Adopted Levels, Gammas

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Balraj Singh and Jun Chen	NDS 185, 2 (2022)	23-Aug-2022							

 $Q(\beta^{-})=-6048 \ 13$; $S(n)=7906 \ 12$; $S(p)=4446 \ 15$; $Q(\alpha)=2808 \ 22$ 2021Wa16 $Q(\varepsilon)=3795 \ 9$, $Q(\varepsilon p)=1286 \ 9$, $S(2n)=19641 \ 13$, $S(2p)=6915 \ 9 \ (2021Wa16)$.

Mass measurement (Penning-trap method): 2000Be42 (also 2001Bo59, 1997Be63).

Half-life of fully-ionized atom in its isomeric state at 2661 keV has been measured by separating the nuclei produced in fragmentation of 209 Bi projectile and storing these nuclides in the cooler ring (ESR) at GSI. Measured T_{1/2}=11 s *l* as compared to 0.490 s *l5* for the neutral atom (2003Li42). In the same experiment decay of the bare atom in its g.s. was detected but half-life could not be measured.

Additional information 1.

Theoretical studies: consult the NSR database at www.nndc.bnl.gov/nsr/ for 14 references for structure and one for radioactive decay listed under 'document records' which can be accessed through web retrieval of the ENSDF database at www.nndc.bnl.gov/ensdf/.

High-spin part of the level scheme is based on results from 1996Gu17 in 122 Sn(32 S,5n γ) and 2002Go06 in 141 Pr(16 O,p7n γ). Configuration assignments to low-spin levels from 1994Me13 in 149 Ho ε decay.

¹⁴⁹Dy Levels

Possible SD structure exists in ¹⁴⁹Dy, as deduced by 2000Ap01 from a weak continuum, with a total SD intensity of 1.8% 5, in a ridge in the $\gamma\gamma$ -coin matrix in ¹²⁰Sn(³⁴S,5n γ) reaction. However, no discrete SD band structure has yet been found in this experiment; with an upper limit of population of 0.9% relative to the intensity of the relevant reaction channel.

Cross Reference (XREF) Flags

E(level) \dagger $J^{\pi \#}$ $T_{1/2}$ XREFComments0.0 $7/2^ 4.2 \min 2$ ABCDEFGHI $\%\varepsilon + \%\beta^+ = 100$ $\mu=-0.119 \ 7 \ (1989Ra17, 2019StZV)$ $Q=-0.62 \ 5 \ (1989Ra17, 2021StZZ)$ Evaluated forms charge radius= $5.06 \ fm \ 24 \ (2013An02)$.Evaluated difference in charge radius: $\delta < r^2 > (^{148}Dy, ^{149}Dy) = +0.119 \ fm^2 \ 13 \ (2013An02)$. $J^{\pi}: \ f_{7/2}$ neutron state (1994Me13); allowed ε feeding to $5/2^-$ levels (1728, 1876levels and $9/2^-$ level (1841) in 149 Tb. $T_{1/2}:$ weighted average of $4.2 \ min \ 2 \ (1993A103), 4.1 \ min \ 2 \ (1975To03), 4.6 \ min \ x \ ray(t)$) and $5.1 \ min \ 9 \ (\alpha(t)) \ (1973Bi06)$. Other: $8 \ min \ 2 \ (1958To27, 1959To27)$. $T_{1/2}:$ decay of fully-ionized atoms (where $\%\beta^+=100$) was detected by 2003Li42 but half-life could not be measured since it is too long compared to the storag times possible in their experiment. With $\%\varepsilon=0$, predicted $T_{1/2}$ of bare atom is min $5 \ (2003Li42)$. μ , Q: 1989Ra17 compilations quotes μ and Q from Neugart et al. (priv. comm. 1987) who used collinear laser-spectroscopic technique. The same values are quoted by 2019StZV and 2021StZZ.1034.60 20 \ (3/2^-)B				A B C D B C D C D C C C C C C C C C C C C	$ \begin{array}{rcl} {}^{149}\text{Ho}\ \varepsilon\ \text{decay}\ (21.0\ \text{s}) & \text{F} & {}^{122}\text{Sn}({}^{32}\text{S},5n\gamma) \\ {}^{149}\text{Ho}\ \varepsilon\ \text{decay}\ (56\ \text{s}) & \text{G} & {}^{136}\text{Ce}({}^{16}\text{O},3n\gamma) \\ {}^{149}\text{Dy}\ \text{IT}\ \text{decay}\ (0.490\ \text{s}) & \text{H} & {}^{141}\text{Pr}({}^{16}\text{O},p7n\gamma) \\ {}^{153}\text{Er}\ \alpha\ \text{decay}\ (37.1\ \text{s}) & \text{I} & {}^{152}\text{Gd}(\alpha,7n\gamma) \\ {}^{120}\text{Sn}({}^{32}\text{S},3n\gamma) \end{array} $
0.0 $7/2^-$ 4.2 min 2ABCDEFGHI $\% \varepsilon + \% \beta^+ = 100$ $\mu = -0.119 7$ (1989Ra17,2019StZV) $Q = -0.62 5$ (1989Ra17,2021StZZ) Evaluated rms charge radius= 5.06 fm 24 (2013An02). Evaluated difference in charge radius: $\delta < r^2 > (^{148}Dy,^{149}Dy) = +0.119$ fm² 13 (2013An02). J^{π} : $f_{7/2}$ neutron state (1994Me13); allowed ε feeding to $5/2^-$ levels (1728, 1876 levels and $9/2^-$ level (1841) in 149 Tb. T _{1/2} : weighted average of 4.2 min 2 (1993Al03), 4.1 min 2 (1975To03), 4.6 mi (x ray(t)) and 5.1 min 9 (α (t)) (1973Bi06). Other: 8 min 2 (1958To27,1959To27). T _{1/2} : decay of fully-ionized atoms (where $\% \beta^+ = 100$) was detected by 2003Li42 but half-life could not be measured since it is too long compared to the storag times possible in their experiment. With $\% \varepsilon = 0$, predicted T _{1/2} of bare atom is min 5 (2003Li42). μ ,Q: 1989Ra17 compilations quotes μ and Q from Neugart et al. (priv. comm. 1987) who used collinear laser-spectroscopic technique. The same values are quoted by 2019StZV and 2021StZZ.1034.60 20(3/2 ⁻)BJ ^{\pi} : probable $p_{3/2}$ neutron state (1994Me13).	E(level) [†]	J ^{π#}	T _{1/2}	XREF	Comments
	0.0 1034.60 <i>20</i>	7/2-	4.2 min 2	B	

