi d_{5/2} \otimes (^{150}$ Gd core).
- & Seq.(H): Sequence based on 149.7, 7/2⁺ level. The 149.7, 7/2⁺ level is interpreted by 1994Ur01 with configuration of $\pi g_{7/2} \otimes (^{150}\text{Gd core})$.
- ^{*a*} Band(C): Decoupled $\pi h_{11/2}$ band.
- ^{*b*} Band(D): $\pi h_{11/2} \otimes (3^{-})$ octupole band #1.
- ^{*c*} Band(E): $\pi h_{11/2} \otimes (3^{-})$ octupole band #2.
- ^d Band(F): $\pi h_{11/2} \otimes \nu (h_{9/2} f_{7/2})_{8+}$. The 35/2⁻ member may be maximum aligned state.
- ^e Band(G): Multi-particle band based on 31/2⁺.

					Adopted	Levels, Gan	nmas (continued)					
	$\gamma(^{149}\text{Eu})$											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult.‡	δ^{\ddagger}	α #	Comments			
149.732	7/2+	149.730 10	100	0.0	5/2+	M1+E2	0.14 3	0.587 8	B(M1)(W.u.)=0.0127 8; B(E2)(W.u.)=6.1 +29-24			
459.826 496.389	(3/2,5/2) ⁺ 11/2 ⁻	459.819 <i>10</i> 346.650 <i>10</i>	100 100.0 <i>6</i>	0.0 149.732	5/2 ⁺ 7/2 ⁺	M1(+E2) M2+E3	<0.4 -0.075 <i>25</i>	0.0281 <i>9</i> 0.2326 <i>33</i>	 δ: from L-subshell ratios in ¹⁴⁹Gd ε. B(M2)(W.u.)=0.0686 14; B(E3)(W.u.)=2.7 +21-15 			
534.296	7/2+	496.385 <i>10</i> 384.539 <i>10</i>	6.988 <i>35</i> 2.44 <i>6</i>	0.0 149.732	5/2 ⁺ 7/2 ⁺	E3 D		0.0392 5	δ: from L-subshell ratios in ¹⁴⁹ Gd ε. B(E3)(W.u.)=2.71 6 I _γ : others: 27 7 in (¹³ C,3nγ) and 9 <i>I</i> (p.2nγ) seems discrepant			
666.291	9/2+	534.294 <i>10</i> 132.004 <i>10</i>	100.0 8 3.35 18	0.0 534.296	5/2 ⁺ 7/2 ⁺	M1(+E2) M1	<0.4	0.0192 6 0.837 <i>12</i>	I_{γ} : others: 25 <i>12</i> in (¹³ C,3n γ) and 6.3 <i>16</i> in (d 2n γ)			
