¹⁴⁹Ho ε decay (21.0 s) **1994Me13,1990AlZH**

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 185, 2 (2022)	23-Aug-2022

Parent: ¹⁴⁹Ho: E=0.0; J^{π}=(11/2⁻); T_{1/2}=21.0 s 2; Q(ε)=6048 13; % ε +% β ⁺ decay=100.0

 149 Ho-J^{π},T_{1/2}: From 149 Ho Adopted Levels.

¹⁴⁹Ho-Q(ε): From 2021Wa16.

1994Me13 (also 1989Me13): ¹⁴⁹Ho ions were produced via fusion-evaporation reactions with 5.4 MeV/nucleon ⁵⁸Ni beam on ^{94,95}Mo targets at ISOLDE, GSI, separated by the GSI online separator and deposited on a transport tape. The γ - and x-rays were detected with a planar and two coaxial Ge(Li) detectors. Measured E γ , I γ , I(x-ray), $\gamma\gamma$ -coin, γ (x-ray)coin, γ (t). Deduced levels, J^{π} , parent T_{1/2}, conversion coefficients, γ -ray multipolarities, GT strengths. Comparisons with TAGS spectrum in 1990AlZU, and with theoretical calculations. Configurations are suggested for all the levels reported in this decay.

1990AlZH (also 1993Al03, 1991AlZY,1990AlZU,1990AlZJ): measured total-absorption gamma spectrum (TAGS); deduced $I(\varepsilon+\beta^+)$ feedings and β -strength functions.

Others:

 γ , $\gamma\gamma$: 1979To01 (three γ rays reported), 1982Ba75 (two γ rays reported), 1987EIZZ.

T_{1/2} (¹⁴⁹Ho): 1979To01, 1982Ba75, 1993Al03.

Q(ε): 1993Al03 (from total γ absorption), 1991Ke11 ($\beta^+\gamma$), 1984HaZD (ε/β^+), 1983Al06 (β^+,γ).

For the decay scheme, high-resolution γ -ray study in 1994Me13 gives total decay energy deposit of 5610 keV 260 as compared to the expected value of 6048 keV 13. TAGS data in 1990AlZH suggests that $\approx 25\%$ of I($\varepsilon + \beta^+$) intensity above 1070 keV is missing discrete γ -ray data, but much of this missing intensity seems collected in the γ -ray intensity of the 1090.7-keV γ ray, as the transition intensity balance at the 1090.7-keV level gives apparent I($\varepsilon + \beta^+$) feeding of 59% versus 33% from TAGS data.

¹⁴⁹Dy Levels

The decay scheme is mainly from 1994Me13, with pseudolevels added from TAGS data, where no high-resolution γ -ray data are available in 1994Me13.

E(level) [†]	J ^π @	T _{1/2} @	E(level) [†]	J ^π @
0.0	$7/2^{-}$	4.2 min 2	1539 [‡] 14	
855? ^{‡#} 14			1583.60 14	$(11/2^{-})$
884? ^{‡#} 14			1663.45 <i>16</i>	$(9/2^+)$
912? ^{‡#} 14			1703.73 20	$(11/2)^+$
941? ^{‡#} 14			1712.80 18	(9/2 ⁻)
969? ^{‡#} 14			1738 [‡] <i>14</i>	
1073.31 9	$(13/2)^+$		1782.21? 30	$(7/2^+)$
1090.74 12	$(9/2^{-})$		1795 [‡] 14	
1197 [‡] <i>14</i>			1824 [‡] <i>14</i>	
1226? [‡] 14			1853 [‡] <i>14</i>	
1254? [‡] <i>14</i>			1881 [‡] <i>14</i>	
1283 [‡] <i>14</i>			1910 [‡] <i>14</i>	
1311? [‡] <i>14</i>			1938 [‡] <i>14</i>	
1340? [‡] <i>14</i>			1967 [‡] 14	
1368? [‡] <i>14</i>			1995 [‡] 14	
1397? [‡] <i>14</i>			2023 [‡] 14	
1425 [‡] <i>14</i>			2052? [‡] 14	
1454 [‡] <i>14</i>			2081 [‡] 14	
1482 [‡] <i>14</i>			2109 [‡] 14	
1511 [‡] <i>14</i>			2138 [‡] <i>14</i>	

¹⁴⁹Dy Levels (continued)

E(level) [†]	J ^{π @}	$E(level)^{\dagger}$	E(level) [†]
2165.86 28	(9/2,11/2,13/2)+	3563 [‡] 14	4760 [‡] 14
2223 [‡] 14		3591 [‡] 14	4788 [‡] 14
2252 [‡] 14		3620 [‡] 14	4817 [‡] <i>14</i>
2291.81 22	$(11/2^{-}, 13/2^{-})$	3648 [‡] 14	4845 [‡] 14
2312.22 30	(9/2-,11/2-)	3677 [‡] 14	4874 [‡] <i>14</i>
2321.19 24	(9/2-,11/2-)	3705 [‡] 14	4902 [‡] <i>14</i>
2358.0 6	(9/2-,11/2-)	3734 [‡] 14	4931 [‡] <i>14</i>
2402.51 31	$(11/2^{-}, 13/2^{-})$	3762 [‡] 14	4959 [‡] 14
2409.18 22	(9/2 ⁻ ,11/2 ⁻)	3791 [‡] 14	4988 [‡] 14
2466.24 29	(9/2 ⁻ ,11/2 ⁻)	3819 [‡] 14	5016 [‡] <i>14</i>
2487.24 19	(9/2 ⁻ ,11/2 ⁻)	3848 [‡] 14	5045 [‡] 14
2537 [‡] 14		3876 [‡] 14	5073 [‡] 14
2565 [‡] 14		3905 [‡] 14	5102 [‡] <i>14</i>
2594 [‡] 14		3933 [‡] 14	5130 [‡] <i>14</i>
2607.10 26	$(11/2^{-})$	3962 [‡] 14	5159 [‡] <i>14</i>
2651 [‡] <i>14</i>		3990 [‡] 14	5187 [‡] <i>14</i>
2679 [‡] 14		4019 [‡] <i>14</i>	5216 [‡] <i>14</i>
2718.5? 4	(9/2 ⁻ ,11/2 ⁻)	4047 [‡] 14	5244 [‡] 14
2728.65 32	(9/2 ⁻ ,11/2 ⁻ ,13/2 ⁻)	4076 [‡] 14	5273 [‡] 14
2789.18 22	(9/2 ⁻ ,11/2 ⁻)	4104 [‡] <i>14</i>	5301 [‡] <i>14</i>
2827.34 19	$(11/2^{-})$	4133 [‡] <i>14</i>	5330 [‡] 14
2882.83 23	$(11/2^{-}, 13/2^{-})$	4161 [‡] <i>14</i>	5358 [‡] 14
2907 [‡] 14		4190 [‡] <i>14</i>	5387 [‡] 14
2936 [‡] 14		4218 [‡] <i>14</i>	5415? [‡] <i>14</i>
2964 [‡] <i>14</i>		4247 [‡] 14	5444? [‡] 14
2980.41 25	(9/2 ⁻ ,11/2 ⁻)	4275 [‡] 14	5472 [‡] 14
3014.2? 4	(9/2 ⁻ ,11/2 ⁻)	4304 [‡] 14	5501 [‡] 14
3049.6 4	$(9/2^-, 11/2^-, 13/2^-)$	4332 [‡] 14	5529 [‡] 14
3079.13 14	$(11/2^{-})$	4361 [#] 14	5558 [‡] 14
3129.52 20	$(11/2^{-})$	4389 [‡] 14	5586 [‡] 14
3180.05 23	$(9/2^-, 11/2^-, 13/2^-)$	4418 [‡] <i>14</i>	5615 [‡] 14
3202.55 29	(9/2 ⁻ ,11/2 ⁻)	4446 [‡] 14	5643? [‡] 14
3249 [‡] 14		4475 [‡] 14	5672? [‡] 14
3277 [‡] 14		4503 [‡] 14	5700 [‡] 14
3312.52 30	(9/2 ⁻ ,11/2 ⁻ ,13/2 ⁻)	4532 [‡] 14	5729 [‡] 14
3348.66 32	(9/2 ⁻ ,11/2 ⁻ ,13/2 ⁻)	4560 [‡] 14	5757 [‡] 14
3362.8 4	(9/2 ⁻ ,11/2 ⁻)	4589 [‡] 14	5786 [‡] 14
33927 14		4617 [‡] <i>14</i>	5814 [‡] <i>14</i>
34207 14		4646 [‡] 14	5843 [‡] 14
3449 7 <i>14</i>		4674 [‡] 14	5871 [‡] 14
3490.42 25	(9/2-,11/2-)	4703 14	
3534 [‡] 14		4731 [‡] 14	