Other measurements:

¹⁴⁹Dy Levels (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2}	XREF	Comments
1073.23 9	$(13/2)^+$	12.5 ns 15	A C EFGHI	J^{π} : E3 1073.2 γ to 7/2 ⁻ ; probable member of
				configuration= $vf_{7/2}\otimes(3^- \text{ in } {}^{148}\text{Dy})$ multiplet
				(1994Me13,1980Da18). This state is also mixed with $1_{13/2}$ neutron state (1980Da18)
				$T_{1/2}$: from $\gamma\gamma(t)$ in (¹⁶ O,3n γ) (1980Da18). Other: 13 ns 3 in
				(1976St01).
1090.73 12	$(9/2^{-})$		A	J [*] : probable h _{9/2} neutron state (1994Me13); allowed $\varepsilon + \beta^+$ transition from (11/2 ⁻) parent
1406.70 28	$(1/2^+)$		В	J^{π} : probable member of configuration= $vf_{7/2} \otimes (3^{-1} \text{ in } {}^{148}\text{Dy})$
				multiplet (1994Me13).
1501.0 4	$(3/2^+)$		B	J^{π} : probable d _{3/2} neutron hole state (1994Me13).
15/2.80 35	$(3/2^{+})$		В	J [*] : probable member of configuration= $v t_{7/2} \otimes (3 \text{ in } 10 \text{ Dy})$ multiplet (1994Me13).
1583.64 <i>14</i>	$(11/2^{-})$		A F H	J^{π} : probable member of configuration= $v f_{7/2} \otimes (2^+ \text{ in } {}^{148}\text{Dy})$
				multiplet (1994Me13); evidence of $\varepsilon + \beta^+$ feeding from (11/2 ⁻)
1/0/ 2 5	(5/0+)		2	parent.
1626.3 5	(5/21)		В	J': probable member of configuration= $vt_{7/2}\otimes(3 \text{ in }^{1+6}\text{Dy})$ multiplet (1994Me13)
1663.45 16	$(9/2^+)$		A	J^{π} : probable member of configuration= $\nu f_{7/2} \otimes (3^{-1} \text{ in } {}^{148}\text{Dy})$
				multiplet (1994Me13); evidence of $\varepsilon + \beta^+$ feeding from (11/2 ⁻)
1702 71 20	$(11/2)^{+}$			parent. $M_{\rm exclusion} = \frac{1}{2} \left[\frac{1}$
1/03./1 20	$(11/2)^{-1}$		A	J^* : probable member of configuration= $v_{1/2} \otimes (3 - in^{-1/2} \text{ Dy})$ multiplet (1994Me13): 630.3 γ M1(+E2) to (13/2) ⁺ .
1712.79 <i>18</i>	$(9/2^{-})$		Α	J^{π} : probable member of configuration= $vf_{7/2} \otimes (2^+ \text{ in } {}^{148}\text{Dy})$
			_	multiplet (1994Me13).
1727.5 6	(1/2)		В	J ^{<i>a</i>} : either of 1/2/.5 and 1//5.6 levels could be $p_{1/2}$ or $s_{1/2}$ neutron hole state (1994Me13)
1775.6 5	(1/2)		В	J^{π} : see comment for 1727.5 level.
1782.21? 30	$(7/2^+)$		Α	J ^{π} : probable member of configuration= $\nu f_{7/2} \otimes (3^{-148}Dy)$
2165 92 29	$(0/2, 11/2, 12/2)^+$			multiplet (1994Me13). $M_{\rm e}$ M(4, E2) 4(2, 1), to (11/2) ⁺
2165.82 28	$(9/2,11/2,13/2)^{+}$		A C FEGHT	J [*] : M1(+E2) 402.17 to (11/2) ⁺ . I^{π} : F2 1178 6v to (13/2) ⁺
2231.0115	(17/2)		C LI GIII	Configuration= $\pi h_{11/2} \otimes \pi s_{1/2} \otimes v f_{7/2}$ (1983JuZY) or
				configuration= $vf_{7/2} \otimes (5^{-148} \text{Dy})$ (1980Da18).
2291.74 22	$(11/2^{-}, 13/2^{-})^{@}$		Α	J^{π} : 1218.5 γ to (13/2) ⁺ .
2312.22 30	$(9/2^{-},11/2^{-})^{@}$		Α	J^{π} : 2312.2 γ to 7/2 ⁻ .
2321.19 24	$(9/2^{-},11/2^{-})^{@}$		Α	J^{π} : 2321.2 γ to 7/2 ⁻ .
2358.0 6	$(9/2^{-},11/2^{-})^{@}$		Α	J^{π} : 694.5 γ to (9/2 ⁺).
2402.44 31	$(11/2^{-}, 13/2^{-})^{@}$		Α	J^{π} : 1329.2 γ to (13/2) ⁺ .
2409.18 22	$(9/2^{-},11/2^{-})^{@}$		Α	J^{π} : 2409.1 γ to 7/2 ⁻ .
2466.23 29	$(9/2^{-},11/2^{-})^{@}$		Α	J ^{π} : 2467.4 γ to 7/2 ⁻ ; evidence of ε + β ⁺ feeding from (11/2 ⁻) parent.
2487.23 19	$(9/2^{-}, 11/2^{-})^{@}$		Α	J^{π} : 2487.2 γ to 7/2 ⁻ .
2550.44 17	$(21/2)^+$		C EFGHI	J^{π} : E2 298.6 γ to $(17/2)^+$.
				configuration= $\pi n_{11/2} \otimes \pi a_{3/2} \otimes \nu_{17/2} (1985) dZ (1985)$
2607.08 26	$(11/2^{-})^{@}$		А	J^{π} : 1534.0v to (13/2) ⁺ , 2607.0v to 7/2 ⁻
2660.94 34	(27/2)-	0.490 s 15	C EFGHI	%IT=99.3 3; $\%\varepsilon + \%\beta^+ = 0.7$ 3
				J^{π} : E3 110.5 γ to $(21/2)^+$.
				$T_{1/2}$: from $\gamma\gamma(t)$ and $\gamma(t)$ in ¹⁴⁹ Dy IT decay. For fully-ionized
				% T from $\%\epsilon + \%\beta^{+} = 0.7.3$ in 1988Ba02.