		516.550 <i>10</i> 666.289 <i>10</i>	100.0 <i>14</i> 32.46 <i>23</i>	149.732 0.0	7/2 ⁺ 5/2 ⁺	M1+E2 E2	0.75 +27-24	0.0182 <i>14</i> 0.00649 <i>9</i>	Mult., δ : from ce data in ¹⁴⁹ Gd ε , δ (E2/M1)>1.3. From $\gamma(\theta)$ in (p,4n γ) mult=Q. I γ : others: 45 <i>I</i> in (d,2n γ), 87 25 in (¹³ C.3n γ).			
691.8? 748.602	(3/2,5/2,7/2) 7/2 ⁻	232.0 82.33 8 214.275 <i>13</i> 252.210 <i>10</i> 598 89 5	100 0.064 <i>12</i> 2.36 <i>5</i> 3.28 <i>7</i> 0.243 <i>17</i>	459.826 666.291 534.296 496.389 149.732	(3/2,5/2) ⁺ 9/2 ⁺ 7/2 ⁺ 11/2 ⁻ 7/2 ⁺	D [E1] (E1) E2		0.479 7 0.0365 5 0.1006 14	δ(E2/M1)>1.7.			
776.69	(3/2 to 9/2)	748.604 <i>10</i> 776.69 <i>10</i>	100.0 <i>12</i> 100	0.0	5/2 ⁺ 5/2 ⁺	E1+M2	+0.041 13	0.00194 4	δ : from $\gamma(\theta, T)$ in ¹⁴⁹ Gd ε .			
795.030	9/2-	128.74 2 260.736 10 298.633 10 645.315 10	0.133 9 4.66 5 100.0 5 5.27 3	666.291 534.296 496.389 149.732	9/2 ⁺ 7/2 ⁺ 11/2 ⁻ 7/2 ⁺	E1+M2 E1 M1+E2 E1	0.18 <i>6</i> +0.15 <i>2</i>	0.36 <i>16</i> 0.02189 <i>31</i> 0.0884 <i>13</i> 0.00259 <i>4</i>	δ: from $\gamma(\theta, T)$ in ¹⁴⁹ Gd ε .			
798.934	(9/2+)	794.7 [@] 264.66 <i>4</i> 302.58 [@] <i>3</i> 649.11 <i>7</i>	<0.0035 77 9 25 4 27 5	0.0 534.296 496.389 149.732	5/2 ⁺ 7/2 ⁺ 11/2 ⁻ 7/2 ⁺	(M1)		0.1229 17				
812.631	5/2+	798.91 2 278.31 <i>3</i> 352.80 2	100 <i>4</i> 28 <i>4</i> 14.5 <i>10</i>	0.0 534.296 459.826	$5/2^+$ $7/2^+$ $(3/2,5/2)^+$	[M1,E2] [M1,E2]		0.090 <i>17</i> 0.046 <i>11</i>	Mult.: (M2) proposed by 1996Vy02 in 149 Gd ε decay.			
		662.902 <i>10</i> 812.630 <i>10</i>	100.0 <i>17</i> 52.5 <i>9</i>	149.732 0.0	7/2 ⁺ 5/2 ⁺	M1(+E2) M1,E2	<0.85	$\begin{array}{c} 0.0105 \ 10 \\ 0.0055 \ 14 \end{array}$	I _{γ} : from ¹⁴⁹ Gd ε . Value of 16 4 in (d,2n γ) is too low.			
875.939	5/2+	127.1 [@]	<0.95	748.602	7/2-	[E1]		0.1483 21	15 too 10w.			

