History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh and Jun Chen	NDS 185, 2 (2022)	23-Aug-2022		

Parent: ¹⁴⁹Tm: E=0.0; $J^{\pi}=(11/2^{-})$; $T_{1/2}=0.9$ s 2; $Q(\varepsilon)=9800$ SY; $\mathscr{H}\varepsilon+\mathscr{H}\beta^{+}$ decay=100.0 ¹⁴⁹Tm- $Q(\varepsilon)$: 9800 200 (syst,2021Wa16).

¹⁴⁹Tm-T_{1/2}: From γ (t) in 1987To12.

1987To12: ¹⁴⁹Tm ions were produced from ⁹⁴Mo(⁵⁸Ni,p2n) with E=259 MeV ⁵⁸Ni beam from the Lawrence Berkeley Laboratory SuperHILAC, and mass separated with the OASIS facility online, and collected with a tape system to the counting station. Charged particles were detected with a Si Δ E-E telescope and a plastic scintillator; γ rays were detected with Ge detectors. Measured E γ , I γ , E(x-ray), I(x-ray), $\gamma\gamma$ -coin, (x-ray) γ -coin, β -delayed proton spectra, $\beta\gamma$ (t). Deduced levels, J^{π} , parent T_{1/2}.

The decay scheme is incomplete.

149Er Levels

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	Comments
0.0	$(1/2^+)$	4 s 2	
111.3 <i>1</i>	$(3/2^+)$		
741.5	$(11/2^{-})$	9.6 s 6	$\%\epsilon + \%\beta^+ = 96.5$ 7; %IT=3.5 7; % ϵ p=0.18 7
			1987To12 estimate that total feeding to this level (direct and indirect) is $\approx 70\%$.
907.4 2	$(5/2^+)$		
1066.2 2	$(7/2^{-})$		
1482.9 4	$(9/2^{-}, 11/2^{-})$		

[†] Tentative assignments from 1987To12; same in the Adopted Levels.

[‡] From the Adopted Levels.

 $\gamma(^{149}{\rm Er})$

The decay scheme has not been normalized due to insufficient information about the existence and placement of all the γ rays. Assumption of $\approx 70\%$ decay to the 741 level (1987To12) would lead to a normalization factor (i.e. multiplication factor to obtain I γ /100 decays) of 0.07. % ε p=0.2 +2-1 (1987To12).

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\alpha^{@}$	Comments
111.3 <i>I</i>	100	111.3	(3/2+)	0.0	(1/2+)	M1	2.094 30	$ \begin{array}{l} \alpha(\mathrm{K}) = 1.757 \ 25; \ \alpha(\mathrm{L}) = 0.263 \ 4; \\ \alpha(\mathrm{M}) = 0.0584 \ 8 \\ \alpha(\mathrm{N}) = 0.01361 \ 19; \ \alpha(\mathrm{O}) = 0.001968 \ 28; \\ \alpha(\mathrm{P}) = 0.0001083 \ 15 \end{array} $
158.8 <i>1</i>	175 35	1066.2	(7/2 ⁻)	907.4	(5/2+)	[E1]	0.0953 13	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0798 \ 11; \ \alpha(\mathbf{L}) = 0.01207 \ 17; \\ &\alpha(\mathbf{M}) = 0.00267 \ 4 \\ &\alpha(\mathbf{N}) = 0.000614 \ 9; \ \alpha(\mathbf{O}) = 8.42 \times 10^{-5} \ 12; \\ &\alpha(\mathbf{P}) = 3.84 \times 10^{-6} \ 5 \end{aligned}$
416.7 <i>3</i> <i>x</i> 437.4 <i>2</i>	150 <i>50</i> ≈100	1482.9	(9/2 ⁻ ,11/2 ⁻)	1066.2	(7/2 ⁻)			
630.2		741.5	(11/2 ⁻)	111.3	(3/2+)	M4	0.320 4	α(K)=0.2436 34; α(L)=0.0591 8; α(M)=0.01398 20 α(N)=0.00327 5; α(O)=0.000452 6; α(P)=2.057×10-5 29 Iγ: assuming 70% feeding to this level and %IT=3.5, Iγ(630γ)(absolute)≈1.8.
796.2 2	≈250 [‡]	907.4	$(5/2^+)$	111.3	$(3/2^+)$			
907.3 <i>3</i>	≈120 [‡]	907.4	(5/2+)	0.0	$(1/2^+)$			

Continued on next page (footnotes at end of table)

¹⁴⁹Tm ε decay (0.9 s) 1987To12 (continued)

$\gamma(^{149}\text{Er})$ (continued)

Comments

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)
^x 955.2 3	≈120 [‡]	

 γ seen in (x ray) γ -coin only, not in coin with 111 γ .

[†] From 1987To02.

[‡] From $\gamma\gamma$ -coin or (x-ray) γ -coin (1987To12).

[#] From the Adopted Gammas.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

¹⁴⁹Tm ε decay (0.9 s) 1987To12