¹⁴⁹Dy Levels (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2}	XF	REF	Comments
					Configuration= $\pi h_{1/2}^2 \otimes v f_{7/2}$ (1983JuZY) or
					configuration = $\pi h_{1/2}^2 \approx (10^+ \text{ in } {}^{148}\text{Dy})$ (1980Da18).
					For fully-ionized atom, $\Re \varepsilon = 0$ (2003Li42).
2718.5? 4	$(9/2^{-},11/2^{-})^{@}$		Α		J^{π} : 2718.5 γ to 7/2 ⁻ .
2728.64 32	(9/2 ⁻ ,11/2 ⁻ ,13/2 ⁻) [@]		Α		J^{π} : 1637.9 γ to (9/2 ⁻).
2771.0 6	$(1/2^+, 3/2^+)$		В		J ^π : probable member of configuration= $\pi h_{11/2} \otimes v h_{9/2} \otimes \pi s_{1/2}$ multiplet (1994Me13); possible allowed β feeding from (1/2 ⁺)
2709 6 5	(1 + 2 + 2 + 2)		_		parent.
2788.6 3	$(1/2^{+},3/2^{+})$		В		J [*] : probable member of configuration= $\pi n_{11/2} \otimes \nu n_{9/2} \otimes \pi s_{1/2}$ multiplet (1994Me13); possible allowed β feeding from (1/2 ⁺) parent.
2789.17 22	(9/2 ⁻ ,11/2 ⁻) [@]		A		J ^π : 1125.7γ to (9/2 ⁺), 1698.5γ to (9/2 ⁻); evidence of $ε+β^+$ feeding from (11/2 ⁻) parent.
2827.32 19	(11/2 ⁻)		A		J ^{π} : 1753.4 γ to (13/2) ⁺ , 2827.4 γ to 7/2 ⁻ ; allowed ε + β ⁺ transition from (11/2 ⁻) parent; probable member of
	0				configuration= $\pi h_{11/2}^2 \otimes v h_{9/2}$ multiplet (1994Me13).
2882.79 23	$(11/2^{-}, 13/2^{-})^{\textcircled{0}}$		A		J^{π} : 1809.7 γ to (13/2) ⁺ .
2938.1 0	(1/2',3/2')		В		J [*] : probable member of configuration= $\pi n_{11/2} \otimes \nu n_{9/2} \otimes \pi s_{1/2}$ multiplet (1994Me13).
2980.40 25	$(9/2^{-},11/2^{-})^{\textcircled{0}}$		Α		J^{π} : 2980.3 γ to 7/2 ⁻ .
3014.2? 4	(9/2 ⁻ ,11/2 ⁻) [@]		Α		J^{π} : 3014.2 γ to 7/2 ⁻ .
3049.5 4	$(9/2^{-}, 11/2^{-}, 13/2^{-})^{\textcircled{0}}$		Α		J^{π} : 1958.8 γ to (9/2 ⁻).
3079.14 14	(11/2 ⁻)		A		J^{n} : 30/9.1 γ to $7/2^{-}$, 2006.0 γ to $(13/2)^{+}$; allowed $\varepsilon + \beta^{+}$ transition from $(11/2^{-})$ parent; probable member of
					configuration= $\pi h_{11/2}^2 \otimes v h_{9/2}$ multiplet (1994Me13).
3129.54 20	$(11/2^{-})^{\circ}$		Α		J^{*} : 3129.5 γ to $7/2^{-}$, 2056.2 γ to $(13/2)^{+}$.
3180.04 23	$(9/2^{-},11/2^{-},13/2^{-})$		A		J^{π} : 2089.3 γ to (9/2 ⁻).
3202.54 29	$(9/2, 11/2)^{\circ}$		A		J^{π} : 3202.5 γ to 7/2 .
3312.55 30	$(9/2, 11/2, 13/2)^{\circ}$		A		J^* : 2221.4 γ to (9/2); 1/29.0 γ to (11/2).
3348.65 32	$(9/2, 11/2, 13/2)^{\circ}$		A		$J^{*}: 2257.9\gamma$ to (9/2).
3362.8 4	$(9/2, 11/2)^{\circ}$		A		$J^{\pi}: 3362.8\gamma \text{ to } 1/2$
3490.41 25 3645.1 <i>4</i>	$(9/2^{-},11/2^{-})^{\oplus}$ $(29/2)^{+}$		A	EFGHI	J^{A} : 3490.3 γ to $7/2^{-}$. J^{π} : $\Delta J=1$, E1 984.2 γ to $(27/2)^{-}$.
2005 1 5	$(21/2^{+})$			FECUT	Configuration= $\pi h_{11/2}^2 \otimes v t_{7/2} \otimes (3^- \text{ in } {}^{146}\text{Dy}) (1983JuZY, 1980Da18).$
4084.4 6	$(33/2^+)$			EFGHI	J^{π} : $\Delta J = 1$, (M1) 240.07 to (29/2) : J^{π} : $\Delta J = 1$. (M1) γ to (31/2 ⁺).
5222.3 [‡] 6	$(35/2^+)$			EFGHI	J^{π} : $\Delta J = (2) 1336.9 \gamma$ to $(31/2^+)$.
5477.5 [‡] 6	$(37/2^+)$			EFGHI	J^{π} : E2, $AJ=2$ 1393.2 γ to (33/2 ⁺), (M1) γ to (35/2 ⁺).
5747.5 [‡] 6 5929.2? 7	(39/2+)			EFGHI G I	J^{π} : (M1) 270.0 γ to (37/2 ⁺).
6177.6 [‡] 6	$(41/2^+)$			EFGHI	J ^π : (M1) γ to (39/2 ⁺); ΔJ=2 γ to (37/2 ⁺).
6328.3 8 6677.8 7				FH FH	
6891.1 7				FΗ	22
6918.7 7	$(41/2^+)$			EFGHI	J^{π} : from $\gamma\gamma(\theta)$ (DCO) in (³² S,5n γ).
7156.5 7 7241.4 7	(41/2+)			F H FGHI	J^{n} : from $\gamma\gamma(\theta)$ (DCO) in (³² S,5n γ).
7409.6 <i>6</i> 8044.6? <i>11</i>	$(43/2^+)$			EFGHI H	J^{π} : from $\gamma\gamma(\theta)$ (DCO) in (³² S,5n γ).
8270.6? 11				H	
8519.6 12	(49/2+)	28 ns 2		EF HI	μ =+10.0 <i>15</i> (2003Wa28,2020StZV) J ^{π} : from systematics of N=83 isotones, see figure 4 of 2002Go06 in