6

 $^{149}_{63}\mathrm{Eu}_{86}$ -6

	Adopted Levels, Gammas (continued)												
	γ ⁽¹⁴⁹ Eu) (continued)												
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α #	Comments				
875.939	5/2+	341.65 5 416.08 3 726.21 <i>I</i>	50.2 <i>35</i> 15.4 <i>5</i> 52.4 <i>16</i>	534.296 459.826 149.732	$7/2^+$ $(3/2,5/2)^+$ $7/2^+$ $5/2^+$	[M1,E2] [M1,E2] M1(+E2)	< 0.65	0.051 <i>12</i> 0.030 <i>8</i> 0.0086 <i>6</i> 0.00572 <i>13</i>					
910.88	11/2+	873.91 <i>4</i> 244.55 6	20.5 8	666.291	9/2+	D	<0.5	0.00575 75	I _{γ} : from (d,2n γ) and (d,3n γ). I γ =77 18 in (¹³ C,3n γ); 59 5 (p,2n γ) seem too high. This γ is not reported in ε decay, probably because it is too weak to be detected.				
933.120	(9/2)+	761.12 5 138.10 <i>I</i> 184.51 <i>I</i> 266.91 7 398.82 <i>I</i> 436.62 <i>I</i> 7	100 <i>3</i> 12.7 <i>9</i> 7.8 <i>3</i> 3.9 <i>11</i> 7.18 <i>18</i> 3.3 <i>5</i>	149.732 795.030 748.602 666.291 534.296 496.389	7/2 ⁺ 9/2 ⁻ 7/2 ⁻ 9/2 ⁺ 7/2 ⁺ 11/2 ⁻	E2 (E1+M2) (E1+M2) (M1,E2) [M1,E2]	0.18 <i>4</i> 0.25 <i>5</i>	0.00476 7 0.29 8 0.17 4 0.102 18 0.033 8	I_{γ} : from (d,2n γ).				
938.609	7/2+	783.45 ^{^w} 10 933.06 7 125.98 1 139.74 8	1.24 <i>16</i> 100.0 <i>8</i> 2.00 <i>4</i> 0.19 <i>2</i>	149.732 0.0 812.631 798.934	$7/2^+$ $5/2^+$ $5/2^+$ $(9/2^+)$	E2 M1,E2		0.00303 <i>4</i> 1.01 <i>5</i>	δ(E2/M1)>1.4.				
		189.7 [@] 272.320 <i>10</i> 404.299 <i>10</i> 478.78 <i>2</i>	<0.03 44.0 7 2.69 3 2.80 4	748.602 666.291 534.296 459.826	7/2 ⁻ 9/2 ⁺ 7/2 ⁺ (3/2,5/2) ⁺	[E1] M1+E2 M1,E2 E2(+M1)	0.33 +12-8	0.0504 7 0.1104 29 0.032 8 0.0153 4					
952.667	(3/2 ⁺ to 9/2 ⁺)	788.875 <i>10</i> 938.616 <i>10</i> 418.56 <i>21</i> 492.88 <i>6</i> 802.93 <i>2</i> 952.65 <i>4</i>	100.0 <i>10</i> 33.1 <i>3</i> 11.5 <i>14</i> 39.7 <i>27</i> 100 <i>4</i> 26.3 <i>25</i>	149.732 0.0 534.296 459.826 149.732 0.0	$7/2^+$ $5/2^+$ $7/2^+$ $(3/2,5/2)^+$ $7/2^+$ $5/2^+$	M1+E2 M1+E2	-5 2 1.0 +10-5	0.00451 <i>20</i> 0.0040 <i>6</i>	δ : from $\gamma(\theta, T)$ in ¹⁴⁹ Gd ε .				
992.203	$(3/2^+ \text{ to } 9/2^+)$	842.29 [@] 10 992.201 10	16.5 <i>15</i> 100.0 <i>27</i>	149.732 0.0	7/2 ⁺ 5/2 ⁺								
994.79	(15/2)-	498.45 6	100	496.389	11/2-	E2		0.01349 19					
1012.594	(5/2,7/2,9/2)	213.39 8 478 27 10	5.1 <i>11</i> 27 5	798.934	$(9/2^+)$ $7/2^+$				E_{γ} : poor fit.				
		552.761 <i>16</i> 862.862 <i>12</i>	100.0 28 76.8 11	459.826 149.732	$(3/2,5/2)^+$ $7/2^+$	(E2(+M1))	>0.4	0.0137 <i>34</i>	Mult.: (M2) assignment is suspect since it is inconsistent with $\Delta J=0,1$ which would favor E1 over M2.				
1059.68 1097.590	(9/2 ⁻ ,11/2,13/2 ⁻) (9/2) ⁻	1012.61 2 264.6 3 186.67 4 349.04 10	26.0 8 100 1.02 8 6.9 7	0.0 795.030 910.88 748.602	5/2+ 9/2- 11/2+ 7/2-	[E1] [M1,E2]		0.0526 7 0.048 <i>12</i>	E_{γ} : from (p,4n γ).				

