¹⁴⁹La β^- decay (1.091 s) 2002Sy01

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 185, 2 (2022)	23-Aug-2022

Parent: ¹⁴⁹La: E=0.0; J^{π} =(3/2); $T_{1/2}$ =1.091 s 34; $Q(\beta^{-})$ =6.45×10³ 20; % β^{-} decay=100.0

¹⁴⁹La-J^{π},T_{1/2}: From ¹⁴⁹La Adopted Levels.

¹⁴⁹La-Q(β^{-}): From 2021Wa16.

2002Sy01 (also 2007SyZZ thesis, 2002SyZY): measured E γ , I γ , $\gamma\gamma$ -coin using two Compton-suppressed NORDBALL Ge spectrometers, and a high-purity x-ray detector (LEPS) for low-energy photons at Studsvik.

2003Sy01 (same group as 2002Sy01): measured $\beta\gamma\gamma$ (t), half-life of the 133.5 level, and intrinsic electric dipole moments. Others:

1987MaZY: T_{1/2}, eight γ rays reported.

 $T_{1/2}$ and production of ¹⁴⁹La: 1993Ru01, 1986ReZU (also 1986Wa17), 1979En02.

 $Q(\beta^{-})$ measurement by TAGS method: 2008HaZO.

All data are from 2002Sy01 unless otherwise stated.

Total decay energy deposit of 6.40 MeV 70 calculated by RADLIST code is in agreement with the expected value of 6.45 MeV 20 (2021Wa16). However the decay scheme is considered as incomplete in view of a large gap of about 4 MeV between $Q(\beta^-)$ value and the highest known populated level at 1868.8 keV.

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2} ‡#	Comments
0.0 [@]	$(3/2^{-})$	5.12 s 25	
55.10 [@] 7	$(5/2^{-})$		
133.48 <mark>&</mark> 7	$(3/2^+)$	0.60 ns 10	
142.60 ^{&} 7	$(5/2^+)$		
147.70 [@] 10	$(7/2^{-})$		
187.24 18	$(3/2^-, 5/2, 7/2^-)$		J^{π} : 2002Sy01 give (3/2,5/2).
190.94 ^{&} 13	$(7/2^+)$		
245.41 ⁴ 7	$(3/2^{-})$	≤0.12 ns	
289.00 12 $305 53^{a} 11$	(1/2) $(5/2^{-})$		
391.26 ^{<i>a</i>} 18	$(7/2^{-})$		
433.25 17			
444.10 12			
459.76 17			
575.2 4			
605.10 22			
615.4 3			
630.6 3			
654.8 3			
661.7 7			
694.6 <i>4</i>			
760.3 5			
1791.2.5			
1842.1 7			
1868.8 10			
4343+x			$S(n)(^{149}Ce)=4343$ 15 (2021Wa16). $x<[Q(\beta^-)-S(n)]$ i.e. $x<2107$ 200. This represents a range of unobserved levels that subsequently decay to ¹⁴⁸ Ba via one-neutron emission.

¹⁴⁹Ce Levels

Continued on next page (footnotes at end of table)

$^{149}\text{La}\,\beta^-$ decay (1.091 s) 2002Sy01 (continued)

¹⁴⁹Ce Levels (continued)

 † From least-squares fit to $E\gamma$ data.

[‡] From the Adopted Levels.

[#] From $\beta \gamma \gamma(t)$ (2003Sy01).

^(a) Band(A): $K^{\pi}=3/2^{-}$ band. [&] Band(B): Decoupled band.

^{*a*} Band(C): $K^{\pi} = 3/2^{-}$ band.