Continued on next page (footnotes at end of table)

¹⁴⁹Dy Levels (continued)

E(level) [†]	$J^{\pi #}$	XREF	Comments
			¹⁴¹ Pr(¹⁶ O,p7nγ). The location of this isomer proposed by 2002Go06 is still tentative due to tentative connections of the 28-ns isomer with the low-lying levels. T _{1/2} : $\gamma\gamma(t)$; weighted average of 29 ns 3 (1979Ha29), 36 ns 8 (1980Da18), 25 ns 5 (1980Ja16) and 28 ns 3 (1981Ha17). Other: 50 ns 15 (1976St01). See ¹⁵² Gd(α ,7n γ) dataset.
			μ : from TDPAD (2003Wa28) using pulsed ¹³² Xe beam.
			Configuration= $\pi h_{11/2}^2 \otimes v(f_{7/2},h_{9/2},i_{13/2},d_{3/2}^{-2},0)$ gives calculated g=0.46 (2002Go06).
9115.0 <i>13</i>	(51/2) ^{&}	FΗ	
9409.3 14	(53/2) <mark>&</mark>	FΗ	
9782.4 14	(53/2) ^{&}	FΗ	
10238.7 14	(55/2) ^{&}	FΗ	
11200.8 15		Н	
11905.0 15		FΗ	
11951.2 <i>15</i>	(57/2) ^{&}	FΗ	
12209.4 15		FΗ	
12555.3 15	(57/2) <mark>&</mark>	FΗ	
12753.1 15	(59/2) <mark>&</mark>	FΗ	
12812.4 16		FH	
13088.2 16	(61/2) ^{&}	FΗ	
13115.3 16		FΗ	
13727.8 17		Н	
13949.3 17		Н	

[†] From a least-squares fit to γ -ray energies, assuming $\Delta E \gamma = 0.3$ keV for $E \gamma$ values quoted to tenth of a keV and 1 keV otherwise where not given. Absolute energies of levels above 7410.5 remain uncertain due to tentative connections of the 28-ns isomer with the low-lying levels.

[±] Member of configuration= $\pi h_{11/2}^3 \otimes \pi d_{5/2}^{-1} \otimes v f_{7/2}$ by 1983JuZY in (α ,7n γ) and (16 O,3n γ). The d_{5/2} proton orbital could be g_{7/2} also (1983JuZY).

[#] From shell-Model predictions and systematics (1994Me13) for levels with J \leq 13/2, unless otherwise noted. [@] Probable member of configuration= $\pi h_{11/2}^2 \otimes v h_{9/2}$ multiplet (1994Me13). Possible β feeding from (11/2⁻) parent suggests (9/2,11/2,13/2).

& Tentative assignments based on $\gamma\gamma(\theta)$ (DCO) data in ¹²²Sn(³²S,5n γ) (1996Gu17); spins proposed by 1996Gu17 have been adjusted upwards by two units due to revised J^{π} for the 28-ns isomer.

