Adopted Levels, Gammas

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh and Jun Chen	NDS 185, 2 (2022)	23-Aug-2022					

 $Q(\beta^{-})=7.39 \times 10^{3} 20$; S(n)=3357.0 29; S(p)=13209 13; $Q(\alpha)=-3762 11$ 2021Wa16 S(2n)=8709 20, S(2p)=25010 200 (syst), $Q(\beta^{-}n)=1807 20$ (2021Wa16).

Isotopic assignment: 1986ReZU, 1987MaZY, 1993Ru01, 2017Wu04.

2016Kn03: measurement of mass excess of ¹⁴⁹Ba g.s. using FRS-ESR-facility at GSI.

- 2017Wu04: The ¹⁴⁹Ba nuclide was produced at the RIBF-RIKEN facility using the ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon. Two experiments, optimized for the transmission of ¹⁵⁸Nd and ¹⁷⁰Dy ions, were carried out with average beam intensities of 7 pnA and 12 pnA, respectively. The identification of the nuclide of interest was made in the BigRIPS separator by determining the atomic number and the mass-to-charge ratio of the ion using the tof-B ρ - Δ E method. The reaction products were transported through the ZeroDegree Spectrometer and implanted into the beta-counting system WAS3ABi that was surrounded by the EURICA array comprising of 84 HPGe detectors. The typical implantation rate was 100 ions/s. Measured: implanted ion- β ⁻-t, implanted ion- β ⁻- γ -t and implanted ions- γ -t correlations. Deduced: T_{1/2}.
- 2020Wu04: ¹⁴⁹Ba nuclide produced at the RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon and an intensity of 5pnA. Identification of fission fragments of interest was made based on time-of-flight (tof), magnetic rigidity (B ρ), and energy loss (Δ E) using the BigRIPS spectrometer, determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The separated nuclei were implanted at a rate of 100 ions/s in the beta counting system of the Wide range Active Silicon-Strip Stopper Array for Beta and ion detection (WAS3ABi), which included a stack of five Double Sided Silicon Strip Detectors (DSSSDs). The WAS3ABi setup was surrounded by Euroball RIken Cluster Array (EURICA) array of 84 HPGe detectors for γ detection. Half-life of the separated and implanted ions was determined by fitting the time distribution of β (implants)- and/or $\beta\gamma$ (implants)-correlated decay curves to the sum of activities of parent nuclei, daughter nuclei, grand-daughter nuclei, β -delayed neutron daughter and grand-daughter nuclei, and a constant background. Comparison of measured half-lives with FRDM+QRPA (2003), FRDM+QRPA (2019), KTUY+GT2, RHB+pn-RQRPA, and DF+CQRPA theoretical calculations.

Additional information 1.

Theoretical studies: consult the NSR database at www.nndc.bnl.gov/nsr/ for five references for nuclear structure theory, listed under 'document records' which can be accessed through web retrieval of the ENSDF database at www.nndc.bnl.gov/ensdf/.

¹⁴⁹Ba Levels

Cross Reference (XREF) Flags

A ¹⁴⁹Cs β^- decay (107 ms)

B 150 Cs β^{-} n decay (81 ms)

E(level) [†]	J^{π}	T _{1/2} ‡	XREF	Comments
0.0	(5/2 ⁻ ,3/2 ⁻)	352 ms 6	AB	[∞] β ⁻ =100; [∞] β ⁻ n=2.2 <i>17</i> (1993Ru01,1986ReZU) [∞] β ⁻ n is unweighted average of 3.9% <i>12</i> (1993Ru01) and 0.58 8 (1986ReZU, previous value was 0.43 <i>12</i> in 1986Wa17). Theoretical T _{1/2} =272 ms, [∞] β ⁻ n=0 (2019Mo01). Theoretical T _{1/2} =177 ms, [∞] β ⁻ n=1.26 and 1.38 for different fission barriers (2021Mi17). J ^π : 5/2 ⁻ proposed by 2017Li06, based on comparison with <i>J</i> ^π =(5/2 ⁻) for ¹⁴⁷ Ba g.s., but authors mention that 3/2 ⁻ is also possible, as 2005Sy01 assigned 3/2 ⁻ for g.s. of ¹⁴⁷ Ba Others: 3/2 ⁻ from systematic trend (2021Ko07), and Ω(n)=3/2 ⁻ (2019Mo01, theory). T _{1/2} : weighted average of 368 ms <i>19</i> (2020Wu04, (implanted ions)β-correlated decay curves to the sum of activities of parent nuclei, daughter nuclei, grand-daughter nuclei, β ⁻ n daughter and grand-daughter nuclei, and a constant background); 352 ms 6 (2017Wu04, implanted ion-β ⁻ -t spectrum using the least-squares and maximum-likelihood methods); 324 ms <i>18</i> (1993Ru01); and 356 ms 8 (1986ReZU, neutron timing, previous value was 346 ms 6 in 1986Wa17). Other: 0.4 s (γ timing, 1987MaZY).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁴⁹Ba Levels (continued)