β^- radiations

E(decay)	E(level)	Ιβ ^{-†#}	Log ft‡	Comments
$(1.1 \times 10^3 \& 11)$	4343+x	1.41.34		$I\beta^-$: $\%\beta^-n=1.41.34$ (from ¹⁴⁹ La Adopted Levels).
$(4.58 \times 10^3 \ 20)$	1868.8	0.3	6.8	av $E\beta = 1963$ 94
$(4.61 \times 10^3 \ 20)$	1842.1	0.3	6.8	av $E\beta = 1975 94$
· / /				$I\beta^{-1}$: 0.7 (2002Sy01); revised to 0.3 in 2007SyZZ.
$(4.66 \times 10^3 \ 20)$	1791.2	0.8	6.4	av Eβ=1999 94
				I β^- : 0.8 (2002Sy01); revised to 0.9 in 2007SyZZ.
$(5.62 \times 10^3 \ 20)$	826.1	0.3	7.2	av E β =2450 94
2				I β^- : 0.7 (2002Sy01); revised to 0.3 in 2007SyZZ.
$(5.69 \times 10^3 \ 20)$	760.3	0.5	7.0	av E β =2481 94
$(5.76 \times 10^3 \ 20)$	694.6	0.2	7.4	av E β =2511 94
$(5.79 \times 10^3 \ 20)$	661.7	0.1	7.7	av E β =2527 94
$(5.80 \times 10^3 \ 20)$	654.8	1.2	6.7	av E β =2530 94
$(5.81 \times 10^{3} 20)$	638.9	0.4	7.1	av E β =2538 94
$(5.82 \times 10^3 \ 20)$	630.6	0.7	6.9	av E β =2541 94
$(5.83 \times 10^3 \ 20)$	615.4	0.4	7.1	av E β =2548 94
$(5.84 \times 10^3 \ 20)$	605.10	1.2	6.7	av $E\beta = 2553 94$
			6.0	$I\beta^{-}$: 1.0 (2002Sy01); revised to 1.3 in 2007SyZZ.
$(5.87 \times 10^3 \ 20)$	575.2	0.7	6.9	av $E\beta = 2567.94$
$(5.89 \times 10^{-5} 20)$	557.40	1.1	6.7	av $E\beta = 2576.94$
(5.00, 103.20)	450 76	1.0	65	μ : 1.2 (2002Sy01).
$(5.99 \times 10^{5} \ 20)$	459.76	1.8	6.5	av $E\beta = 2621.94$
$(6.01\times10^3.20)$	444.10	15	6.6	$E_{200} = 10^{-2} = 10^{$
(0.01×10^{-20})	444.10	1.5	0.0	av = 2029.94 $B^{-1} = 1.6 (2002Sy01)$
$(6.02 \times 10^3 \ 20)$	433 25	1.1	6.8	$F_{\rm AV} = F_{\rm A}^{2} = 2634.04$
(0.02×10 20)	733.23	1.1	0.0	$I\beta^{-1}$: 1.2 (2002Sv01).
$(6.06 \times 10^3 \ 20)$	391.26	0.6	7.0	AV = EB = 2653.94
(01001110 _1)				$I\beta^{-}: 0.5 (2002Sy01).$
$(6.14 \times 10^3 \ 20)$	305.53	7.0	6.0	av E β =2693 94
				$I\beta^{-}$: 7.9 (2002Sy01).
$(6.16 \times 10^3 \ 20)$	289.00	1.7	6.6	av Eβ=2701 94
_				$I\beta^-: 1.9 \ (2002Sy01).$
$(6.20 \times 10^3 \ 20)$	245.41	9.3	5.9	av Eβ=2721 94
2				$I\beta^-: 11.5 \ (2002Sy01).$
$(6.26 \times 10^3 \ 20)$	190.94	2.3	6.5	av $E\beta = 2747 \ 94$
				$1\beta^{-}: 2.0 \ (2002Sy01).$
$(6.26 \times 10^3 \ 20)$	187.24	4.2	6.3	av $E\beta = 2749.94$
				1β : 4.5 (2002Sy01); revised to 4.6 in 200/SyZZ.
$(6.30 \times 10^{3} \text{ e} 20)$	147.70	<1.8	>6.6	av $E\beta = 2767 \ 94$
((21, 10 ³ 20)	1.40.50	7.5	6.0	$\mu $: 1.6 (2002Sy01).
$(6.31 \times 10^3 \ 20)$	142.60	1.5	6.0	av $E\beta = 2/69/94$
$(6.22)(10^3.20)$	122 49	7.2	6.0	$\frac{10}{10} = \frac{100}{2002} \frac{100}{2001}.$
(0.52×10^{-20})	133.48	1.2	0.0	av $Ep = 2114 94$

Continued on next page (footnotes at end of table)

¹⁴⁹La β^- decay (1.091 s) 2002Sy01 (continued)

β^{-} radiations (continued)

E(decay)	E(level)	Ιβ ^{-†#}	Log ft‡	Comments
				$I\beta^{-}$: 5.6 (2002Sy01); but revised to 6.1 in 2007SyZZ.
$(6.39 \times 10^3 \ 20)$	55.10	16	5.7	av E β =2810 94
				$I\beta^{-}$: $\approx 12 \ (2002Sy01).$
$(6.45 \times 10^3 \ 20)$	0.0	≈30	≈5.5	av E β =2836 94
				$I\beta^-$: estimated by 2002Sy01 from Alaga rule, assuming spin of 3/2 or 5/2 for the parent level, although as 2002Sy01 mention that this rule is not strictly valid for

K-mixed states. For comparison, $\log ft=5.7$ for ¹⁴⁷La to ¹⁴⁷Ce g.s. Other: $I\beta^-<12$ if first forbidden decay ($\log ft>5.9$), as for ¹⁴¹La decay to ¹⁴¹Ce g.s.