7

					Adopted Levels, C	Gammas (cor	ntinued)	
					(continued)				
E _i (level)	${ m J}^{\pi}_i$	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	α [#]	Comments
1097.590	(9/2)-	431.297 12	7.37 15	666.291 534.296	9/2 ⁺ 7/2 ⁺	E1		0.00633 9	
		601.201 <i>15</i> 947.858 <i>19</i>	6.17 <i>13</i> 100.0 <i>15</i>	496.389 149.732	$11/2^{-}$ $7/2^{+}$	(M1) E1		$0.01468 \ 21$ $1.20 \times 10^{-3} \ 2$	
1165.04	(5/2)7/2)9/2	$1097.54^{@}$ 1015.30_3	<0.2	0.0	5/2 ⁺ 7/2 ⁺				
1177.32	$(13/2^{-})$	117.6 182.7 <i>I</i>	9 <i>3</i> 283	1059.68	$(9/2^{-},11/2,13/2^{-})$ $(15/2)^{-}$	D			$E_{\rm eff}$: from (d 2ny)
		102.71	20 5	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	(15/2)	D			I_{γ} : weighted average of 25.0 94 from ($^{13}C,3n\gamma$), 28.9 11 from (d,2n γ), 17.6 44 from (p,2n γ), and 22.4 78 from (p,4n γ).
		382.5 <i>3</i> 680.88 <i>6</i>	22 6 100 4	795.030 496.389	9/2 ⁻ 11/2 ⁻	D+Q			E_{γ}, I_{γ} : from (d,2n γ). Others: $I\gamma$ =100 13
									in $({}^{13}C, 3n\gamma)$, 100 7 in $(p, 2n\gamma)$, 100 10 in $(p, 4n\gamma)$.
1184.53	$(11/2^+)$	385.7 1	76 4	798.934	(9/2+)	D			E_{γ}, I_{γ} : from (d,2n γ). Other: I_{γ} =58 25 in (¹³ C,3n γ).
		518.5 650.1 <i>1</i>	50 <i>17</i> 100 <i>4</i>	666.291 534.296	9/2 ⁺ 7/2 ⁺				E_{γ}, I_{γ} : from (d,2n γ).
1207.72	(5/2,7/2,9/2)	673.43 <i>3</i> 1207.70 <i>7</i>	100 <i>13</i> 34 <i>3</i>	534.296 0.0	7/2 ⁺ 5/2 ⁺				
1220.56	5/2+	421.59 <i>18</i> 1220.57 <i>12</i>	100 <i>15</i> 22.2 <i>14</i>	798.934 0.0	$(9/2^+)$ $5/2^+$				
1231.253	9/2-	436.24 3	34.5 15	795.030 748.602	9/2 ⁻ 7/2 ⁻	(M1) M1(+F2)	<2	0.0331 5	
		734.86 1	100.0 23	496.389	$11/2^{-}$ $7/2^{+}$	M1(+E2)	<2	0.0074 15	
1246 41	(5/2 7/2 0/2)	1231.2 2	0.27 8	0.0	5/2 ⁺	[M2]		0.00617 9	
1240.41	(3/2, 1/2, 9/2)	1246.38 8	100 5	0.0	$5/2^+$				
1333.57	$(13/2^+)$	149.2 422.67 7	33 8 75 25	910.88	$(11/2^+)$ $11/2^+$	D			E_{γ} : from (d,2n γ).
1471.75	(13/2 ⁺)	667.1 5 287.2	100 25 57 29	666.291 1184.53	$9/2^+$ (11/2 ⁺)	0			E_{γ} : from (p,4n γ).
1503.5	$(11/2^{-})$	672.9 708.5 <i>3</i>	100 29	798.934	$(9/2^{-1})$ $9/2^{-1}$	Q			E_{γ} : from (d.2n γ).
1529.05	$(15/2)^+$	351.7 2	48 6	1177.32	(13/2 ⁻)	D			E_{γ} : from (d,2n γ).
		534.27 6	100 7	994.79	$(15/2)^{-}$	E1		0.00389 5	E_{γ} : from (d,2n γ).
1610.13	(19/2) ⁻	615.15 <i>12</i>	100	994.79	(15/2) ⁻	E2		0.00788 11	E_{γ} : weighted average of 614.9 2 from (⁶ Li,3nγ), 615.05 8 from (d,2nγ), 615.50 <i>15</i> from (d,3nγ), and 615.4 2 from (p,4nγ).