E(level) [†]	J^{π}	T _{1/2} ‡	XREF	Comments
46.87 10	$(1/2 \text{ to } 7/2)[^-]$	0.6 ns 2	A	J^{π} : γ to $(5/2^{-}, 3/2^{-})$ g.s.
68.19 9	(1/2 to 7/2)[⁻]	0.6 ns 5	Α	J^{π} : γ to $(5/2^{-}, 3/2^{-})$ g.s.
124.93 <i>13</i>			Α	
164.79 20	$(1/2 \text{ to } 7/2)^{(+)}$		Α	J^{π} : (E1) γ to $(5/2^{-}, 3/2^{-})$ g.s.
236.45 10			Α	
279.27 12			Α	
282.73 10			AB	
316.56 9			AB	
362.29 23			Α	
389.64 13			Α	
481.83 25			Α	
488.05 10			Α	
665.33 9			Α	
682.56 17			A	
727.05 16			A	
911.3 21			A	
917.7 4			Α	

[†] From a least-squares fit to $E\gamma$ values. Uncertainties of 205.9 γ and 487.7 γ were doubled to 0.24 and 0.22 keV, respectively to obtain a better fit for the 488-keV level. [‡] From $\beta\gamma$ (t) in ¹⁴⁹Cs β^- decay (2017Li06), except where noted.

 $\gamma(^{149}\text{Ba})$

E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α #	Comments
46.87	$(1/2 \text{ to } 7/2)[^-]$	46.80 18	100	0.0	(5/2 ⁻ ,3/2 ⁻)	[M1] [‡]	8.87 16	B(M1)(W.u.)=0.036 + 34 - 14
68.19	$(1/2 \text{ to } 7/2)[^{-1}]$	68.10 13	100	0.0	$(5/2^{-},3/2^{-})$	[M1] [‡]	2.98 4	B(M1)(W.u.)=0.029 + 145 - 13
124.93		78.20 13	100 26	46.87	$(1/2 \text{ to } 7/2)[^-]$	[]		
		124.70 23	77 11	0.0	$(5/2^-, 3/2^-)$			
164.79	(1/2 to 7/2) ⁽⁺⁾	96.60 18	100	68.19	(1/2 to 7/2)[⁻]	(E1)	0.250 4	Mult.: from lack of observation of Ba X-rays in coincidence with the 68.1γ .
236.45		168.10 <i>11</i>	100 13	68.19	$(1/2 \text{ to } 7/2)[^{-}]$			
		189.50 <i>30</i>	41 6	46.87	$(1/2 \text{ to } 7/2)[^-]$			
		236.70 13	24 7	0.0	$(5/2^-, 3/2^-)$			
279.27		211.20 11	100 14	68.19	$(1/2 \text{ to } 7/2)[^-]$			
		279.00 17	57 8	0.0	$(5/2^-, 3/2^-)$			
282.73		282.90 13	100	0.0	$(5/2^{-}, 3/2^{-})$			
316.56		248.20 46	5.3 10	68.19	$(1/2 \text{ to } 7/2)[^{-}]$			
		316.6 <i>1</i>	100 5	0.0	$(5/2^{-}, 3/2^{-})$			
362.29		294.10 <i>21</i>	100	68.19	(1/2 to 7/2)[⁻]			
389.64		342.90 19	100 15	46.87	$(1/2 \text{ to } 7/2)[^{-}]$			
		389.70 <i>21</i>	41 29	0.0	$(5/2^-, 3/2^-)$			
481.83		356.90 21	100	124.93				
488.05		171.60 13	100 6	316.56				
		205.90 12	50 4	282.73				
		363.30 21	26 8	124.93				
		441.00 12	56 <i>5</i>	46.87	$(1/2 \text{ to } 7/2)[^-]$			
		487.70 11	100 7	0.0	$(5/2^{-},3/2^{-})$			
665.33		275.90 21	21 3	389.64				
		348.60 24	26 4	316.56				
		382.60 11	92 <i>5</i>	282.73				

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

 $\gamma(^{149}\text{Ba})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
665.33		665.30 11	100 6	0.0	(5/2-,3/2-)
682.56		366.00 14	100	316.56	
727.05		490.60 13	100	236.45	
911.3		594.7 <i>21</i>	100	316.56	
917.7		601.10 32	100	316.56	

[†] From ¹⁴⁹Cs β^- decay (2017Li06). [‡] From analogy with ¹⁴⁷Ba structure. Pure E2 is not allowed by RUL.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme Intensities: Relative photon branching from each level

¹⁴⁹₅₆Ba₉₃

4