[†] Deduced by the evaluators from intensity balance, using theoretical conversion coefficients for assumed multipolarity assignments. Values given by 2002Sy01 and some of the revised values (2002SyZY) are given under comments, when different. Since there is a gap of about 4 MeV between Q value and the last known populated level at 1868.8, there remains the likelihood of missing transitions and levels above 1868.8. Thus all the I β values, especially weak feedings (<5% or so), should be treated as upper limits; and associated Log *ft* values as lower limits.

^{\ddagger} Lower limits for listed I β values.

[#] Absolute intensity per 100 decays.

[@] Existence of this branch is questionable.

[&] Estimated for a range of levels.

 $\gamma(^{149}\text{Ce})$

Iγ normalization: Feeding to g.s. assumed as $\approx 30\%$; and $\%\beta^-n=1.41$ 34 from ¹⁴⁹La Adopted Levels. Due to incomplete decay scheme and possible unobserved transitions, this normalization is considered as approximate.

E_{γ}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^{&}	$\delta^{\&}$	$\alpha^{\boldsymbol{b}}$	$I_{(\gamma+ce)}^{a}$	Comments
(9.1)		142.60	(5/2+)	133.48 (3/2+)				20.2 34	E_{γ} : from level-energy difference; transition required from $\gamma\gamma$ coin data. $I_{(\gamma+ce)}$: from 2002Sy01, deduced from intensity balance of γ -transitions observed in the singles and coincidence spectra.
48.4 2	0.7 2	190.94	$(7/2^+)$	142.60 (5/2+)	[M1+E2]		20 11		$\alpha(\vec{K})=7.2 \ 10; \ \alpha(L)=10 \ 9; \ \alpha(M)=2.3 \ 21 \ \alpha(N)=0.5 \ 4; \ \alpha(O)=0.07 \ 6; \ \alpha(P)=5.0\times10^{-4} \ 14$
55.1 <i>1</i>	27.6 [#] 25	55.10	(5/2 ⁻)	0.0 (3/2 ⁻)	M1(+E2)	≤0.42	7.5 9		α (K)exp=5.3 6 α (K)=5.61 9; α (L)=1.5 7; α (M)=0.33 16 α (N)=0.071 35; α (O)=0.011 5; α (P)=0.000426 13
78.4 1	9.3 [@] 14	133.48	(3/2+)	55.10 (5/2 ⁻)	E1		0.474 7		$\alpha(\exp) \le 1.45$ $\alpha(K)=0.401$ 6; $\alpha(L)=0.0576$ 8; $\alpha(M)=0.01200$ 17 $\alpha(N)=0.00261$ 4; $\alpha(O)=0.000402$ 6; $\alpha(P)=2.337\times10^{-5}$ 34 Intrinsic dipole moment D ₀ =0.034 7 e fm (2003Sy01).
87.5 1	11.3 [@] 20	142.60	(5/2+)	55.10 (5/2 ⁻)	E1		0.351 5		$\alpha(\exp) \le 1.35$ $\alpha(K) = 0.298 \ 4; \ \alpha(L) = 0.0421 \ 6; \ \alpha(M) = 0.00878 \ 13$ $\alpha(N) = 0.001913 \ 27; \ \alpha(O) = 0.000296 \ 4; \ \alpha(P) = 1.761 \times 10^{-5}$ 25
92.6 1	10.0 [@] 13	147.70	(7/2 ⁻)	55.10 (5/2 ⁻)	E2(+M1)		2.1 6		$\alpha(\exp) \ge 1.71$ $\alpha(K) = 1.39 \ 13; \ \alpha(L) = 0.5 \ 4; \ \alpha(M) = 0.12 \ 9$ $\alpha(N) = 0.026 \ 18; \ \alpha(O) = 0.0038 \ 25; \ \alpha(P) = 8.8 \times 10^{-5} \ 9$ α ; for E2.
102.8 <i>1</i>	4.7 13	245.41	(3/2 ⁻)	142.60 (5/2+)	[E1]		0.2253 32		α (K)=0.1917 27; α (L)=0.0267 4; α (M)=0.00555 8 α (N)=0.001212 17; α (O)=0.0001886 27; α (P)=1.160×10 ⁻⁵ 16 Intrinsic dipole moment D ₀ ≥0.045 e fm (2003Sy01).
112.0 2	15.3 [#] 14	245.41	(3/2 ⁻)	133.48 (3/2+)	[E1]		0.1779 26		$\alpha(K)=0.1515\ 22;\ \alpha(L)=0.02091\ 31;\ \alpha(M)=0.00435\ 6$ $\alpha(N)=0.000951\ 14;\ \alpha(O)=0.0001485\ 22;\ \alpha(P)=9.27\times10^{-6}$ 14 Intrinsic dipole moment $D_0\geq 0.058$ e fm (2003Sy01).
114.6 <i>3</i>	3.3 [#] 3	305.53	(5/2 ⁻)	190.94 (7/2+)	[E1]		0.1670 26		α (K)=0.1423 22; α (L)=0.01959 31; α (M)=0.00408 6 α (N)=0.000892 14; α (O)=0.0001393 22; α (P)=8.73×10 ⁻⁶ 14