[†] From a least-squares fit to γ -ray energies, except for the pseudolevels, which are taken from TAGS data in 1990AlZH.

[‡] Pseudolevel from TAGS data in 1990AlZH; uncertainty is from bin width of 28.5 keV in the analysis of TAGS data.

[#] No excited states in ¹⁴⁹Dy have been reported below 1034 keV in any of the decays or reactions, thus this pseudolevel and associated weak $I(\varepsilon + \beta^+)$ feeding is treated by evaluators as questionable.

[@] From the Adopted Levels.

¹⁴⁹₆₆Dy₈₃-3

¹⁴⁹Ho ε decay (21.0 s) **1994Me13,1990AlZH** (continued)

ε, β^+ radiations

E(decay)	E(level)	Iɛ ^a	$I(\varepsilon + \beta^+)^{\dagger a}$	Comments
(177 19)	5871	0.003	0.003 [‡]	εK=0.736 20; εL=0.200 15; εM+=0.064 6
(205 19)	5843	0.003	0.003 [‡]	εK=0.756 13; εL=0.186 10; εM+=0.058 4
(234 19)	5814	0.010	0.010 [‡]	εK=0.770 9; εL=0.175 7; εM+=0.0546 23
(262 19)	5786	0.018	0.018 [‡]	εK=0.780 7; εL=0.168 5; εM+=0.0520 17
(291 19)	5757	0.021	0.021 [‡]	εK=0.787 5; εL=0.163 4; εM+=0.0500 13
(319 19)	5729	0.011	0.011 [‡]	εK=0.793 4; εL=0.158 3; εM+=0.0485 10
(348 19)	5700	0.008	0.008‡	εK=0.798 3; εL=0.1549 23; εM+=0.0472 8
(376 ^b 19)	5672?		#	$I(\varepsilon) = -0.005\%.$
(405 ^b 19)	5643?		#	$I(\varepsilon) = -0.002\%.$
(433 19)	5615	0.004	0.004 [‡]	εK=0.8078 18; εL=0.1476 14; εM+=0.0446 5
(462 19)	5586	0.013	0.013 [‡]	εK=0.8102 16; εL=0.1458 12; εM+=0.0440 4
(490 19)	5558	0.016	0.016 [‡]	εK=0.8122 14; εL=0.1444 10; εM+=0.0435 4
(519 19)	5529	0.009	0.009 [‡]	εK=0.8140 12; εL=0.1430 9; εM+=0.0430 3
(547 19)	5501	0.008	0.008 [‡]	εK=0.8156 11; εL=0.1419 8; εM+=0.0426 3
(576 19)	5472	0.002	0.002 [‡]	εK=0.8170 10; εL=0.1408 7; εM+=0.04222 25
(604 ^b 19)	5444?		#	$I(\varepsilon) = -0.001\%$.
(633 ^b 19)	5415?		#	$I(\varepsilon) = -0.002\%.$
(661 19)	5387	0.005	0.005 [‡]	εK=0.8204 7; εL=0.1383 5; εM+=0.04133 18
(690 19)	5358	0.013	0.013 [‡]	εK=0.8213 7; εL=0.1376 5; εM+=0.04108 16
(718 19)	5330	0.021	0.021 [‡]	εK=0.8222 6; εL=0.1369 5; εM+=0.04086 15
(747 19)	5301	0.016	0.016 [‡]	εK=0.8230 6; εL=0.1364 4; εM+=0.04066 14
(775 19)	5273	0.013	0.013 [‡]	εK=0.8237 5; εL=0.1358 4; εM+=0.04047 13
(804 19)	5244	0.005	0.005 [‡]	εK=0.8244 5; εL=0.1353 4; εM+=0.04030 12
(832 19)	5216	0.010	0.010 [‡]	εK=0.8250 4; εL=0.1349 3; εM+=0.04014 11
(861 19)	5187	0.017	0.017 [‡]	εK=0.8256 4; εL=0.1344 3; εM+=0.03999 10
(889 19)	5159	0.023	0.023 [‡]	εK=0.8261 4; εL=0.1341 3; εM+=0.03985 10
(918 19)	5130	0.025	0.025 [‡]	εK=0.8266 4; εL=0.13369 25; εM+=0.03972 9
(946 19)	5102	0.018	0.018 [‡]	εK=0.8271 3; εL=0.13335 23; εM+=0.03960 8
(975 19)	5073	0.004	0.004 [‡]	εK=0.8275 3; εL=0.13302 22; εM+=0.03949 8
(1003 19)	5045	0.009	0.009 [‡]	εK=0.8279 3; εL=0.13272 21; εM+=0.03938 7
(1032 19)	5016	0.005	0.005 [‡]	εK=0.8283 3; εL=0.13243 19; εM+=0.03928 7
(1060 19)	4988	0.022	0.022 [‡]	εK=0.8287 3; εL=0.13216 18; εM+=0.03919 7
(1089 19)	4959	0.014	0.014 [‡]	εK=0.8290 3; εL=0.13190 17; εM+=0.03910 6
(1117 19)	4931	0.029	0.029 [‡]	εK=0.8293 3; εL=0.13167 16; εM+=0.03901 6
(1146 19)	4902	0.041	0.041 [‡]	εK=0.8296 2; εL=0.13143 16; εM+=0.03893 6
(1174 19)	4874	0.046	0.046 [‡]	εK=0.8299 2; εL=0.13122 15; εM+=0.03886 5
(1203 19)	4845	0.050	0.050^{\ddagger}	εK=0.8302 2; εL=0.13101 14; εM+=0.03878 5
(1231 19)	4817	0.042	0.042 [‡]	εK=0.8304 2; εL=0.13081 14; εM+=0.03871 5
(1260 19)	4788	0.038	0.038 [‡]	εK=0.8306 2; εL=0.1306 2; εM+=0.03865 5
(1288 19)	4760	0.021	0.021	εK=0.8308 2; εL=0.1304 2; εM+=0.03858 5
(1317 19)	4731	0.022	0.022	εK=0.8310 1; εL=0.1302 2; εM+=0.03852 5
(1345 19)	4703	0.037	0.037	εK=0.8311; εL=0.1301 2; εM+=0.03846 5
(1374 19)	4674	0.043	0.043 [‡]	εK=0.8311; εL=0.1299 2; εM+=0.03840 4
(1402 19)	4646	0.041	0.041 [‡]	εK=0.8312; εL=0.1297 2; εM+=0.03834 4