Adopted Levels, Gammas (continued)											
						$\gamma(^{149})$	⁹ Dy)				
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.	δ	α &	Comments		
1034.60	(3/2-)	1034.6 2	100	0.0	7/2-						
1073.23	(13/2)+	1073.2 1	100	0.0	7/2-	E3 [#]		0.00557 8	B(E3)(W.u.)=45 +6-5 E_{γ} : weighted average of 1073.1 2 from ¹⁴⁹ Ho ε decay (21.1 s), 1073.2 <i>I</i> from ¹⁴⁹ Dy IT decay (0.490 s), 1073.2 <i>3</i> from (³² S,3n γ), and 1073.2 2 from (α ,7n γ).		
1090.73	(9/2 ⁻)	1090.4 <i>3</i>	100	0.0	$7/2^{-}$						
1406.70	$(1/2^+)$	372.1 2	100	1034.60	$(3/2^{-})$	E1 [#]		0.01017 14			
1501.0	$(3/2^+)$	94.3 <i>3</i>	100	1406.70	$(1/2^+)$	M1(+E2) [#]	<0.7 [‡]	2.92 10			
1572.80 1583.64	(3/2 ⁺) (11/2 ⁻)	166.1 2 511 2 1583.7 2	100 12 <i>4</i> 100 <i>2</i>	1406.70 1073.23 0.0	(1/2 ⁺) (13/2) ⁺ 7/2 ⁻	M1(+E2) [#]	<1.5 [‡]	0.52 4			
1626.3	$(5/2^+)$	591.7 5	100	1034.60	$(3/2^{-})$	(E1) [‡]		0.00356 5			
1663.45	$(9/2^+)$	590.1 5	13 4	1073.23	$(13/2)^+$						
1703.71	$(11/2)^+$	1663.4 2 613.0 2	100 2 18 4	0.0 1090.73	$7/2^{-}$ (9/2 ⁻)	M1(+E2) [‡]	-2 5 [‡]	0.0121.25			
1712 79	$(9/2^{-})$	030.3 3	100 15	10/3.23	$(13/2)^{-}$	$MI(+E2)^+$	<2.5*	0.0151 35			
1727.5	(1/2)	692.9 6	100	1034.60	$(3/2^{-})$						
1775.6	(1/2)	741.0 5	100	1034.60	$(3/2^{-})$						
1782.21?	$(7/2^+)$	1782.2 ^{<i>a</i>} 3	100	0.0	7/2-						
2165.82	(9/2,11/2,13/2)+	462.1 <i>3</i> 1092.6 <i>4</i>	100 26 87 44	1703.71 1073.23	$(11/2)^+$ $(13/2)^+$	M1(+E2) [‡]	<1.0 [‡]	0.032 4			
2251.84	$(17/2)^+$	1178.6 <i>1</i>	100	1073.23	(13/2)+	E2 [#]		2.18×10 ⁻³ 3	E_{γ} : from (α,7nγ). Other: 1178.6 <i>3</i> from (³² S,3nγ).		
2291.74	$(11/2^{-}, 13/2^{-})$	1218.5 2	100	1073.23	$(13/2)^+$						
2312.22	$(9/2^{-},11/2^{-})$	2312.2 3	100	0.0	$\frac{7}{2^{-}}$						
2321.19	(9/2 ,11/2)	2321 2 3	$\frac{2711}{10011}$	1090.73	(9/2) $7/2^{-}$						
2358.0	$(9/2^{-}, 11/2^{-})$	694.5 6	100 11	1663.45	$(9/2^+)$						
2402.44	$(11/2^-, 13/2^-)$	1329.2 <i>3</i>	100	1073.23	$(13/2)^+$						
2409.18	$(9/2^{-}, 11/2^{-})$	1318.5 3	100 4	1090.73	(9/2 ⁻)						
2466.22	(0/2 - 11/2 -)	2409.1 3	30 6	0.0	$7/2^{-}$						
2400.23	(9/2 ,11/2)	1373.23 2467.4 <mark>4</mark> .6	100.0	1090.73	(9/2) 7/2 ⁻						
2487.23	(9/2 ⁻ ,11/2 ⁻)	1396.5 2 2487.2 <i>3</i>	70 8 100 7	1090.73 0.0	(9/2 ⁻) 7/2 ⁻						
2550.44 2607.08	(21/2) ⁺ (11/2 ⁻)	298.6 <i>1</i> 1534.0 <i>5</i> 2607.0 <i>3</i>	100 28 <i>10</i> 100 <i>10</i>	2251.84 1073.23 0.0	$(17/2)^+$ $(13/2)^+$ $7/2^-$	E2 [#]		0.0654 9	E_{γ} : from (α ,7n γ).		