4

149 La β^- decay (1.091 s) 2002Sy01 (continued)									
γ ⁽¹⁴⁹ Ce) (continued)									
Eγ	$I_{\gamma}^{\dagger a}$	E _i (level)	J^{π}_i	\mathbf{E}_{f}	J_f^π	Mult. ^{&}	$\alpha^{\boldsymbol{b}}$	Comments	
					¥			$\alpha(O)=0.0001393\ 22;\ \alpha(P)=8.73\times10^{-6}\ 14$	
132.2 4	9.0 [#] 13	187.24	$(3/2^{-}, 5/2, 7/2^{-})$	55.10	(5/2 ⁻)	[D,E2]	0.44 33		
133.5 1	100.0 [#] 34	133.48	(3/2+)	0.0	(3/2 ⁻)	[E1]	0.1096 16	α (K)=0.0936 <i>13</i> ; α (L)=0.01273 <i>18</i> ; α (M)=0.00265 <i>4</i> α (N)=0.000580 <i>8</i> ; α (O)=9.11×10 ⁻⁵ <i>13</i> ; α (P)=5.86×10 ⁻⁶ <i>8</i> Intrinsic dipole moment D ₀ =0.041 <i>5</i> e fm (2003Sy01).	
135.8 2	7.5 9	190.94	$(7/2^+)$	55.10	(5/2 ⁻)	[E1]	0.1046 15	$\alpha(N)=0.000553 \ 8; \ \alpha(O)=8.68\times10^{-5} \ 13; \ \alpha(P)=5.60\times10^{-6} \ 8 \ \alpha(K)=0.0893 \ 13; \ \alpha(L)=0.01213 \ 18; \ \alpha(M)=0.00252 \ 4$	
141.3 6	7.5 [#] 9	289.00	(7/2 ⁻)	147.70	(7/2 ⁻)	[M1+E2]	0.53 8	α (K)=0.401 22; α (L)=0.10 5; α (M)=0.021 11 α (N)=0.0046 23; α (O)=6.9×10 ⁻⁴ 30; α (P)=2.67×10 ⁻⁵ 27	
142.6 <i>1</i>	50.2 [#] 20	142.60	(5/2 ⁺)	0.0	(3/2 ⁻)	[E1]	0.0914 13	α (K)=0.0781 <i>11</i> ; α (L)=0.01057 <i>15</i> ; α (M)=0.002200 <i>31</i> α (N)=0.000482 <i>7</i> ; α (O)=7.58×10 ⁻⁵ <i>11</i> ; α (P)=4.93×10 ⁻⁶ <i>7</i>	
147.7 2	4.1 [#] 9	147.70	(7/2 ⁻)	0.0	(3/2 ⁻)	[E2]	0.520 8	α (K)=0.366 5; α (L)=0.1203 18; α (M)=0.0265 4 α (N)=0.00571 9; α (O)=0.000826 12; α (P)=2.109×10 ⁻⁵ 31	
154.2 [‡] 2	3.6 22	459.76		305.53	(5/2-)	[D,E2]	0.26 19		
157.8 2	6.8 11	305.53	(5/2 ⁻)	147.70	(7/2 ⁻)	[M1+E2]	0.37 4	α (K)=0.288 <i>10</i> ; α (L)=0.065 <i>27</i> ; α (M)=0.014 <i>6</i> α (N)=0.0030 <i>13</i> ; α (O)=4.6×10 ⁻⁴ <i>17</i> ; α (P)=1.95×10 ⁻⁵ <i>21</i>	