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+ a$	Iɛª	Log <i>ft</i> ^{&}	$I(\varepsilon + \beta^+)^{\dagger a}$	Comments
(1431 19)	4617		0.035		0.035 [‡]	av Eβ=198.8 86; εK=0.8311; εL=0.1295 2; εM+=0.03827 4
(1459 19)	4589		0.050		0.050 [‡]	av E β =211.2 85; ε K=0.8310 <i>I</i> ; ε L=0.1294 2; ε M+=0.03821 5
(1488 19)	4560		0.051		0.051	av E β =224.1 85; ε K=0.8308 2; ε L=0.1292 2; ε M+=0.03815 5
(1516 19)	4532		0.063		0.063‡	av E β =236.5 87; ε K=0.8306 2; ε L=0.12898 13; ε M+=0.03809 5
(1545 19)	4503		0.056		0.056 [‡]	av E β =249.2 85; ε K=0.8303 3; ε L=0.12878 14; ε M+=0.03802 5
(1573 19)	4475		0.071		0.071 [‡]	av Eβ=261.7 86; εK=0.8299 4; εL=0.12858 15; εM+=0.03796 5
(1602 19)	4446		0.074		0.074 [‡]	av Eβ=274.5 85; εK=0.8294 4; εL=0.12836 15; εM+=0.03789 5
(1630 19)	4418		0.071		0.071 [‡]	av E β =286.8 84; ε K=0.8288 5; ε L=0.12814 16; ε M+=0.03782 5
(1659 <i>19</i>)	4389	0.001	0.083		0.084 [‡]	av Eβ=299.6 84; εK=0.8281 6; εL=0.12790 17; εM+=0.03774 6
(1687 19)	4361	0.001	0.103		0.104 [‡]	av Eβ=311.9 84; εK=0.8273 6; εL=0.12766 18; εM+=0.03767 6
(1716 <i>19</i>)	4332	0.001	0.112		0.113 [‡]	av Eβ=324.6 84; εK=0.8263 7; εL=0.12740 18; εM+=0.03758 6
(1744 <i>19</i>)	4304	0.001	0.128		0.129 [‡]	av Eβ=336.9 84; εK=0.8253 8; εL=0.12713 19; εM+=0.03750 6
(1773 19)	4275	0.00123	0.105		0.106 [‡]	av Eβ=349.6 84; εK=0.8241 9; εL=0.12684 21; εM+=0.03741 7
(1801 19)	4247	0.002	0.114		0.116 [‡]	av Eβ=361.9 84; εK=0.8229 10; εL=0.12654 22; εM+=0.03732 7
(1830 19)	4218	0.001	0.096		0.097 [‡]	av Eβ=374.6 84; εK=0.8214 11; εL=0.12622 23; εM+=0.03722 7
(1858 19)	4190	0.002	0.114		0.116 [‡]	av Eβ=386.9 84; εK=0.8199 12; εL=0.12589 24; εM+=0.03711 8
(1887 19)	4161	0.002	0.100		0.102 [‡]	av Eβ=399.6 84; εK=0.8182 13; εL=0.12553 25; εM+=0.03700 8
(1915 19)	4133	0.002	0.095		0.097 [‡]	av E β =411.9 84; ε K=0.8164 14; ε L=0.1252 3; ε M+=0.03689 8
(1944 <i>19</i>)	4104	0.003	0.110		0.113 [‡]	av E β =424.7 84; ε K=0.8144 15; ε L=0.1248 3; ε M+=0.03677 9
(1972 19)	4076	0.003	0.115		0.118 [‡]	av E β =437.0 84; ε K=0.8123 16; ε L=0.1244 3; ε M+=0.03665 9
(2001 19)	4047	0.004	0.128		0.132 [‡]	av Eβ=449.7 84; εK=0.8100 17; εL=0.1239 3; εM+=0.03651 10
(2029 19)	4019	0.004	0.121		0.125 [‡]	av E β =462.0 84; ε K=0.8076 18; ε L=0.1235 4; ε M+=0.03638 10
(2058 19)	3990	0.005	0.134		0.139 [‡]	av E β =474.7 84; ε K=0.8049 19; ε L=0.1230 4; ε M+=0.03623 10
(2086 19)	3962	0.007	0.178		0.185 [‡]	av Eβ=487.1 84; εK=0.8022 20; εL=0.1225 4; εM+=0.03609 11
(2115 19)	3933	0.010	0.213		0.223 [‡]	av Eβ=499.8 85; εK=0.7993 21; εL=0.1220 4; εM+=0.03593 11
(2143 19)	3905	0.011	0.220		0.231 [‡]	av Eβ=512.2 85; εK=0.7963 22; εL=0.1215 4; εM+=0.03577 12
(2172 19)	3876	0.011	0.206		0.217 [‡]	av Eβ=524.9 85; εK=0.7930 23; εL=0.1209 4; εM+=0.03560 12

