Adopted Levels

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh and Jun Chen	NDS 185, 2 (2022)	23-Aug-2022	

 $Q(\beta^{-})=9530 SY; S(n)=4460 SY; S(p)=11940 SY; Q(\alpha)=-4590 SY$ 2021Wa16

Estimated uncertainties (2021Wa16): $\Delta Q(\beta^{-})=400$, $\Delta S(n)=400$, $\Delta S(p)=500$, $\Delta Q(\alpha)=640$.

 $S(2n)=7520\ 400,\ S(2p)=26680\ 500,\ Q(\beta^{-}n)=6170\ 400\ (syst,\ 2021Wa16).$

1987Ra12: Yield of ¹⁴⁹Cs is reported as 10⁵ atoms/s in U(p,X) E=600 MeV reaction using ISOLDE On-Line Mass Separator. 2000KoZH: ISOLDE On-Line Mass Separator. Measured E γ , I γ , En, In; deduced T_{1/2}, nuclear magnetic moments, β -delayed neutron emission probabilities.

- 2017Wu04: The ¹⁴⁹Cs nuclide was produced at the RIBF-RIKEN facility using the ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon. Two experiments, optimized for the transmission of ¹⁵⁸Nd and ¹⁷⁰Dy ions, were carried out with average beam intensities of 7 pnA and 12 pnA, respectively. The identification of the nuclide of interest was made in the BigRIPS separator by determining the atomic number and the mass-to-charge ratio of the ion using the tof-B ρ - Δ E method. The reaction products were transported through the ZeroDegree Spectrometer and implanted into the beta-counting system WAS3ABi that was surrounded by the EURICA array comprising of 84 HPGe detectors. The typical implantation rate was ≈100 ions/s. Measured (implanted ions) β^- , (implanted ions) β^- , γ and (implanted ions) γ correlations. Deduced half-life of the decay of ¹⁴⁹Cs g.s.
- 2017Li06: ¹⁴⁹Cs produced at ISOLDE-CERN facility through U(p,X) reaction with E(p)=1.4 GeV beam from the PS-Booster incident on UC_x target. Measured yield, E γ , I γ , $\beta\gamma$ -coin, half-life of ground state of ¹⁴⁹Cs isotope from γ -decay curves using plastic scintillation detectors for β particles, LaBr₃(Ce) and HPGe clover detectors for γ detection.
- 2018Sh11: ¹⁴⁹Cs produced at the RIBF-RIKEN facility using ⁹Be(²³⁸U,F) reaction with ²³⁸U⁸⁶⁺ beam of E=345 MeV/nucleon. Comparison of measured cross sections with theoretical calculations using LISE⁺ abrasion-fission (AF) model.
- 2020Wu04: ¹⁴⁹Cs nuclide produced at the RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon and an intensity of 5 pnA. Identification of fission fragments of interest was made based ON time-of-flight (tof), magnetic rigidity (B ρ), and energy loss (Δ E) using the BigRIPS spectrometer, determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The separated nuclei were implanted at a rate of 100 ions/s in the beta counting system of the Wide range Active Silicon-Strip Stopper Array for Beta and ion detection (WAS3ABi), which included a stack of five Double Sided Silicon Strip Detectors (DSSSDs). The WAS3ABi setup was surrounded by Euroball RIken Cluster Array (EURICA) array of 84 HPGe detectors for γ detection. Half-life of the separated and implanted ions was determined by fitting the time distribution of β (implants)- and/or $\beta\gamma$ (implants)-correlated decay curves to the sum of activities of parent nuclei, daughter nuclei, grand-daughter nuclei, β -delayed neutron daughter and grand-daughter nuclei, and a constant background. Comparison of measured half-lives with FRDM+QRPA (2003), FRDM+QRPA (2019), KTUY+GT2, RHB+pn-RQRPA, and DF+CQRPA theoretical calculations.
- ¹⁵⁰Xe isotope has been identified by 2018Sh11 at RIKEN, but its decay characteristics through β^- and β^- n, populating ¹⁵⁰Cs and ¹⁴⁹Cs, respectively are unknown.

Additional information 1.

2018Ar04: theory: calculated binding energy, charge, proton, and neutron radii, S(n), S(2n), quadrupole deformation parameter, neutron skin thickness, and pairing gap energy using Skyrme Hartree-Fock Bogoliubov (HFB) approach.

¹⁴⁹Cs Levels

E(level)	T _{1/2}	Comments	
0	107 ms 6	 %β⁻=100; %β⁻n=25 4 (2017Li06) Theoretical T_{1/2}=113 ms, %β⁻n=57 (2019Mo01). Theoretical T_{1/2}=73.1 ms, %β⁻n=33.7 and 27.8 for different fission barriers (2021Mi17). E(level): it is assumed that the observed events correspond to the ground-state activity of ¹⁴⁹Cs. J^π: 3/2⁺ from systematic trend (2021Ko07). Ω(p)=3/2⁺ (2019Mo01, theory). T_{1/2}: unweighted average of 113 MS 6 (2020Wu04, (implanted ions)βγ-correlated decay curves to the sum of activities of parent nuclei, daughter nuclei, grand-daughter nuclei, β⁻n daughter and grand-daughter nuclei, and a constant background at RIBF-RIKEN); 113 ms 8 (2017Wu04) from (implanted ions)β⁻-correlated decay curve at RIBF-RIKEN; group and laboratory); 84 ms 2 (2017Li06, γ-decay at ISOLDE-CERN), 112 ms 3 from β⁻n decay and 114 ms 16 from β⁻nγ decay (2000KoZH, ISOLDE-CERN). only the β⁻ decay mode is expected, and has been observed. 	

Continued on next page (footnotes at end of table)

Adopted Levels (continued)

¹⁴⁹Cs Levels (continued)

E(level) $T_{1/2}$ Comments

%β⁻ⁿ deduced by 2017Li06 from the ratio of number of ¹⁴⁸Ba ¹⁴⁹Cs nuclei using absolute γ-ray intensities in ¹⁴⁹Ba, ¹⁴⁸La and ¹⁴⁸Cs, the latter two from β⁻ⁿ decay modes. Production σ =33.7 nb for Te setting, with 30% systematic uncertainty (2018Sh11). Measured yield of ¹⁴⁹Cs=100 ions/µC (2017Li06).