¹⁴⁸Dy ε decay **1985ZuZX**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 117, 1 (2014)	1-Oct-2013

Parent: ¹⁴⁸Dy: E=0.0; J^{π}=0⁺; T_{1/2}=3.3 min 2; Q(ϵ)=2678 10; % ϵ +% β ⁺ decay=100.0

Measured: γ, ce (1985ZuZX,1985Kl05,1975Gr35,1975To03,1974La32,1974La28,1974GrYZ); γ, γγ, (K x ray)γ

(1988To03,1985ZuZX,1985Kl05); ε/β^+ (1985Sc09,1981Sp03,1981Sc21); γ , β , x-rays, Gamow-Teller resonance (total absorption spectrometer, 2004Al35; see also 2007EsZX,2004AlZY,2003NaZV,2001AlZY).

Decay scheme is from 1985ZuZX. Shown also In tables are data from 2004Al35 (total absorption spectrometer).

¹⁴⁸Tb Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	2-	60 min 1	
109.6 9	4-		
178.5 5	2+		
195.5 10	3-		$J=(3,4)^{-}$ (1985ZuZX).
280.9 7	3+		$J=(2,3)^+$ (1985ZuZX).
620.241 10	1^{+}	≤0.25 ns	J^{π} : 1 ⁺ (1985ZuZX).
			T _{1/2} : from 1975AlZE, 1975VaYY.
657.8 7	(3 ⁻)		$(2,3)^-$ (1985ZuZX).
794.8 5	2-		$J^{\pi}: 2^{-}, (1)^{-}$ (1985ZuZX).
950.6 6	$(2^{-},1^{-})$		$J=2^{-},(1)^{-}$ (1985ZuZX).
1247.3 6	1+		J^{π} : 1 ⁺ from log <i>ft</i> =5.4 from 0 ⁺ ; 1 ⁺ (1985ZuZX).
1276.2 8	1		J^{π} : 1 (1985ZuZX).
1332.7 10	1		J^{π} : 1 (1985ZuZX).
1366.1 7	1		J^{π} : 1 (1985ZuZX).
1642.5 7	1^{+}		J^{π} : 1 ⁺ from log <i>ft</i> =5.9 from 0 ⁺ ; 1 ⁻ , (0) ⁻ (1985ZuZX).
1828.3 9	1		J^{π} : 1.
1840.5 7	1+		J^{π} : 1 ⁺ from log <i>ft</i> =5.4 from 0 ⁺ ; 1 ⁻ , (0) ⁻ (1985ZuZX).

[†] Adopted values. Supporting arguments from this data set and the assignments by 1985ZuZX are given in comments. Some J^{π} assignments by 1985ZuZX are not supported by log *ft* values.

ε, β^+ radiations

 $\varepsilon/\beta^+=22.2\ 20,\ Q_+=2680\ 30\ (1985Sc09).$ Others: $\varepsilon/\beta^+=21.7\ 39,\ Q_+=2652\ keV\ +65-50\ (1981Sc21);\ \varepsilon/\beta^+=14.7\ 27,\ Q_+=2800\ 60\ (1981Sp03).$

 $I(\varepsilon + \beta^+)$ and log *ft* data from 2004Al35 are given In comments In the table below, together with same data from 1985Kl05 for comparison.