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+ a$	Ie ^a	Log <i>ft</i> &	$I(\varepsilon + \beta^+)^{\dagger a}$	Comments
(2200 19)	3848	0.011	0.195		0.206 [‡]	av Eβ=537.3 85; εK=0.7896 24; εL=0.1203 4; εM+=0.03543 12
(2229 19)	3819	0.014	0.224		0.238‡	av Eβ=550.1 85; εK=0.7860 25; εL=0.1197 5; εM+=0.03524 13
(2257 19)	3791	0.016	0.232		0.248 [‡]	av Eβ=562.4 85; εK=0.782 3; εL=0.1191 5; εM+=0.03506 13
(2286 19)	3762	0.018	0.250		0.268 [‡]	av Eβ=575.2 85; εK=0.778 3; εL=0.1184 5; εM+=0.03486 14
(2314 19)	3734	0.019	0.241		0.260 [‡]	av Eβ=587.6 85; εK=0.774 3; εL=0.1178 5; εM+=0.03466 14
(2343 19)	3705	0.021	0.253		0.274 [‡]	av Eβ=600.4 85; εK=0.770 3; εL=0.1171 5; εM+=0.03445 15
(2371 19)	3677	0.022	0.247		0.269 [‡]	av Eβ=612.8 85; εK=0.766 3; εL=0.1163 5; εM+=0.03425 15
(2400 19)	3648	0.027	0.273		0.300‡	av Eβ=625.6 85; εK=0.761 3; εL=0.1156 5; εM+=0.03402 15
(2428 19)	3620	0.033	0.312		0.345‡	av Eβ=638.0 85; εK=0.757 4; εL=0.1149 6; εM+=0.03380 16
(2457 19)	3591	0.027	0.239		0.266‡	av Eβ=650.8 85; εK=0.752 4; εL=0.1141 6; εM+=0.03357 16
(2485 19)	3563	0.047	0.394		0.441 [‡]	av Eβ=663.3 85; εK=0.747 4; εL=0.1133 6; εM+=0.03333 17
(2514 19)	3534	0.047	0.374		0.421 [‡]	av Eβ=676.1 85; εK=0.742 4; εL=0.1125 6; εM+=0.03309 17
(2558 13)	3490.42	0.1 1	0.6 1	5.4	0.7 1	av E β =695.5 58; ε K=0.7339 25; ε L=0.1112 4; ε M+=0.03271 12
						I(ε+ $β$ ⁺): 0.417% for 3477 <i>14</i> ; 0.457% for 3505 <i>14</i> from TAGS data (1990AlZH).
(2599 19)	3449	0.06	0.41		0.467 [‡]	av Eβ=713.9 85; εK=0.726 4; εL=0.1099 6; εM+=0.03233 18
(2628 19)	3420	0.07	0.41		0.477 [‡]	av Eβ=726.8 86; εK=0.720 4; εL=0.1090 6; εM+=0.03206 18
(2656 19)	3392	0.08	0.47		0.552 [‡]	av Eβ=739.3 86; εK=0.715 4; εL=0.1081 7; εM+=0.03180 19
(2685 13)	3362.8	0.06 2	0.3 1	5.7	0.4 1	av $E\beta$ =752.4 59; ε K=0.709 3; ε L=0.1072 5; ε M+=0.03152 13
(2600, 13)	2219 66	0.08.2	041	5.6	051	$I(\varepsilon + \beta^{+})$: 0.643% for 3363 14 from TAGS data (1990AIZH).
(2099-13)	5546.00	0.08 2	0.4 1	5.0	0.5 1	$I(\varepsilon + \beta^+)$: 0.743% for 3335 14 from TAGS data (1990AIZH).
(2735 13)	3312.52	0.1 <i>I</i>	0.7 2	5.4	0.8 2	av E β =774.8 58; ε K=0.698 3; ε L=0.1055 5; ε M+=0.03103 13
						$I(\varepsilon + \beta^+)$: 0.802% for 3306 <i>14</i> from TAGS data (1990AlZH).
(2771 19)	3277	0.15	0.68		0.827 [‡]	av E β =790.7 86; ε K=0.690 5; ε L=0.1043 7; ε M+=0.03067 20
(2799 19)	3249	0.16	0.73		0.893 [‡]	av E β =803.2 86; ε K=0.684 5; ε L=0.1033 7; ε M+=0.03039 20
(2845 13)	3202.55	0.08 2	0.3 1	5.7	0.4 1	av $E\beta = 824.059$; $\varepsilon K = 0.6743$; $\varepsilon L = 0.10175$; $\varepsilon M + = 0.0299114$
(2868, 13)	3180.05	021	071	5 /	0.0.1	$I(\varepsilon + \beta^{-})$: 1.043% for 3221 14 from IAGS data (1990AIZH).
(2000 13)	5160.05	0.2 1	0.7 1	5.4	0.9 1	$I(\varepsilon + \beta^+)$: 1.143% for 3192 14: 1.119% for 3164 14 from TAGS
						data (1990AIZH).
(2918 13)	3129.52	0.28 4	1.0 2	5.3	1.3 2	av E β =856.7 59; ε K=0.657 3; ε L=0.0991 5; ε M+=0.02914 14
(20(0,12))	2070 12	1 1 7	202	1 (0.0	500	$I(\varepsilon + \beta^+)$: 1.160% for 3135 14 from TAGS data (1990AlZH).
(2909-13)	30/9.13	1.1 /	3.9 2	4.09 2	5.0 2	av $\mu \beta = \delta / 9.4 \ 59$; $\epsilon K = 0.045 \ 5$; $\epsilon L = 0.09 / 5 \ 5$; $\epsilon M + = 0.02859 \ 14$ I($\epsilon + \beta^+$): 1.290% for 3078 14; 1.213% for 3106 14 from TAGS
(2998 13)	3049.6	0.1 1	0.4 1	5.7	0.5 1	av E β =892.6 59; ε K=0.638 4; ε L=0.0962 5; ε M+=0.02827 15

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+ a$	Iɛ ^a	Log ft ^{&}	$I(\varepsilon + \beta^+)^{\dagger a}$	Comments
						I(ε+ $β$ ⁺): 1.258% for 3050 <i>14</i> from TAGS data (1990AlZH).
(3034 ^b 13)	3014.2?	0.045 12	0.14 4	6.2	0.18 5	av E β =908.5 59; ε K=0.630 4; ε L=0.0949 5; ε M+=0.02789 15
						I(ε+ $β$ ⁺): 1.220% for 3021 <i>14</i> from TAGS data (1990AlZH).
(3068 13)	2980.41	0.2 1	0.6 1	5.5	0.8 1	av E β =923.8 59; ε K=0.622 4; ε L=0.0936 5; ε M+=0.02751 15
						I(ε+ $β$ ⁺): 1.187% for 2993 <i>14</i> from TAGS data (1990AlZH).
(3084 19)	2964	0.33	0.92		1.251‡	av Eβ=931.1 86; εK=0.618 5; εL=0.0930 8; εM+=0.02733 22
(3112 19)	2936	0.36	0.96		1.324 [‡]	av Eβ=943.8 87; εK=0.611 5; εL=0.0919 8; εM+=0.02702 22
(3141 19)	2907	0.43	1.10		1.526 [‡]	av E β =956.8 87; ε K=0.604 5; ε L=0.0908 8; ε M+=0.02670 22
(3165 13)	2882.83	0.37 3	0.93 7	5.4	1.3 1	av E β =967.7 59; ε K=0.598 4; ε L=0.0899 5; ε M+=0.02643 15
						I(ε+ $β$ ⁺): 1.629% for 2878 <i>14</i> from TAGS data (1990AlZH).
(3221 13)	2827.34	2.1 3	4.8 6	4.7 1	6.9 9	av E β =992.8 59; ε K=0.584 4; ε L=0.0878 5; ε M+=0.02581 15
						I($ε$ + $β$ ⁺): 1.661% for 2793 <i>14</i> ; 1.768% for 2822 <i>14</i> ; and 1.743% for 2850 <i>14</i> from TAGS data (1990AlZH) for a total of 5.2%.
(3259 13)	2789.18	0.63 3	1.4 1	5.22 3	2.0 1	av $E\beta$ =1010.0 59; εK =0.575 4; εL =0.0864 5; εM +=0.02539 15
						$I(\varepsilon + \beta^+)$: 1.562% for 2764 14 from TAGS data (1990AIZH).
(3319 <i>13</i>)	2728.65	0.351 14	0.71 3	5.5	1.06 4	av Eβ=1037.4 59; εK=0.560 4; εL=0.0841 5; εM+=0.02471 15
						I(ε+ $β$ ⁺): 1.144% for 2708 <i>14</i> ; 1.284% for 2736 <i>14</i> from TAGS data (1990AIZH), probably corresponds to feeding to 2728.6 and 2718.5 levels.
(3330 ^b 13)	2718.5?	0.074 23	0.15 5	6.2	0.22 7	av $E\beta$ =1042.0 59; εK =0.557 4; εL =0.0837 5; εM +=0.02460 15
						$I(\varepsilon + \beta^+)$: see comment for feeding to the 2728.6 level.
(3369 19)	2679	0.32	0.60		0.920 [‡]	av E β =1059.9 87; ε K=0.548 5; ε L=0.0822 8; ε M+=0.02416 22
(3397 19)	2651	0.34	0.61		0.952 [‡]	av Eβ=1072.6 87; εK=0.541 5; εL=0.0812 8; εM+=0.02385 22
(3441 13)	2607.10	0.3 1	0.4 1	5.8	0.7 1	av Eβ=1092.6 59; εK=0.530 4; εL=0.0795 5; εM+=0.02336 15
						I(ε+ $β$ ⁺): 0.950% for 2622 <i>14</i> from TAGS data (1990AlZH).
(3454 19)	2594	0.34	0.59		0.930 [‡]	av Eβ=1098.5 87; εK=0.527 5; εL=0.0790 8; εM+=0.02322 21
(3483 19)	2565	0.34	0.55		0.894 [‡]	av Eβ=1111.7 87; εK=0.520 5; εL=0.0780 7; εM+=0.02290 21
(3511 19)	2537	0.40	0.64		1.042 [‡]	av Eβ=1124.4 87; εK=0.513 5; εL=0.0769 7; εM+=0.02260 21
(3561 13)	2487.24	0.60 4	0.90 6	5.5	1.5 1	av E β =1147.0 60; ε K=0.501 4; ε L=0.0751 5; ε M+=0.02206 14
						$I(\varepsilon + \beta^+)$: 1.077% for 2480 14; 0.964% for 2508 14 from