 ∞

$\gamma(^{149}$ Eu) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α [#]	Comments
1659.47	$(15/2^+)$	325.6 5	27 13	1333.57 (13	$3/2^+$)			E_{γ} : from (d,2n γ).
		748.60 7	100 27	910.88 11	$/2^+$ (Q		E_{γ} : from (d,2n γ).
1743.8	$(15/2^+)$	410	100 25	1333.57 (13	$3/2^+$)	-		
		833	50 <i>13</i>	910.88 11	$/2^{+}$			
1764.62	$(17/2^{-})$	154.2 2	45 17	1610.13 (19	9/2)-			E_{γ} : from (d,2n γ).
								I _{γ} : weighted average of 33 <i>17</i> from (¹³ C,3n γ) and 59 <i>19</i> from (p,4n γ).
		235.8	25 8	1529.05 (15	5/2)+			
		587.7	50 17	1177.32 (13	3/2-)			
		769.9 2	100 25	994.79 (15	5/2)- ((M1+E2)	0.0063 17	E_{γ} : from (d,2n γ).
1833.9	$(15/2^+)$	362.2	80 40	1471.75 (13	$3/2^+$)			
		500	60 20	1333.57 (13	$3/2^{+})$			
		649	100 40	1184.53 (1)	1/2)			
1898.97?	$(17/2^+)$	371	60 20	1529.05 (15	5/2)+			
1000.40	(17/2+)	904.3	100 20	994.79 (15	$5/2)^{-}$			
1998.48	$(1^{7}/2^{+})$	339.2	40 20	1659.47 (13	$5/2^+$)	$\langle \mathbf{O} \rangle$		
1000 40	$(10/2)^{+}$	004.8	100 40	1333.57 (13	$3/2^{+})$ ((Q) D		
1999.40	$(19/2)^{-1}$	234.7	20 2	1/04.02 (1)	1/2) 1 $0/2)^{-1}$ 1	D E1	0 00007 11	E + from (d 2m)
		389.3 Z	33 4 100 7	1010.15 (15	9/2) I 5/2)+ I	E1 E2	0.00807 11	E_{γ} : from $(n, 2n\gamma)$.
2062 60	$(17/2^{+})$	470.4 5	100 /	1833.0 (15	5/2 1 $5/2^+$		0.01370 23	L_{γ} . Hom (p,4m)).
2002.00	(17/2)	319	100 40	1743.8 (14	$5/2^+$			
		729.0	100 40	1333.57 (13	$3/2^+$			
2180.84	$(19/2^{-})$	570.8	78 33	1610.13 (19	$9/2)^{-}$ ((M1)	0.01672 23	
		1186.2	100 22	994.79 (15	5/2)- ((0)		
2247.0	$(19/2^+)$	184	100 40	2062.60 (17	$7/2^+$)			
		503	80 40	1743.8 (15	$5/2^{+})$			
		588	80 40	1659.47 (15	$5/2^{+})$			
2335.78	$(23/2)^{-}$	725.6 2	100	1610.13 (19	9/2) ⁻ I	E2	0.00531 7	E_{γ} : weighted average of 725.1 3 from (⁶ Li,3n γ), 725.9 2 from (d,2n γ), and 725.6 3 from (n,4n γ).
2342 75	$(21/2)^+$	343 5	21.5	1999.40 (10	9/2)+ I	$M1\pm F2$	0.050.11	and 725.0 5 from (p,4ny).
2342.15	(21/2)	444 0	83	1898 97? (17	$\frac{7}{2}$	WII LL2	0.050 11	
		732.2.3	100 11	1610.13 (19	$9/2)^{-1}$	D		$F : from (^{6}I i 3n_{2})$
2396 27	$(19/2^{+})$	334	43 14	2062.60 (17	$7/2^+$	D		
2370.27	(1)/2)	398	57 14	1998.48 (17	$7/2^+$			
		736.7	100 29	1659.47 (15	$5/2^+$) ((0)		
2453.40	$(21/2^{-})$	454.0	80 40	1999.40 (19	$9/2)^{+}$			
		689.0	100 40	1764.62 (17	$7/2^{-}$)			
2497.10	$(23/2)^{-}$	161.5	4.4 9	2335.78 (23	3/2) ⁻ I	D+Q		
		316.5	3.5 9	2180.84 (19	9/2-)			
		886.8 <i>3</i>	100 4	1610.13 (19	9/2)- ((E2)	0.00338 5	E_{γ} : from (⁶ Li,3n γ).
2562.16	$(23/2)^+$	109.0	3.1 15	2453.40 (21	$1/2^{-})$			
		219	2.3 8	2342.75 (21	$1/2)^{+}$			
		226.3	4.6 15	2335.78 (23	3/2) ⁻ I	E1	0.0316 4	