E(decay)	E(level)	$I\beta^+$	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(838 10)	1840.5		0.52	5.4	0.52	εK=0.8271 2; εL=0.13343 15; εM+=0.03944 6
(850 10)	1828.3		0.05	6.4	0.05	εK=0.8274 2; εL=0.13325 15; εM+=0.03937 5
(1036 10)	1642.5		0.25	5.9	0.25	εK=0.8302 2; εL=0.1311 1; εM+=0.03864 4
(1312 10)	1366.1		0.07	6.6	0.07	εK=0.8327; εL=0.12909 7; εM+=0.03793 3
						$I(\varepsilon + \beta^+) = 0.07$, log ft=6.7 (1985Kl05).
(1345 10)	1332.7		0.14	6.4	0.14	εK=0.8328; εL=0.12889 7; εM+=0.03786 2
						$I(\varepsilon + \beta^+) = 0.14$, log ft=6.4 (1985K105, to 1333 alone); $I(\varepsilon + \beta^+) = 0.31$
						3, $\log ft = 5.99$ (2004A135, to 1333+1366).
(1402 10)	1276.2		0.19	6.3	0.19	εK=0.8328; εL=0.12854 7; εM+=0.03774 2
						$I(\varepsilon + \beta^+) = 0.19$, log ft=6.3 (1985Kl05).
(1431 10)	1247.3	0.0019	1.6	5.4	1.6	av E β =198.1 45; ε K=0.8328; ε L=0.12836 7; ε M+=0.03769 2
						-

Continued on next page (footnotes at end of table)

¹⁴⁸Dy ε decay **1985ZuZX** (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(1727 10)	950.6	<0.0004	<0.04	>7.1	<0.04	I(ε+β ⁺)=1.6, log ft=5.4 (1985Kl05, to 1247 alone); I(ε+β ⁺)=1.90 4, log ft=5.28 (2004Al35, to 1247+1277). av Eβ=329.0 44; εK=0.8269 4; εL=0.1261 1; εM+=0.03696 3 I(ε+β ⁺)<0.04, log ft>7.1 (1985Kl05); I(ε+β ⁺)=0.0070 3, log ft=7.90 (2004Al35).
(1883 10)	794.8	0.002	0.09	6.9	0.09	av $E\beta$ =397.3 44; ε K=0.8187 7; ε L=0.12430 14; ε M+=0.03641 4 I(ε + β^+)=0.09 log fr=6.9 (1985K105): I(ε + β^+)=0.0 (2004A135)
(2020 10)	657.8	< 0.001	< 0.04	>7.3	< 0.04	av $E\beta$ =457.5 44; εK =0.8078 10; εL =0.12225 17; εM +=0.03579 6 ($\varepsilon L^{+} \sim 0.04$ log fr 7.3 (1985K105): ($\varepsilon L^{+} \beta^{+}$)=0.0 (2004Å135)
2032 60	620.241	3.75	93.1	3.9	96.8	av $E\beta$ =474.0 44; ϵK =0.8041 11; ϵL =0.12160 18; ϵM +=0.03560 6 I(ϵ + β ⁺)=96.8, log fi=3.95 (1985K105); I(ϵ + β ⁺)=96.2 2, log fi=3.92 (2004A135)
(2397 10)	280.9	< 0.004	< 0.04	>7.5	< 0.04	av $E\beta$ =623.7 45; ε K=0.7578 18; ε L=0.1139 3; ε M+=0.03331 9 I(ε + β ⁺)<0.4, log ft>7.5 (1985Kl05); I(ε + β ⁺)=0.0070 1, log ft=8.21 (2004Al35).
(2483 10)	195.5	< 0.01	< 0.09	>7.1	< 0.1	av $E\beta$ =661.6 45; ε K=0.7425 19; ε L=0.1114 3; ε M+=0.03259 9 I(ε + β ⁺)<0.1, log ft>7.1 (1985K105); I(ε + β ⁺)=0.0 (2004A135).
(2500 10)	178.5	< 0.02	< 0.2	>6.8	< 0.2	av E β =669.2 45; ε K=0.7393 20; ε L=0.1109 3; ε M+=0.03244 9 I(ε + β ⁺)<0.2, log ft>6.8 (1985K105): I(ε + β ⁺)=0.0 (2004A135).
(2568 10)	109.6	< 0.003	< 0.02	>7.8	< 0.02	av E β =699.8 45; ε K=0.7258 21; ε L=0.1088 4; ε M+=0.03181 10 I(ε + β ⁺)<0.2, log ft>7.9 (1985Kl05); I(ε + β ⁺)=0.0 (2004Al35).