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$\mathrm{I}\beta^+ a$	Ie ^a	Log <i>ft</i> &	$I(\varepsilon + \beta^+)^{\dagger a}$	Comments
(3582 13)	2466.24	0.82 8	1.2 <i>1</i>	5.4 1	2.0 2	TAGS data (1990AlZH). av $E\beta$ =1156.6 60; ε K=0.496 4; ε L=0.0743 5; ε M+=0.02183 14
(3639 <i>13</i>)	2409.18	0.72 4	0.98 6	5.5	1.7 <i>1</i>	I(ε+β ⁺): 1.135% for 2451 <i>14</i> from TAGS data (1990AIZH). av Eβ=1182.6 60; εK=0.482 3; εL=0.0723 5; εM+=0.02123 <i>14</i>
(3645 13)	2402.51	0.094 17	0.13 2	6.4	0.22 4	I($\varepsilon + \beta^+$): 1.112% for 2423 <i>14</i> from TAGS data (1990AIZH). av E β =1185.6 <i>60</i> ; ε K=0.481 <i>3</i> ; ε L=0.0720 <i>5</i> ; ε M+=0.02116 <i>14</i>
(3690 13)	2358.0	0.057 18	0.073 22	6.6	0.13 4	I(ε+β ⁺): 1.04/% for 2394 <i>14</i> from TAGS data (1990AIZH). av Eβ=1205.9 60; εK=0.470 <i>3</i> ; εL=0.0704 <i>5</i> ; εM+=0.02069 <i>14</i> (c+t): 0.962% for 2266 <i>14</i> from TAGS data
(3727 13)	2321.19	0.54 9	0.66 11	5.7	1.2 2	$1(\varepsilon + \beta'): 0.863\%$ for 2366 14 from IAGS data (1990AIZH). av E β =1222.8 60; ε K=0.462 3; ε L=0.0691 5; ε M+=0.02031 14
(3736 <i>13</i>)	2312.22	0.3 1	0.4 1	5.9	0.7 1	1(ε+β ⁺): 0.850% for 2337 14 from TAGS data (1990AIZH). av Eβ=1226.9 60; εK=0.460 3; εL=0.0688 5; εM+=0.02022 14
(3756 13)	2291.81	0.21 2	0.24 3	6.1	0.45 5	I(ε+β ⁺): 0.613% for 2309 14 from TAGS data (1990AIZH). av Eβ=1236.2 60; εK=0.455 3; εL=0.0681 5; εM+=0.02001 14 I(α+β ⁺): 0.504% for 2280 14 from TAGS data
(3796 <i>19</i>)	2252	0.16	0.18		0.345 [‡]	(1990AlZH). av E β =1254.4 88; ε K=0.446 5; ε L=0.0668 7; ε M==0.01061 20
(3825 19)	2223	0.16	0.18		0.343 [‡]	av E β =1267.6 88; ε K=0.439 5; ε L=0.0658 7;
(3882 13)	2165.86	0.2 1	0.2 1	6.2	0.4 1	ε M+=0.01932 <i>19</i> av E β =1293.8 <i>60</i> ; ε K=0.427 <i>3</i> ; ε L=0.0639 <i>5</i> ; ε M+=0.01875 <i>13</i> I(ε + β ⁺): 0.177% for 2166 <i>14</i> ; 0.192% for 2195 <i>14</i> from
(3910 19)	2138	0.05	0.05		0.102 [‡]	TAGS data (1990AlZH). av E β =1306.6 88; ε K=0.421 5; ε L=0.0629 7;
(3939 19)	2109	0.005	0.005		0.010 [‡]	ε M+=0.01848 <i>19</i> av E β =1319.9 88; ε K=0.414 5; ε L=0.0620 7;
(3967 19)	2081	0.011	0.011		0.022 [‡]	ε M+=0.01820 <i>19</i> av E β =1332.7 <i>88</i> ; ε K=0.408 <i>4</i> ; ε L=0.0611 <i>7</i> ;
(3996 ^b 19)	2052?				#	εM +=0.01794 <i>18</i> I($\varepsilon + \beta^+$)=-0.083%.
(4025 19)	2023				‡	
(4053 19)	1995	0.10	0.09		0.193 [‡]	av Eβ=1372.2 88; εK=0.391 4; εL=0.0584 6; εM+=0.01714 18
(4081 19)	1967	0.14	0.12		0.262 [‡]	av Eβ=1385.1 88; εK=0.385 4; εL=0.0575 6; εM+=0.01689 18
(4110 <i>19</i>)	1938	0.16	0.13		0.290 [‡]	av E β =1398.4 88; ε K=0.379 4; ε L=0.0566 6; ε M+=0.01663 17
(4138 19)	1910	0.19	0.15		0.341 [‡]	av E β =1411.3 88; ε K=0.373 4; ε L=0.0558 6; ε M+=0.01638 17
(4167 19)	1881	0.19	0.14		0.333‡	av E β =1424.6 88; ε K=0.368 4; ε L=0.0549 6;