From ENSDF

$\gamma(^{149}$ Eu) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments
2562.16	$(23/2)^+$	562.6.3	100.6	1999 40	$(19/2)^+$	F2	0.00985 14	$\mathbf{F} \cdot \mathbf{from} \left({}^{6}\mathbf{I} \mathbf{i} \mathbf{3n}_{2} \right)$
2576.84	$(25/2)^{-}$	79.9	0 74 25	2497 10	$(1)/2)^{-}$	L2	0.00705 14	L_{γ} . Hom (L_{γ} , S_{γ}).
2370.01	(23/2)	241.0 1	100.3	2335.78	$(23/2)^{-}$	D		$E_{\rm eff}$ from (d.2ny).
2609.1	$(21/2^+)$	212.8	100.33	2396.27	$(19/2^+)$	D+0		
200711	(==/=)	362	50 17	2247.0	$(19/2^+)$	2.2		
		610.7	83 50	1998.48	$(17/2^+)$			
2752.10	$(27/2)^{-}$	174.9.3	100.3	2576.84	$(25/2)^{-}$	M1(+E2)	0.360.22	$E_{\rm eff}$ from (⁶ Li 3ny).
2,02110	(=//=)	255.1	9.2.14	2497.10	$(23/2)^{-}$	E2	0.0970 14	2). nom (2.,0.7).
		416.5	0.8.3	2335.78	$(23/2)^{-}$		01077017	
2828.16	$(25/2)^+$	266.0	39 7	2562.16	$(23/2)^+$	M1+E2	0.103 18	
	()	485.4	23 4	2342.75	$(21/2)^+$	(O)		
		492.4	100 3	2335.78	$(23/2)^{-}$	EÌ	0.00467 7	
3144.02	$(27/2)^{-}$	316.0	8.1 16	2828.16	$(25/2)^+$			
		808.3	100 10	2335.78	$(23/2)^{-}$	E2	0.00415 6	
3218.90	$(27/2)^+$	390.6	4.8 16	2828.16	$(25/2)^+$			
		656.7	100 10	2562.16	$(23/2)^+$	E2	0.00672 9	
3249.16	$(29/2)^+$	30.3		3218.90	$(27/2)^+$			
		105.1	3.2 8	3144.02	$(27/2)^{-}$	D		
		421.0	65 <i>3</i>	2828.16	$(25/2)^+$	E2	0.02139 30	
		497.0	100 9	2752.10	$(27/2)^{-}$	(E1)	0.00457 6	
3427.8	$(31/2)^{-}$	675.7	100	2752.10	$(27/2)^{-}$	E2	0.00628 9	
3442.6	$(29/2)^{-}$	865.8	100	2576.84	$(25/2)^{-}$	E2	0.00357 5	
3542.6	$(31/2)^+$	293.3	100 4	3249.16	$(29/2)^+$	M1	0.0934 13	
		323.5	4.7 14	3218.90	$(27/2)^+$	(Q)		
3616.3	$(33/2)^+$	73.2		3542.6	$(31/2)^+$			
		188.7	100 8	3427.8	$(31/2)^{-}$	E1	0.0511 7	
		367.3	55 6	3249.16	$(29/2)^+$	E2	0.0316 4	
3950.6	$(31/2^{-})$	806.8	100	3144.02	$(27/2)^{-}$	(Q)		
3991.6	$(31/2^+)$	772.7	100	3218.90	$(27/2)^+$	(Q)		
4099.9	$(33/2^+)$	850.7	100	3249.16	$(29/2)^+$	(E2)	0.00371 5	
4188.5	$(35/2)^{-}$	760.7	100	3427.8	$(31/2)^{-}$	E2	0.00476 7	
4222.5	$(35/2)^+$	680.0	100	3542.6	$(31/2)^+$	E2	0.00619 9	
4271.6	$(33/2^{-})$	829.0	100	3442.6	$(29/2)^{-}$	(Q)		
4359.8	$(37/2)^{+}$	137.4	3.0 12	4222.5	(35/2) ⁺			
		171.4	3.5 12	4188.5	$(35/2)^{-}$			
1404.0	(22/2-)	743.3	100.6	3616.3	$(33/2)^{-1}$	E2	0.00502 7	
4404.3	$(33/2^{-1})$	961.8	100	3442.6	$(29/2)^{-1}$	(\mathbf{Q})		
4422.4	(33/2)	9/9.8	100	5442.6 4422.4	(29/2)	(Q)		
4084.0	(33/2)	202.2	JU 1/	4422.4	(33/2)			
		280.3	33 8 42 17	4404.3	(33/2)			
		490 722 0	42 17	4188.3	(33/2)			
		1256.0	100 23 58 25	3930.0 3427 0	$(31/2)^{-}$	(0)		
		1230.9	30 23	3421.0	(31/2)			