162.9 <i>3</i>	5.3# 13	305.53	(5/2 ⁻)	142.60	(5/2+)	[E1]	0.0634 9	α (N)=0.000333 5; α (O)=5.25×10 ⁻⁵ 8; α (P)=3.48×10 ⁻⁶ 5 α (K)=0.0543 8; α (L)=0.00729 11; α (M)=0.001516 23	
172.1 3	7.6 [@] 17	305.53	(5/2 ⁻)	133.48	(3/2 ⁺)	[E1]	0.0546 8	α (K)=0.0467 7; α (L)=0.00625 9; α (M)=0.001301 19 α (N)=0.000286 4; α (O)=4.52×10 ⁻⁵ 7; α (P)=3.01×10 ⁻⁶ 4	
187.2 2	20.9 [#] 12	187.24	$(3/2^{-}, 5/2, 7/2^{-})$	0.0	$(3/2^{-})$	[D,E2]	0.13 9		
190.3 2	12.1 [#] 10	245.41	(3/2 ⁻)	55.10	(5/2 ⁻)	[M1+E2]	0.206 11	α (K)=0.1652 29; α (L)=0.033 10; α (M)=0.0070 23 α (N)=0.0015 5; α (O)=2.3×10 ⁻⁴ 6; α (P)=1.14×10 ⁻⁵ 15	
198.7 <i>1</i>	7.7 22	444.10		245.41	$(3/2^{-})$	[D,E2]	0.11 7		
200.3 [‡] 2	1.3 3	391.26	(7/2 ⁻)	190.94	(7/2+)	[E1]	0.0362 5	α (K)=0.0310 4; α (L)=0.00411 6; α (M)=0.000856 12 α (N)=0.0001882 27; α (O)=2.98×10 ⁻⁵ 4; α (P)=2.029×10 ⁻⁶ 29	
214.5 [‡] 5	1.3 4	459.76		245.41	(3/2-)	[D,E2]	0.09 6		
233.9 1	2.5 4	289.00	(7/2 ⁻)	55.10	(5/2 ⁻)	[M1+E2]	0.1103 21	α (K)=0.090 5; α (L)=0.0159 31; α (M)=0.0034 7 α (N)=0.00074 15; α (O)=0.000115 19; α (P)=6.4×10 ⁻⁶ 10	
243.0 [‡] 9	0.7 2	433.25		190.94	$(7/2^+)$	[D,E2]	0.06 4		
245.4 1	42 8	245.41	(3/2 ⁻)	0.0	(3/2 ⁻)	[M1+E2]	0.0956 29	α (K)=0.078 6; α (L)=0.0135 23; α (M)=0.0029 5 α (N)=0.00063 11; α (O)=9.8×10 ⁻⁵ 13; α (P)=5.6×10 ⁻⁶ 9	
246.1 [‡] 8	1.8 9	433.25	(- (-)	187.24	$(3/2^{-}, 5/2, 7/2^{-})$	[D,E2]	0.06 4		
248.5 4	1.1 3	391.26	(1/2 ⁻)	142.60	(5/2 ⁺)	[E1]	0.02033 30	$\alpha(\mathbf{K}) = 0.01744 \ 26; \ \alpha(\mathbf{L}) = 0.002294 \ 34; \ \alpha(\mathbf{M}) = 0.000477 \ 7$ $\alpha(\mathbf{N}) = 0.0001051 \ 15; \ \alpha(\mathbf{O}) = 1.674 \times 10^{-5} \ 25; $ $\alpha(\mathbf{P}) = 1.165 \times 10^{-6} \ 17$	
250.4 8	5.1 8	305.53	(5/2 ⁻)	55.10	(5/2 ⁻)	[M1+E2]	0.090 4	α (K)=0.074 6; α (L)=0.0127 20; α (M)=0.0027 5 α (N)=0.00059 10; α (O)=9.2×10 ⁻⁵ 12; α (P)=5.2×10 ⁻⁶ 9	