 † Absolute intensity per 100 decays.

$\gamma(^{148}\text{Tb})$

I γ normalization: Ti(g.s.)=100 assuming that the g.s. feeding is zero.

Eγ	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [‡]	α #	Comments
85.8	4	195.5	3-	109.6 4-	M1	3.41	$\alpha(K)=2.88 4; \alpha(L)=0.420 6; \alpha(M)=0.0918 13$ $\alpha(N)=0.0212 3; \alpha(Q)=0.00327 5; \alpha(P)=0.000214 3$
102.3	3	280.9	3+	178.5 2+	M1	2.06	$\alpha(K)=1.735\ 25;\ \alpha(L)=0.253\ 4;\ \alpha(M)=0.0552\ 8$ $\alpha(N)=0.01277\ 18;\ \alpha(Q)=0.00197\ 3;\ \alpha(P)=0.0001292\ 18$
109.4	5	109.6	4-	$0.0\ 2^{-}$	E2	1.88	$\alpha(K)=0.903 \ 13; \ \alpha(L)=0.751 \ 11; \ \alpha(M)=0.1781 \ 25 \ \alpha(N)=0.0400 \ 6; \ \alpha(Q)=0.00519 \ 8; \ \alpha(P)=4.51\times10^{-5} \ 7$
136.9	13	794.8	2-	657.8 (3 ⁻)	(M1)	0.898	$\alpha(K) = 0.758 \ 11; \ \alpha(L) = 0.1100 \ 16; \ \alpha(M) = 0.0240 \ 4$ $\alpha(N) = 0.0555 \ 8; \ \alpha(D) = 0.000855 \ 12; \ \alpha(P) = 5.64 \times 10^{-5} \ 8$
156.0	1	950.6	$(2^{-},1^{-})$	794.8 2-			u(11)=0.00555 0, u(0)=0.000055 12, u(1)=5.04×10 0
178.3	54	178.5	2+	0.0 2-	E1	0.0637	α (K)=0.0538 8; α (L)=0.00777 11; α (M)=0.001690 24 α (N)=0.000386 6; α (O)=5.73×10 ⁻⁵ 8; α (P)=3.23×10 ⁻⁶ 5
339.6	4	620.241	1^{+}	280.9 3+			
442.0	13	620.241	1+	178.5 2+	(M1)	0.0376	$\alpha(K)=0.03195; \alpha(L)=0.004497; \alpha(M)=0.00097814$ $\alpha(N)=0.0002264; \alpha(O)=3.49\times10^{-5}5; \alpha(P)=2.33\times10^{-6}4$
462.1	11	657.8	(3 ⁻)	195.5 3-	(M1)	0.0335	$\alpha(K)=0.0284 4; \alpha(L)=0.00400 6; \alpha(M)=0.000871 13$ $\alpha(N)=0.000201 3; \alpha(O)=3.11\times10^{-5} 5; \alpha(P)=2.08\times10^{-6} 3$
616.2	1	794.8	2-	178.5 2+			······································

$^{148}\mathrm{Dy}~\varepsilon$ decay 1985ZuZX (continued)

$\gamma(^{148}\text{Tb})$ (continued)