S

$^{149}_{66}\mathrm{Dy}_{83}$ -5

From ENSDF

 $^{149}_{66}\mathrm{Dy}_{83}$ -5

	Adopted Levels, Gammas (continued)												
	$\gamma(^{149}\text{Dy})$ (continued)												
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult.	α &	Comments					
2660.94	(27/2) ⁻	110.5 3	100	2550.44	$(21/2)^+$	E3 [#]	27.6 6	B(E3)(W.u.)=0.325 <i>14</i> E _{γ} : weighted average of 110.4 <i>3</i> from (³² S,3n γ) and 110.8 <i>4</i> from (α ,7n γ).					
2718.5?	$(9/2^{-}, 11/2^{-})$	2718.5 ^a 4	100	0.0	$7/2^{-}$			/ nom (a,/m/).					
2728.64	$(9/2^{-}, 11/2^{-}, 13/2^{-})$	1637.9 <i>3</i>	100	1090.73	$(9/2^{-})$								
2771.0	$(1/2^+, 3/2^+)$	1736.4 6	100	1034.60	$(3/2^{-})$								
2788.6	$(1/2^+, 3/2^+)$	1754.0 5	100	1034.60	$(3/2^{-})$								
2789.17	(9/2-,11/2-)	1125.7 2	100 5	1663.45	$(9/2^+)$								
2827 32	$(11/2^{-})$	1096.54	8 1 13	1712 70	(9/2) $(0/2^{-})$								
2021.32	(11/2)	1736.6.5	0.4 <i>13</i> 100 <i>21</i>	1/12.79	(9/2) $(0/2^{-})$								
		1752 4 4	16 4	1072 22	$(3/2)^+$								
		1733.44	10 4 58 2	1075.25	(15/2) $7/2^{-}$								
2002 70	$(11/2^{-}12/2^{-})$	2027.4 5	58 6	1000 72	$(0/2^{-})$								
2002.19	(11/2 ,15/2)	1/91.9 3	38.0	1090.75	$(9/2)^+$								
2029 1	(1/2 + 2/2 +)	1609.7 5	100 14	10/5.25	(15/2) $(1/2^{\pm})$								
2936.1	(1/2, 3/2) (0/2 + 11/2 + 1)	1331.4 3	100	1400.70	(1/2)								
2980.40	(9/2 ,11/2)	1889.7 3	/5 15	1090.75	(9/2)								
2014 29	(0/2 - 11/2 -)	2980.54	100 18	0.0	7/2								
3014.2?	(9/2, 11/2) (0/2 + 11/2 + 12/2 +	3014.2° 4	100	1000.72	1/2								
3049.5	(9/2, 11/2, 15/2)	1958.8 4	100	1090.75	(9/2)								
3079.14	(11/2)	1415.6 3	2/3	1502.43	$(9/2^{+})$								
		1493.3 2	04 Z	1000 72	(11/2)								
		1988.4 2	100 4	1090.75	$(9/2)^+$								
		2000.0 3	12.3	1075.25	$(15/2)^{-}$								
2120 54	(11/2-)	30/9.1 3	32 3 100 8	1592.64	$\frac{1}{2}$								
5129.54	(11/2)	1545.9 2	21 12	1072 02	$(11/2)^+$								
		2030.2 5	21 12	1075.25	(15/2)								
3180.04	$(0/2^{-} 11/2^{-} 13/2^{-})$	2080 3 2	28.0	1000 73	$(0/2^{-})$								
3202.54	(9/2, 11/2, 13/2) $(0/2^{-}, 11/2^{-})$	2009.3 2	100 10	1090.73	(9/2)								
5202.54	(9/2, 11/2)	3202.5.6	58 23	0.0	(3/2)								
3312 55	$(0/2^{-} 11/2^{-} 13/2^{-})$	1720 0 3	100 10	1583.64	$(11/2^{-})$								
5512.55	(9/2, 11/2, 13/2)	2221 4 6	100 10	1000 72	(11/2) $(0/2^{-})$								
3348 65	$(0/2^{-} 11/2^{-} 13/2^{-})$	2221.40	100	1090.73	(9/2) $(9/2^{-})$								
3367 8	(9/2, 11/2, 13/2) $(9/2^{-} 11/2^{-})$	2251.75	100	0.75	$(J_{12}) = J_{12}$								
3490 41	(9/2, 11/2) $(9/2^{-} 11/2^{-})$	23002.0 4	100 18	1000 73	$(9/2^{-})$								
5770.71	()/2 ,11/2)	3490.3.4	79 15	0.0	$7/2^{-1}$								
3645.1	(29/2)+	984.2 2	100	2660.94	(27/2)-	E1 ^{#@}	1.29×10 ⁻³ 2	E_{γ} : weighted average of 984.0 <i>3</i> from (³² S,3n γ) and 984.3 2 from (α ,7n γ).					
3885.1	(31/2 ⁺)	240.0 3		3645.1	(29/2)+	(M1) [#]	0.2060 <i>30</i>	E_{γ} : from (α,7nγ) and (³² S,3nγ). Mult.: also supported by γ(θ) in (α,7nγ) and γγ(θ)(DCO) in (³² S,5nγ) with ΔJ=1.					