¹⁴⁹Ho ε decay (21.0 s) 1994Me13,1990AlZH (continued) ϵ, β^+ radiations (continued) Log *ft*[&] $I(\varepsilon + \beta^+)^{\dagger a}$ $I\beta^+ a$ Ιε^α E(decay) E(level) Comments εM+=0.01613 17 1853 0.12 0.275 av E_β=1437.5 88; εK=0.362 4; εL=0.0541 6; (4195 19) 0.16 €M+=0.01589 17 0.290 (4224 19) 1824 0.17 0.12 av Eβ=1450.9 88; εK=0.357 4; εL=0.0533 6; *ε*M+=0.01564 17 0.292 (4253 19) 1795 0.17 0.12 av E_{\$\beta\$=1464.3 89}; \$\varepsilon K=0.351 4; \$\varepsilon L=0.0525 6; €M+=0.01540 16 $(4266^{b} 13)$ 8.1^{1u} av E β =1456.9 58; ε K=0.5456 25; ε L=0.0833 4; 0.22 4 0.33 6 1782.21? 0.11 2 *ε*M+=0.02454 *12* $I(\varepsilon + \beta^+)$: 0.305% for 1767 14 from TAGS data (1990AlZH). For first-forbidden unique transition, $\log f^{1u}t$ should be >8.5. 0.411[‡] av E_b=1490.6 89; eK=0.341 4; eL=0.0509 6; (4310 19) 1738 0.24 0.17 €M+=0.01494 16 av E β =1502.2 60; ε K=0.3363 24; ε L=0.0502 4; (4335 13) 1712.80 1.0 1 0.68 4 5.8 1.7 1 εM+=0.01474 11 $I(\varepsilon + \beta^+)$: 0.622% for 1710 *14* from TAGS data (1990AlZH). (4344 13) 1703.73 0.60 12 0.40 8 6.0 1.0 2 av Eβ=1506.4 60; εK=0.3347 24; εL=0.0500 4; €M+=0.01466 11 $I(\varepsilon + \beta^+)$: 0.532% for 1681 *14* from TAGS data (1990AlZH). av Eβ=1525.0 60; εK=0.3275 23; εL=0.0489 4; (4385 13) 1663.45 1.3 1 0.86 8 5.68 4 2.2 2 €M+=0.01435 11 $I(\varepsilon + \beta^+)$: 0.702% for 1653 *14* from TAGS data (1990AlZH). (4464 13) 1583.60 1.3 1 0.75 8 5.8 1 2.0 2 av E_β=1561.9 61; εK=0.3138 22; εL=0.0468 4; €M+=0.01374 10 $I(\varepsilon + \beta^+)$: 0.728% for 1596 14; 0.844% for 1568 14; and 0.697% for 1624 14 or a total of 2.3% from TAGS data (1990AlZH). 0.744 (4509 19) 1539 0.47 0.27 av E_β=1582.6 89; εK=0.306 4; εL=0.0457 5; €M+=0.01341 14 0.593 1511 0.38 av Eβ=1595.5 89; εK=0.302 4; εL=0.0450 5; (4537 19) 0.21 εM+=0.01321 14 0.222 (4566 19) 1482 0.14 0.08 av E_β=1609.0 89; εK=0.297 3; εL=0.0443 5; €M+=0.01301 14 1454 0.027 0.014 0.041 (4594 19) av Eβ=1621.9 89; εK=0.293 3; εL=0.0437 5; €M+=0.01281 14 0.016[‡] (4623 19) 1425 0.010 0.006 av E_β=1635.4 89; εK=0.288 3; εL=0.0430 5; €M+=0.01261 13 # $(4651^{b} 19)$ 1397? $I(\varepsilon + \beta^+) = -0.162\%$. # $(4680^{b} 19)$ 1368? $I(\varepsilon + \beta^+) = -0.177\%.$ # $(4708^{b} 19)$ 1340? $I(\varepsilon + \beta^+) = -0.123\%.$ # (4737^b 19) 1311? $I(\varepsilon + \beta^+) = -0.068\%.$ (4765 19) 0.233 av E_β=1701.3 89; εK=0.267 3; εL=0.0398 5; 1283 0.16 0.07 €M+=0.01168 12 # (4794^b 19) 1254? $I(\varepsilon + \beta^+) = -0.016\%$. # $(4822^{b} 19)$ 1226? $I(\varepsilon + \beta^+) = -0.261\%$. 0.316[‡] (4851 19) 1197 0.22 0.10 av E_β=1741.3 89; εK=0.255 3; εL=0.0380 4;

 $\varepsilon M += 0.01116 \ 12$

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+ a$	Ie ^a	Log <i>ft</i> &	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger a}$	Comments
(4957 13)	1090.74	24 4	9.5 14	4.8 1	33 5	av E β =1790.8 <i>61</i> ; ε K=0.2413 <i>17</i> ; ε L=0.03593 <i>25</i> ; ε M+=0.01054 <i>8</i> I(ε + β ⁺): 1.885% for 1169 <i>14</i> ; 4.208% for 1140 <i>14</i> ; 6.949% for 1112 <i>14</i> ; 8.571% for 1083 <i>14</i> ; 7.120% for 1055 <i>14</i> ; 4.633% for 1026 <i>14</i> ; 1.584% for 998 <i>14</i> ; or a total of 35% in a peak between 1000-1170 keV, centered around 1085 keV from TAGS data (Table 4 and Fig. 9) in 1990AlZH, likely corresponds to I(ε + β ⁺) feeding to primarily the 1091 and a minor fraction to 1073 level. 1994Me13, in their Fig. 7b is compared their deduced feeding of 59% <i>2</i> from high-resolution γ -ray data in 1994Me13 to that in Fig. 9 of 1990AlZH in TAGS data, which showed that I(ε + β ⁺) feeding to the 1091 level from high-resolution γ -ray data was about half of that in the TAGS data in 1990AlZH. Based on TAGS data, evaluators assign 33% <i>5</i> feeding to the 1091 level, µcer uncertainty of 15% is arbitrary. For the 1073 level, I(ε + β ⁺) feeding is from high-resolution γ -ray data.
(4975 13)	1073.31	1.1 3	0.46 11	6.1	1.6 4	av E β =1798.9 61; ε K=0.2391 17; ε L=0.03559 25; ε M+=0.01044 8 I(ε + β ⁺): see comment for I(ε + β ⁺) feeding of 1090.7 level from TAGS data in 1990AIZH and comparison with high-resolution data in 1994Me13.
(5079 ^b 19)	969?	0.39	0.14		0.534 [@]	av E β =1847.6 90; ε K=0.2263 23; ε L=0.0337 4; ε M+=0.00988 10
(5107 ^b 19)	941?	0.39	0.14		0.532 [@]	av Eβ=1860.7 90; εK=0.2230 23; εL=0.0332 4; εM+=0.00974 10
(5136 ^b 19)	912?	0.27	0.09		0.363 [@]	av Eβ=1874.2 90; εK=0.2197 22; εL=0.0327 4; εM+=0.00959 10
(5164 ^b 19)	884?	0.25	0.09		0.340 [@]	av Eβ=1887.3 90; εK=0.2165 22; εL=0.0322 4; εM+=0.00945 10
(5193 ^b 19)	855?	0.16	0.05		0.208 [@]	av Eβ=1900.8 90; εK=0.2132 22; εL=0.0317 4; εM+=0.00931 10

[†] Based on γ -intensity balance from high-resolution data in 1994Me13, when γ -ray data are available, and TAGS data in 1990AlZH, when no γ -ray data are available. Exception is for 1090.7 level, where comparison between the two sets of data is used and I($\varepsilon + \beta^+$) feedings is assigned from TAGS data, as the value from these data is about half as compared to that from high-resolution γ -ray data. From high-resolution γ -ray data, I($\varepsilon + \beta^+$) feedings of $\geq 2\%$ are considered by evaluators as fairly reliable, when compared to corresponding values from TAGS data. Weaker feedings (<2%) are considered as upper limits as these can be affected by missing γ rays from higher levels. Summed I($\varepsilon + \beta^+$) feeding for all the levels (including pseudolevels) listed here is 100.8%, whereas above the 3490 level (highest known level from high-resolution γ -ray data), total feeding from TAGS data adds to 7.3%.

[‡] Intensity per 100 decays from TAGS data in 1990AlZH, with a bin width of 28.5 keV. In Table 4 of 1990AlZH, listed intensities are per 100,000 decays of ¹⁴⁹Ho.

[#] Negative (non-physical) intensity from TAGS data in 1990AlZH.