S

From ENSDF

 $^{149}_{58}\text{Ce}_{91}$ -5

 $^{149}_{58}\mathrm{Ce}_{91}$ -5

149 La β^- decay (1.091 s) 2002Sy01 (continued)								
						γ (¹⁴⁹ Ce)	(continued)	
E_{γ}	$I_{\gamma}^{\dagger a}$	E _i (level)	J_i^π	E_f	J_f^π	Mult. ^{&}	$\alpha^{\boldsymbol{b}}$	Comments
290.5 3	0.6 2	433.25		142.60	(5/2+)	[D,E2]	0.038 24	
299.8 2	4.7 6	433.25		133.48	$(3/2^+)$	[D,E2]	0.035 23	
305.5 2	23.1# 20	305.53	(5/2-)	0.0	(3/2 ⁻)	[M1+E2]	0.050 5	$\alpha(K)=0.042 \ 5; \ \alpha(L)=0.0067 \ 4; \ \alpha(M)=0.00142 \ 11$ $\alpha(N)=0.000311 \ 21; \ \alpha(O)=4.88 \times 10^{-5} \ 19; \ \alpha(P)=3.0 \times 10^{-6} \ 6$
310.6 [‡] 7	2.3 4	444.10		133.48	$(3/2^+)$	[D,E2]	0.032 21	
317.2 [‡] 3	2.2 6	459.76		142.60	$(5/2^+)$	[D,E2]	0.030 20	
336.3 [‡] 3	1.6 4	391.26	$(7/2^{-})$	55.10	(5/2 ⁻)	[M1+E2]	0.038 4	α (K)=0.032 4; α (L)=0.00496 12; α (M)=0.00105 4 α (N)=0.000231 7; α (O)=3.64×10 ⁻⁵ 5; α (P)=2.3×10 ⁻⁶ 5
393.5 <i>3</i>	3.0 [#] 7	638.9		245.41	$(3/2^{-})$			
404.6 [‡] 5	5.2 8	459.76		55.10	$(5/2^{-})$			
409.5 5	2.7 8	654.8		245.41	(3/2-)			
409.7 5	6.8 12	557.40		147.70	$(7/2^{-})$			
462.5 [‡] 3	1.4 4	605.10		142.60	$(5/2^+)$			
481.9 [‡] <i>3</i>	1.8 3	615.4		133.48	$(3/2^+)$			
497.1 [‡] <i>3</i>	5.2 7	630.6		133.48	$(3/2^+)$			
502.3 [‡] 2	1.5 5	557.40		55.10	(5/2 ⁻)			
507.1 3	5.9 12	654.8		147.70	$(7/2^{-})$			
519.17	0.8 3	661.7		142.60	$(5/2^+)$			
520.1 4	4.8 9	575.2		55.10	$(5/2^{-})$			
560.3+ 10	1.0 3	615.4		55.10	$(5/2^{-})$			
605.1 <i>3</i>	7.7 <mark>"</mark> 28	605.10		0.0	(3/2 ⁻)			
626.8 5	3.7 6	760.3		133.48	$(3/2^+)$			
638.4 8	1.0 5	826.1		187.24	$(3/2^-, 5/2, 7/2^-)$			
639.5 [‡] 4	1.3 4	694.6		55.10	$(5/2^{-})$			
692.8 [‡] 6	1.4 3	826.1		133.48	$(3/2^+)$			
1648.5 [‡] 10	1.2 5	1791.2		142.60	$(5/2^+)$			
1657.7 [‡] 5	4.7 9	1791.2		133.48	$(3/2^+)$			
1681.6 [‡] 9	2.4 10	1868.8		187.24	$(3/2^-, 5/2, 7/2^-)$			
1700.0 [‡] <i>13</i>	0.8 4	1842.1		142.60	$(5/2^+)$			
1708.5 [‡] 7	1.4 4	1842.1		133.48	$(3/2^+)$			

[†] From γγ coin spectra unless otherwise stated.
[‡] From γγ coin.
[#] From singles γ spectra.
[@] From average of singles γ and γγ coin spectra.

From ENSDF

 $^{149}_{58}\mathrm{Ce}_{91}$ -6

 $\gamma(^{149}\text{Ce})$ (continued)

- [&] Estimated from I(x ray)/I γ (2002Sy01). Most assignments are assumed from proposed ΔJ^{π} ; mult=[D,E2] indicates dipole or E2 since no long-lived levels have been reported by 2002Sy01.
- ^{*a*} For absolute intensity per 100 decays, multiply by ≈ 0.135 .
- ^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

8

¹⁴⁹₅₈Ce₉₁