6

From ENSDF

 $^{149}_{66}\mathrm{Dy}_{83}\text{-}6$

$\gamma(^{149}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α &	Comments
4084.4	(33/2+)	199.5 3	100	3885.1	(31/2+)	(M1) ^{#@}	0.342 5	E_{γ} : weighted average of 199.6 3 from (³² S,3n γ) and 199.4 3 from (α ,7n γ).
5222.3	(35/2+)	1138.2 1336.9 <i>3</i>	33 5 100 7	4084.4 3885.1	(33/2 ⁺) (31/2 ⁺)	(Q)		E _{γ} : weighted average of 1336.8 <i>3</i> from (³² S,3n γ) and 1337.2 <i>4</i> from (α ,7n γ). Mult : from $\gamma(\theta)$ in (α ,7n γ) with $\Delta I=(2)$
5477.5	(37/2 ⁺)	255.2 2	51 5	5222.3	(35/2+)	(M1) [#]	0.1744 25	E _{γ} : weighted average of 255.7 <i>3</i> from (³² S,3n γ) and 255.0 2 from (α ,7n γ).
		1393.2 3	100 7	4084.4	(33/2+)	E2	1.61×10 ⁻³ 2	I _γ : others: 107 30 from (¹⁶ O,3nγ), ≈33 from (α,7nγ). E _γ : weighted average of 1393.0 3 from (³² S,3nγ) and 1393.7 5 from (α,7nγ).
5747.5	(39/2+)	270.0 2	100 7	5477.5	(37/2 ⁺)	(M1) [#]	0.1498 21	E_{γ} : weighted average of 270.1 3 from (³² S,3n γ) and 270.0 2 from (α , 7n γ).
5929.2? 6177.6	$(41/2^+)$	525.4 451.7 248.4 ^a	28.9 <i>22</i> 100	5222.3 5477.5 5929.2?	(35/2 ⁺) (37/2 ⁺)			E_{γ} : from (α ,7n γ). E_{γ} : from (α ,7n γ).
		430.3 2	100 7	5747.5	(39/2+)	(M1) [#]	0.0437 6	E_{γ} : weighted average of 430.2 <i>3</i> from (³² S,3n γ) and 430.3 2 from (α ,7n γ).
6328.3 6677.8 6891.1		699.8 <i>3</i> 580.8 930.5 213.0	23 5 100 100	5477.5 5747.5 5747.5 6677.8	(37/2 ⁺) (39/2 ⁺) (39/2 ⁺)			E_{γ} : from (³² S,3n γ).
		1143.5		5747.5	(39/2+)			E_{γ} : placement from 2002Go06 in (¹⁶ O,p7n γ); a 1143.6 γ placed to feed the 13116 level by 1996Gu17 in (³² S,5n γ).
6918.7 7156.5	$(41/2^+)$ $(41/2^+)$	741.1 <i>3</i> 479.2 1408.9	100 100 25 18 5	6177.6 6677.8 5747.5	$(41/2^+)$ $(39/2^+)$			E_{γ} : from (³² S,3n γ).
7241.4		350.0 1064.1	32 7 100 <i>1</i> 7	6891.1 6177.6	$(41/2^+)$			
7409.6	(43/2+)	168.1 253.3 491.1	10.3 9 15 3 100 6	7241.4 7156.5 6918.7	$(41/2^+)$ $(41/2^+)$			
		1231.8 3	55 6	6177.6	$(41/2^+)$	(D,E2)		E_{γ} : from (³² S,3n γ). Mult : from $\alpha(\exp)$ in (α 7n γ) (1983JuZY).
8044.6? 8270.6?		635 ^a 861 ^a		7409.6 7409.6	(43/2 ⁺) (43/2 ⁺)			
8519.6	(49/2+)	249 ^a 475 ^a		8270.6? 8044.6?				249 γ and 475 γ from ¹⁴¹ Pr(¹⁶ O,p7n γ) only.
9115.0 9409.3 9782.4	(51/2) (53/2) (53/2)	595.4 294.2 667.5	100 100 100	8519.6 9115.0 9115.0	(49/2 ⁺) (51/2) (51/2)			

-

From ENSDF

						A	Adopted Levels, Gammas (continued)						
	γ ⁽¹⁴⁹ Dy) (continued)												
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}		
10238.7	(55/2)	456.5 829.3	100 <i>13</i> 63 <i>13</i>	9782.4 9409.3	(53/2) (53/2)	12753.1 12812.4	(59/2)	848.2 603.1	100 20	11905.0 12209.4			
11200.8		962.1		10238.7	(55/2)			861.0		11951.2	(57/2)		
11905.0		704.2	100	11200.8		13088.2	(61/2)	335.1	100	12753.1	(59/2)		
11951.2	(57/2)	750.4	100	11200.8		13115.3		303.1	100	12812.4			
12209.4		1008.6	100	11200.8		13727.8		613		13115.3			
12555.3	(57/2)	1354.3		11200.8				915		12812.4			
12753.1	(59/2)	197.7	70 8	12555.3	(57/2)	13949.3		834		13115.3			
	,	543.7 802.0	80 20	12209.4 11951.2	(57/2)			1137		12812.4			

[†] From ¹⁴⁹Ho ε decay (1994Me13) up to the 3490 level and from (³²S,5n γ) (1996Gu17) and/or (¹⁶O,p7n γ) (2002Go06) above this energy. Exceptions are high-spin levels of 2251.8, 2550.4 and 2660.9 keV, which decay by single γ rays, and for which source dataset of E γ values are specified in comments.

[‡] From ce data in ¹⁴⁹Ho ε decay (1994Me13). [#] From ce data in (¹⁶O,3n γ) (1980Da18).

^(a) Also supported by $\gamma(\theta)$ in $(\alpha, 7n\gamma)$ and $\gamma\gamma(\theta)$ (DCO) in $({}^{32}S, 5n\gamma)$, with $\Delta J=1$ for dipole or $\Delta J=2$ for quadrupole where applicable.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁴⁹₆₆Dy₈₃

 $^{149}_{66}\text{Dy}_{83}$

Adopted Levels, Gammas

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- $\sim \gamma$ Decay (Uncertain)