^(a) No excited states in ¹⁴⁹Dy have been reported below 1034 keV in any of the decays or reactions, thus this feeding to a pseudolevel is treated by evaluators as questionable. Total I($\varepsilon + \beta^+$) feeding from TAGS data in 1990AlZH adds to 2.0% in the excitation range of 840-980 keV.

& For I($\varepsilon + \beta^+$) feedings <2%, values are treated as lower limits as the decay scheme from high-resolution γ -ray data is incomplete.

^{*a*} Absolute intensity per 100 decays.

^b Existence of this branch is questionable.

 $\gamma(^{149}\text{Dy})$

Iy normalization: 1994Me12 provide photon intensities per 1000 decays, with statistical uncertainties as well as those from spectral complexity. Evaluators divide I γ values in 1994Me12 by a factor of 10. Methodology of measuring absolute γ intensities is not described in 1994Me13.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^π	Mult. [@]	$\delta^{@}$	α^{a}	Comments
462.1 <i>3</i>	0.23 6	2165.86	(9/2,11/2,13/2)+	1703.73	$(11/2)^+$	M1(+E2)	<1.0	0.032 4	α (N)=0.000204 <i>18</i> ; α (O)=2.95×10 ⁻⁵ <i>30</i> ; α (P)=1.62×10 ⁻⁶ 27
	o co ‡	1 202 60							α (K)=0.027 4; α (L)=0.0040 4; α (M)=0.00088 8 Mult., δ : from α (K)exp=0.029 6.
511 2	0.52+ 15	1583.60	$(11/2^{-})$	10/3.31	$(13/2)^+$				
590.1 5	0.45+ 15	1663.45	$(9/2^+)$	1073.31	$(13/2)^+$				
613.0 2	0.19 4	1703.73	$(11/2)^{+}$ $(11/2)^{+}$	1090.74	$(9/2)^+$	$M1(\pm E2)$	-25	0.0131.35	$\alpha(\mathbf{K}) = 0.0110.30; \alpha(\mathbf{L}) = 0.00163.34; \alpha(\mathbf{M}) = 0.00036.7$
050.5 5	1.04 15	1705.75	(11/2)	1075.51	(13/2)	WII(+E2)	\2. J	0.0151 55	$\alpha(\text{N})=0.0110 50, \alpha(\text{L})=0.00105 54, \alpha(\text{M})=0.00050 7$ $\alpha(\text{N})=8.3\times10^{-5} 17; \alpha(\text{O})=1.20\times10^{-5} 26; \alpha(\text{P})=6.6\times10^{-7} 20$
									Mult., δ : from $\alpha(K)$ exp=0.011 3.
694.5 6	0.13 [‡] 4	2358.0	$(9/2^{-}, 11/2^{-})$	1663.45	$(9/2^+)$				
1073.3 <i>1</i>	6.37 7	1073.31	$(13/2)^+$	0.0	7/2-	E3		0.00557 8	α (K)=0.00455 6; α (L)=0.000788 11; α (M)=0.0001763 25 α (N)=4.06×10 ⁻⁵ 6; α (O)=5.76×10 ⁻⁶ 8; α (P)=2.78×10 ⁻⁷ 4
									E_{γ} : weighted average of 1073.1 2 (1994Me13) and 1073.3 <i>1</i> (1979To01). Other: 1073.2 (1982Ba75).
									I_{γ} : others: I(1073γ)/I(1091γ)=13 <i>I</i> /100 (1979To01), 15/100 (1982Ba75).
1090.4 3	74.4 15	1090.74	(9/2 ⁻)	0.0	7/2-				E_{γ} : weighted average of 1090.7 2 (1994Me13) and 1090.1 <i>l</i> (1979To01). Other: 1090.8 (1982Ba75).
									I_{γ} : quoted uncertainty of $\approx 0.2\%$ in 1994Me13 is unrealistically low; it has been increased by a factor of 10 by the evaluators.
1092.6 4	0.2^{\ddagger} 1	2165.86	$(9/2, 11/2, 13/2)^+$	1073.31	$(13/2)^+$				
1114.8 <i>3</i>	0.32 5	2827.34	$(11/2^{-})$	1712.80	(9/2-)				
1125.7 2	1.15 5	2789.18	$(9/2^{-}, 11/2^{-})$	1663.45	(9/2 ⁺)				
1218.5 2	0.45 5	2291.81	$(11/2^{-}, 13/2^{-})$	1073.31	$(13/2)^+$				
1230.4 4	0.26 11	2321.19	(9/2, 11/2) $(0/2^{-}, 11/2^{-})$	1090.74	(9/2)				
1318.3 3	1.30.5 0.22.4	2409.18	(9/2, 11/2) $(11/2^{-} 13/2^{-})$	1090.74	$(9/2)^+$				
1375.2.3	1.76 10	2466.24	$(9/2^{-},11/2^{-})$	1090.74	$(9/2^{-})$				
1396.5 2	0.61 7	2487.24	$(9/2^-, 11/2^-)$	1090.74	$(9/2^{-})$				
1415.6 <i>3</i>	0.53 5	3079.13	$(11/2^{-})$	1663.45	$(9/2^+)$				
1495.5 2	1.65 4	3079.13	$(11/2^{-})$	1583.60	$(11/2^{-})$				
1534.0 5	0.15 5	2607.10	$(11/2^{-})$	1073.31	$(13/2)^+$				
1545.9 2	0.907	3129.52	(11/2)	1583.60	(11/2)				

