¹³⁶Ce(¹⁶O,3nγ) 1980Da18,1983JuZY

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh and Jun Chen	NDS 185, 2 (2022)	23-Aug-2022				

1980Da18 (also 1983JuZY): E=92 MeV ¹⁶O beam from the Emperor Tandem at the MPI Heidelberg on >99% enriched ¹³⁶Xe target (in oxide form); measured conversion electrons with a solenoid spectrometer. Deduced levels, J^{π} , isomer $T_{1/2}$, configurations, conversion coefficients, γ -ray multipolarities, transition strengths. Systematics of neighboring isotones. See also the ${}^{152}\text{Gd}(\alpha,7n\gamma)$ dataset for additional data from this work.

Level scheme is based on results from 1980Da18 up to 3885 level and from 1983JuZY above that, which is a substantial revision of a tentative scheme proposed by 1981Ha17 in 120 Sn(32 S,3n γ). However, details of the results from 1983JuZY are not available. The order of the 741 γ -491 γ cascade tentatively proposed in 1981Ha17, resulting an intermediate level at 6669, has been reversed based on later studies by 1996Gu17 in 122 Sn(32 S,5n γ) and 2002Go06 in 141 Pr(16 O,p7n γ), resulting an intermediate level at 6919, instead.

¹⁴⁹Dy Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	7/2-		
1073.20 20	$13/2^{+}$	12.5 ns 15	$T_{1/2}$: from $\gamma\gamma(t)$ (1980Da18). Other: 13 ns 3 in (1976St01).
2251.81 23	$17/2^{+}$,
2550.41 25	$21/2^{+}$		
2661.2 5	$27/2^{-}$	0.490 s 15	$T_{1/2}$: from the Adopted Levels.
3645.5 5	$29/2^+$		
3885.5 6	$(31/2^+)$		J^{π} : 1980Da18 give 31/2.
4084.9 7	$(33/2^+)$		
5222.8 7	$(35/2^+)$		
5478.0 7	$(37/2^+)$		
5747.9 7	$(39/2^+)$		
5929.6? 7			
6178.0 7	$(41/2^+)$		
6919.1 8			
7242.2? 8			
7410.0 8	$(43/2^+)$		

[†] From a least-squares fit to γ -ray energies, assuming $\Delta E \gamma = 0.3$ keV where not available.

[‡] As given in 1980Da18 for levels below 4 MeV, based on $\gamma(\theta)$ data in 1980Da18 and 1976St08, and ce data in (¹⁶O,3n γ) study by 1980Da18. Above 3.8 MeV, excitations, the assignments are from the Adopted Levels.

γ ⁽¹⁴⁹ Dy)								
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [†]	α ^{&}	Comments
110.8 4		2661.2	27/2-	2550.41	21/2+	E3	27.3 7	$ \begin{array}{c} \alpha(\text{K}) \exp = 22 \ 7 \ (1976 \text{St08}); \ \alpha(\text{L}) \exp = 13 \ 5 \\ (1980 \text{Da18}) \\ \alpha(\text{K}) = 3.07 \ 5; \ \alpha(\text{L}) = 18.4 \ 5; \ \alpha(\text{M}) = 4.63 \ 12 \\ \alpha(\text{L}) \exp = 16 \ 4 \ (1987 \text{BaZV}), \ \text{from} \\ \text{comparison with} \ 298.6 \gamma \ \text{intensity.} \end{array} $
167.8 [#]		7410.0	$(43/2^+)$	7242.2?				
199.4 [‡] 3	50 10	4084.9	$(33/2^+)$	3885.5	$(31/2^+)$	(M1) [@]	0.342 5	
240.0 3	80 20	3885.5	$(31/2^+)$	3645.5	29/2+	(M1) [@]	0.2060 30	
248.4 [#]		6178.0	$(41/2^+)$	5929.6?				
255.0 [‡] 2	32 9	5478.0	$(37/2^+)$	5222.8	$(35/2^+)$	(M1) [@]	0.1748 25	
270.0 [‡] 2	42 4	5747.9	$(39/2^+)$	5478.0	$(37/2^+)$	(M1)	0.1498 21	α(K)exp=0.080 15 (1980Da18)

Continued on next page (footnotes at end of table)

$^{136}Ce(^{16}O, 3n\gamma)$ 1980Da18,1983JuZY (continued)

γ (¹⁴⁹Dy) (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^π	Mult. [†]	α ^{&}	Comments
								$\alpha(K)=0.1264 \ 18; \ \alpha(L)=0.01826 \ 26; \ \alpha(M)=0.00401 \ 6 \ \delta(E2/M1)>0.8 \ from \ \alpha(K)exp \ in \ (1980Da18); \ 1983JuZY \ assign \ M1.$
298.6 <i>I</i>	80.8	2550.41	21/2+	2251.81	17/2+	E2	0.0654 9	α (K)exp=0.049 7 (1980Da18) α (K)=0.0490 7; α (L)=0.01276 18; α (M)=0.00294 4
430.3 [‡] 2	18 6	6178.0	$(41/2^+)$	5747.9	$(39/2^+)$	(M1) [@]	0.0437 6	
451.7 [#]		5929.6?		5478.0	$(37/2^+)$			
491.0 [#]		7410.0	$(43/2^+)$	6919.1				
525.1 [#]		5747.9	$(39/2^+)$	5222.8	$(35/2^+)$			
699.8 [#]		6178.0	$(41/2^+)$	5478.0	$(37/2^+)$			
741.1 [#]		6919.1		6178.0	$(41/2^+)$			
984.3 2	78 8	3645.5	29/2+	2661.2	27/2-	E1	1.29×10 ⁻³ 2	α (K)exp=0.0011 2 (1980Da18) α (K)=0.001099 15; α (L)=0.0001459 20; α (M)=3.17×10 ⁻⁵ 4
1064.2 [#]		7242.2?		6178.0	$(41/2^+)$			
1073.2 2	100	1073.20	13/2+	0.0	7/2-	E3	0.00557 8	α (K)exp=0.0046 5 (1980Da18) α (K)=0.00456 6; α (L)=0.000788 11; α (M)=0.0001763 25
1137.8 [#]		5222.8	$(35/2^+)$	4084.9	$(33/2^+)$			
1178.6 <i>1</i>	95 10	2251.81	17/2+	1073.20	13/2+	E2	2.18×10 ⁻³ 3	α (K)exp=0.0017 3 (1980Da18) α (K)=0.001840 26; α (L)=0.000265 4; α (M)=5.81×10 ⁻⁵ 8
1231.8 [#]		7410.0	$(43/2^+)$	6178.0	$(41/2^+)$			
1337.2 [‡] 4	35 6	5222.8	$(35/2^+)$	3885.5	$(31/2^+)$			
1393.7 [‡] 5	30 <i>3</i>	5478.0	(37/2+)	4084.9	(33/2+)	E2	1.61×10 ⁻³ 2	α (K)exp=0.0011 4 (1980Da18) α (K)=0.001330 19; α (L)=0.0001868 26; α (M)=4.08×10 ⁻⁵ 6 Mult.: from α (K)exp.

[†] From 1980Da18, unless otherwise stated. Multipolarities are determined based on ce data and intensities are obtained in-beam (1 μ s pulse) (1980Da18). [‡] Unplaced in 1980Da18 and placed by 1983JuZY.

[#] From 1983JuZY only. [@] From ce data of 1983JuZY. Details of α (K)exp values are not available.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