10

$\gamma(^{149}\text{Eu})$ (continued)

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	α #
4705.3	(35/2)	755.1	100 40	3950.6 (31/2-)		
		1277.0	100 40	3427.8 (31/2)-		
4970.0	$(39/2)^+$	747.5	100	4222.5 (35/2)+	E2	0.00496 7
4995.3	$(37/2^+)$	895.4	100	4099.9 (33/2+)	(Q)	
5049.8	$(41/2)^+$	690.0	100	4359.8 (37/2)+	E2	0.00598 8
5070.2	(35/2,37/2,39/2 ⁻)	385.6	100	4684.6 (35/2-)		
5168.0	(37/2)	979.5	100	4188.5 (35/2)-	D+Q	
5338.2	(39/2)	1149.7	100	4188.5 (35/2)-	(Q)	
5373.9?	(39/2 ⁻)	689.3	100	4684.6 (35/2 ⁻)		
5538.6	$(45/2)^+$	488.8	100	5049.8 (41/2)+	E2	0.01421 20
5607.8	(39/2)	1419.3	100	4188.5 (35/2)-	(Q)	
5963.4	(41/2)	356	9 <i>3</i>	5607.8 (39/2)		
		795.4	100 13	5168.0 (37/2)	(Q)	
6030.2?	(43/2)	692	100	5338.2 (39/2)		
6289.1	(47/2)	750.4	100	5538.6 $(45/2)^+$	D+Q	
6809.4	(49/2)	1270.8	100	5538.6 $(45/2)^+$		
6996.8	(51/2)	187.5	24 8	6809.4 (49/2)		
		707.7	100 24	6289.1 (47/2)	(E2)	0.00563 8
7027.6	$(45/2, 47/2, 49/2^+)$	1489.0	100	5538.6 $(45/2)^+$		
7684.1	(55/2)	687.3	100	6996.8 (51/2)	(Q)	

11

[†] From ¹⁴⁹Gd ε decay, where available, since the E γ values in this study are known more precisely than in any other γ -ray dataset. For levels populated in in-beam γ -ray studies, values are generally from ¹³⁹La(¹³C,3n γ) (1994Ur01), since this dataset provides most detailed measurements.

[‡] From ce data in ¹⁴⁹Gd ε decay, $\gamma(\theta)$ in (p,2n γ) and (p,4n γ), $\gamma($ lin pol) and $\gamma\gamma(\theta)($ DCO) in (¹³C,3n γ). For $\gamma(\theta)$ in datasets of high-spin levels, $\Delta J=2$

transitions are given as Q, but from systematics and absence of isomers, mult=E2 is more likely than M2 for all such transitions.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

16

Legend

Level Scheme (continued)

 $^{149}_{63}\mathrm{Eu}_{86}$

17

Band(G): Multi-particle band based on 31/2⁺ (55/2) 7684.1 687 (51/2) 6996.8 188 (49/2) 6809.4 708 (47/2) 6289.1 1271 750 (45/2)+ 5538.6 489 $\frac{(41/2)^+}{(39/2)^+}$ 5049.8 4970.0 690 748 (37/2)+ 4359.8 (35/2)+ 137 4222.5 743 680 (33/2)⁺ (31/2)⁺ 3616.3 3542.6 73

Seq.(H): Sequence based on 149.7, 7/2⁺ level