10

 $^{149}_{66}\mathrm{Dy}_{83}\text{--}10$

$\gamma(^{149}\text{Dy})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E _i (level)	J_i^π	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
1583.6 2	4.48 7	1583.60	$(11/2^{-})$	0.0 7/2-	Other: $E_{\gamma}=1583.62$, $I(1583.6\gamma)/I(1091.0\gamma)=92/100(1979To01)$.
1637.9 <i>3</i>	1.06 4	2728.65	$(9/2^-, 11/2^-, 13/2^-)$	1090.74 (9/2-)
1663.4 2	3.53 7	1663.45	$(9/2^+)$	$0.0 7/2^{-}$	·
1698.5 4	0.86 8	2789.18	$(9/2^{-}, 11/2^{-})$	1090.74 (9/2-)
1712.9 2	1.97 4	1712.80	(9/2-)	$0.0 7/2^{-}$	
1729.0 3	0.41 4	3312.52	(9/2 ⁻ ,11/2 ⁻ ,13/2 ⁻)	1583.60 (11/2	_)
1736.6 5	3.8 [‡] 8	2827.34	$(11/2^{-})$	1090.74 (9/2-) E_{γ} : 1736.8 in Fig. 4 of 1994Me13.
1753.4 [#] 4	0.60 [‡] 15	2827.34	$(11/2^{-})$	1073.31 (13/2)+
1782.2 <mark>b</mark> 3	0.33 6	1782.21?	$(7/2^+)$	$0.0 7/2^{-}$	
1791.9 <i>3</i>	0.46 5	2882.83	$(11/2^{-}, 13/2^{-})$	1090.74 (9/2-)
1809.7 <i>3</i>	0.79 11	2882.83	$(11/2^{-}, 13/2^{-})$	1073.31 (13/2	$)^+$
1889.7 <i>3</i>	0.34 6	2980.41	$(9/2^{-}, 11/2^{-})$	1090.74 (9/2-)
1958.8 4	0.47 7	3049.6	$(9/2^{-}, 11/2^{-}, 13/2^{-})$	1090.74 (9/2-)
1988.4 2	1.97 8	3079.13	$(11/2^{-})$	1090.74 (9/2-)
2006.0 5	0.23 9	3079.13	$(11/2^{-})$	1073.31 (13/2)+
2056.2 5	0.19 11	3129.52	$(11/2^{-})$	1073.31 (13/2)+
2089.3 2	0.877	3180.05	$(9/2^{-},11/2^{-},13/2^{-})$	1090.74 (9/2-)
2111.8 3	0.26 5	3202.55	$(9/2^{-},11/2^{-})$	1090.74 (9/2	
2221.4 6	0.40 16	3312.52	(9/2, 11/2, 13/2)	1090.74 (9/2	
2257.9 3	0.46 /	3348.00	(9/2, 11/2, 13/2)	1090.74 (9/2)
2312.2 3	0.707	2312.22	(9/2, 11/2) (0/2 - 11/2 -)	0.0 7/2	
2321.2 3	0.97 11	2521.19	(9/2, 11/2) $(0/2^{-}, 11/2^{-})$	$1000.74 (0/2^{-1})$	
2399.7 3	0.39 7	2490.42	(9/2, 11/2) $(9/2^{-}, 11/2^{-})$	1090.74 (9/2))
2409.15 2467.4 ^{#b} .6	0.39.0	2409.10	$(9/2^{-},11/2^{-})$	$0.0 7/2^{-}$	
2407.4 0	0.2011	2400.24	$(9/2^{-},11/2^{-})$	$0.0 7/2^{-}$	
2607.0 3	0.53 5	2607.10	$(11/2^{-})$	$0.0 7/2^{-}$	
2718.5 ^b 4	0.22 7	2718.5?	(9/2 ⁻ ,11/2 ⁻)	0.0 7/2-	
2827.4 <i>3</i>	2.20 8	2827.34	$(11/2^{-})$	$0.0 7/2^{-}$	
2980.3 4	0.45 8	2980.41	$(9/2^{-}, 11/2^{-})$	$0.0 7/2^{-}$	
3014.2 ^b 4	0.18 5	3014.2?	$(9/2^{-}, 11/2^{-})$	$0.0 7/2^{-}$	
3079.1 <i>3</i>	0.62 6	3079.13	$(11/2^{-})$	0.0 7/2-	
3129.5 4	0.25 5	3129.52	$(11/2^{-})$	0.0 7/2-	
3202.5 6	0.15 6	3202.55	$(9/2^{-}, 11/2^{-})$	0.0 7/2-	
3362.8 4	0.44 7	3362.8	$(9/2^{-}, 11/2^{-})$	0.0 7/2-	
3490.3 4	0.31 6	3490.42	$(9/2^{-}, 11/2^{-})$	$0.0 7/2^{-}$	

11

[†] From 1994Me13, unless otherwise noted. [‡] Estimated from $\gamma\gamma$ -coin spectra (1994Me13).

$\gamma(^{149}\text{Dy})$ (continued)

- # Poor fit in level scheme, deviation is ≈0.8 keV.
 @ From ce data in 1994Me13, given under comments. The same values are given in the Adopted Gammas.
 & Absolute intensity per 100 decays.
- ^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^b Placement of transition in the level scheme is uncertain.

Legend

¹⁴⁹Ho ε decay (21.0 s) 1994Me13,1990AlZH

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

$egin{aligned} & I_{\gamma} < & 2\% imes I_{\gamma}^{max} \ & I_{\gamma} < & 10\% imes I_{\gamma}^{max} \ & I_{\gamma} > & 10\% imes I_{\gamma}^{max} \ & I_{\gamma} > & 10\% imes I_{\gamma}^{max} \end{aligned}$	$\%\varepsilon + \%\beta^+ = 100$	$Q_{\varepsilon}=6048 \ 13$ 21.0
. ,	,	$^{149}_{67}\text{Ho}_{82}$
	/.	$\underline{I\beta^+}$ $\underline{I\varepsilon}$
	5871	0.003
	5843	0.003
		0.010
/		0.018
	5729	0.021
	5700	0.008
	-5672	
	$\frac{5643}{5615}$	
		0.004
\	5558	0.015
		0.009
		0.008
		0.002
	/	
,`	5387	0.005
	5358	0.003
	5330	0.021
		0.016
/		0.013
/	5216	0.003
	5187	0.010
		0.023
	5130	0.025
/	5102	0.018
	5045	0.004
	5016	0.005
	4988	0.022
	4959	0.014
	4931	0.029
	4874	0.041
	4845	0.050
	4817	0.042
	4/88	0.038
	4780	0.021
	4703	0.022
	4674	0.043
	4646	0.041
	4617	0.035
	4560	0.050
	4532	0.063
	4503	0.056
	4475	0.071
	4446	0.074
	4418	0.071
	4389	0.001 0.083

 $^{149}_{66}\text{Dy}_{83}$

¹⁴⁹Ho ε decay (21.0 s) 1994Me13,1990AlZH

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

Legend

$I_{\gamma} < 10\% \times I_{\gamma}^{max}$		(11/2-)	0.0	21.0 s 2
$I_{\gamma} > 10\% \times I_{\gamma}^{max}$	$\% \epsilon \pm \% \beta^+ - 100$	$Q_{\epsilon} = 6048 13$	3	
Coincidence	/02 + /0p = 100	14911		
		$^{10}_{67}\text{Ho}_{82}$		
	,	10+	_	Log ft
		$\underline{\mathbf{n}}$	<u>l</u>	Log Ji
	4361	0.001	0.103	
		0.001	0.112	
		0.001	0.128	
	4247	0.00123	0.103	
	4218	0.001	0.096	
	4190	0.002	0.114	
		0.002	0.100	
	4133	0.002	0.095	
	4104	0.003	0.110	
	4047	0.003	0.115	
	4019	0.004	0.128	
	3990	0.005	0.134	
	3962	0.007	0.178	
		0.010	0.213	
	3905	0.011	0.220	
/		0.011	0.206	
	3819	0.011	0.195	
	3791	0.014	0.224	
	3762	0.018	0.250	
		0.019	0.241	
	3705	0.021	0.253	
		0.022	0.247	
/ <u>~~~~~~~~</u>	3648	0.027	0.273	
	3591	0.033	0.312	
	3563	0.027	0.239	
	3534	0.047	0.374	
<u>(9/2⁻,11/2⁻)</u>	3490.42	0.1	0.6	5.4
		0.06	0.41	
	3362.8	0.06	0.3	5.7
(9/2 + 11/2 + 13/2 +	3348.00	0.08	0.4	5.6
$\underbrace{(3/2^{-},11/2^{-})}_{(9/2^{-},11/2^{-})}$	3202 55	0.1	0.7	5.4 5.7
(9/2 ⁻ ,11/2 ⁻ ,13/2 ⁻)	3180.05	0.03	0.5	5.4
	3129.52	0.28	1.0	5.3
	3079.13	1.1	3.9	4.69
	1.			
(9/2 ⁺)	1663.45	1.3	0.86	5.68
	1583.60	1.3	0.75	5.8
	1.			
(9/2 ⁻)	1090.74	24	95	48
(13/2)+	1073.31	1.1	0.46	6.1
7/2-	0.0			
	<u>4.2 m</u>	in 2		
140				
$^{17}_{66}$ Dy ₈₃				

¹⁴⁹Ho ε decay (21.0 s) 1994Me13,1990AlZH

 $^{149}_{66}\text{Dy}_{83}$