Eγ	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments
620.24 1	10000	620.241	1+	0.0	2-	E1	0.00308	α (K)=0.00263 4; α (L)=0.000354 5; α (M)=7.65×10 ⁻⁵ 11 α (N)=1.762×10 ⁻⁵ 25; α (O)=2.69×10 ⁻⁶
								4; α (P)=1.735×10 ⁻⁷ 25 Mult.: α (K)exp=265×10 ⁻⁵ 30
								(1975Gr35). E _w : from 1985K105.
627	7	1247.3	1^{+}	620.241	1^{+}			
657.8	17	657.8	(3-)	0.0	2-	(M1)	0.01373	α (K)=0.01167 <i>17</i> ; α (L)=0.001620 <i>23</i> ; α (M)=0.000352 <i>5</i>
								$\alpha(N)=8.15\times10^{-5}$ 12; $\alpha(O)=1.260\times10^{-5}$ 18: $\alpha(P)=8.48\times10^{-7}$ 12
691.9	17	1642.5	1^+	950.6	$(2^{-},1^{-})$		0.0124	M1 (1985ZuZX); contradicts $\Delta \pi$.
794.9	21	930.8 794.8	$\binom{2}{2^{-}}, \binom{1}{2^{-}}$	0.0	$\frac{2}{2^{-}}$	(M1)	0.00860	α (K)=0.00732 <i>11</i> ; α (L)=0.001009 <i>15</i> ;
								$\alpha(M)=0.000219 \ 3$ $\alpha(N)=5.07\times10^{-5} \ 8; \ \alpha(O)=7.85\times10^{-6}$
847 1	8	1642.5	1+	794.8	2-			$II; \alpha(P)=5.30\times10^{-7} \delta$ M1 (19857uZX): contradicts $\Lambda \pi$
890.0	25	1840.5	1+	950.6	$(2^{-},1^{-})$			M1 (1985ZuZX); contradicts $\Delta \pi$.
950.8	40	950.6	$(2^{-},1^{-})$	0.0	2-	(M1)	0.00557	$\alpha(K)=0.00474\ 7;\ \alpha(L)=0.000650\ 9;$ $\alpha(M)=0.0001410\ 20$
								$\alpha(N) = 3.26 \times 10^{-5} 5; \alpha(O) = 5.05 \times 10^{-6} 7;$ $\alpha(P) = 3.42 \times 10^{-7} 5$
1045.9	29	1840.5	1+	794.8	2-			M1 (1985ZuZX): contradicts $\Lambda \pi$.
1068.9	8	1247.3	1+	178.5	$\frac{2}{2^{+}}$			
1085.4	4	1366.1	1	280.9	- 3 ⁺			
1097	1	1276.2	1	178.5	2+			
1187 5	3	1366 1	1	178 5	2+			
1247.2	150	1247.3	1+	0.0	2-	E1	8.42×10^{-4}	$\alpha(K)=0.000684 \ 10; \ \alpha(L)=8.92\times10^{-5} \ 13; \ \alpha(M)=1.92\times10^{-5} \ 3$
								$\alpha(M) = 4.44 \times 10^{-6} 7; \ \alpha(O) = 6.84 \times 10^{-7}$ $I0; \ \alpha(P) = 4.59 \times 10^{-8} 7; \ \alpha(PE) = 4.51 \times 10^{-5} 7$
1276.0	10	1276.2	1	0.0	2-			$u(111) = 4.31 \times 10^{-6}$
1270.9	19	1270.2	1	0.0	$\frac{2}{2}$			
1332.7	13	1332.1	1	0.0	∠ 2 ⁻			
1500	ے 1	1200.1	1	280.0	∠ 2+			
1547	1	1828.3	1	280.9	5· 2-			
1642.9	1	1042.5	1	0.0	2 2+			
1050.2	4	1828.3	1 1+	1/8.5	2'			
1840.1	0	1840.5	1	0.0	Z			

[†] $I(178.5\gamma+950.6\gamma+1247.3\gamma)\approx 2.5\%$ of $I(620\gamma)$ (1988To03).

[‡] From adopted gammas; supported by $\alpha(K)$ exp whose values and normalization are not given by authors (1985ZuZX). These are considered to be tentative especially since there are inconsistencies between J^{π} deduced from log ft and multipolarities of γ transitions.
[#] Additional information 1.
[@] For absolute intensity per 100 decays, multiply by 0.009639.

¹⁴⁸₆₅Tb₈₃-4

$^{148}\mathrm{Dy}~\varepsilon$ decay 1985ZuZX

Decay Scheme

