## <sup>148</sup> Pm $\beta^-$ decay (5.368 d) 1977Ka14

|                 |         | History           |                        |
|-----------------|---------|-------------------|------------------------|
| Туре            | Author  | Citation          | Literature Cutoff Date |
| Full Evaluation | N. Nica | NDS 117, 1 (2014) | 1-Oct-2013             |

Parent: <sup>148</sup>Pm: E=0.0;  $J^{\pi}=1^-$ ;  $T_{1/2}=5.368$  d 7;  $Q(\beta^-)=2471$  6;  $\%\beta^-$  decay=100.0

Measured: γ (1984LaZZ,1977Ka14,1971Mo04,1971Ca23,1963Ba31), γγ

(1984LaZZ,1977Ka14,1963Ba31,1962Sc04,1962Re04,1959Bh95), *γγ*(θ)

 $(1977 Ka14, 1968 Wy02, 1964 Ha17, 1963 Ba31, 1962 Re03, 1962 Sc04), \beta\gamma (1963 Ba31, 1962 Sc04, 1962 Re03, 1961 El02, 1959 Bh95), centre in the second secon$ 

(1963Ba31), analysis of non-unique  $\beta^-$  spectra (1983Ro06).

Decay scheme is that of 1977Ka14.

Observed β groups: 2480 30 (50%), 1930 30 (10%), 1020 30 (40%) (1963Ba31), see also 1962Sc04, 1962Re03, 1930β<sup>-</sup>γ(θ) (1971Sh08,1970Gr09,1968Wy02,1968Am03,1967Na03,1963Ba31), 2480β shape factor (1972AmZX,1963Ba06).

<sup>148</sup>Sm Levels

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | Comments                                                          |
|-----------------------|--------------------|-------------------------------------------------------------------|
| 0.0                   | $0^{+}$            |                                                                   |
| 550.274 17            | 2+                 | J=2 (1977Ka14).                                                   |
| 1161.537 24           | 3-                 | J=3 (1963Ba31).                                                   |
| 1424.46 4             | $0^{+}$            | J=0 (1977Ka14).                                                   |
| 1454.217 23           | 2+                 | J=2, most probably (1977Ka14).                                    |
| 1465.129 19           | 1-                 | J=1 or 3; J=3 ruled out by $\gamma$ to 0 <sup>+</sup> (1977Ka14). |
| 1664.160 21           | 2+                 | J=2, strongly preferred (1977Ka14).                               |
| 1921.58 20            | $0^{+}$            |                                                                   |
| 2057.961 22           | 2-                 | J=2 (1977Ka14).                                                   |
| 2284.405 21           | $(1,2^{+})$        | J=1, most probably (1977Ka14).                                    |
| 2314.01 15            | 2+                 | J=2 (1977Ka14).                                                   |

 $^{\dagger}$  From a least-squares fit to Ey data.

<sup>‡</sup> Adopted values; supporting assignments from this data set are given in comments.

#### $\beta^{-}$ radiations

| E(decay)       | E(level) | $I\beta^{-\dagger\ddagger}$ | Log ft          |                         | Comments |
|----------------|----------|-----------------------------|-----------------|-------------------------|----------|
| (157 6)        | 2314.01  | 0.0091 15                   | 8.71 9          | av Eβ=42.1 18           |          |
| (187 6)        | 2284.405 | 0.096 4                     | 7.92 5          | av E $\beta$ =50.7 18   |          |
| (413 6)        | 2057.961 | 1.36 4                      | 7.885 25        | av E $\beta$ =121.9 21  |          |
| (549 6)        | 1921.58  | 0.0138 14                   | 10.29 5         | av $E\beta = 169.0\ 22$ |          |
| (807 6)        | 1664.160 | 0.018 4                     | 10.76 10        | av Eβ=264.4 23          |          |
| 1020 30        | 1465.129 | 33.4 8                      | 7.834 14        | av Eβ=342.7 24          |          |
| (1017 6)       | 1454.217 | 0.093 4                     | 10.406 21       | av Eβ=347.1 25          |          |
| (1047 6)       | 1424.46  | 0.236 9                     | 10.048 19       | av Eβ=359.1 25          |          |
| 1930 <i>30</i> | 550.274  | 9.4 <i>3</i>                | 9.450 15        | av Eβ=731.6 27          |          |
| 2480 30        | 0.0      | 55.5 11                     | 9.117 <i>10</i> | av Eβ=977.7 28          |          |

<sup>†</sup> From I( $\gamma$ +ce) imbalance at each level.

<sup>‡</sup> Absolute intensity per 100 decays.

### <sup>148</sup>**Pm** $\beta^{-}$ decay (5.368 d) **1977Ka14** (continued)

# $\gamma(^{148}\text{Sm})$

I $\gamma$  normalization: from the measurement of the emission probability of the 1465g=22.2% 5 (1971Ca23) using  $\beta^-$ ,  $\gamma$  and  $4\pi\beta\gamma$  coin counting.

 $\alpha$ (K)exp were normalized to  $\alpha$ (K)(550 $\gamma$ )=0.00825 (1963Ba31), and to  $\alpha$ (K)(630 $\gamma$ )=0.0060 (1970GrYP), assuming both gammas to be E2.

| $E_{\gamma}^{\ddagger}$                                                       | $I_{\gamma}^{\#b}$                     | $E_i$ (level)                               | $\mathbf{J}_i^{\pi}$                                        | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$                   | Mult. <sup>@</sup>     | δ <sup>&amp;</sup> | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|------------------------|--------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 303.59 <i>3</i><br>362.8 <sup>c</sup> 2<br>393.80 <i>3</i><br>550.27 <i>3</i> | 1.7 2<br><0.1<br>0.7 <i>I</i><br>991 7 | 1465.129<br>2284.405<br>2057.961<br>550.274 | $1^{-}$<br>(1,2 <sup>+</sup> )<br>$2^{-}$<br>2 <sup>+</sup> | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | E2 <sup><i>a</i></sup> |                    | 0.00998 14         | $\alpha$ =0.00998 <i>14</i> ; $\alpha$ (K)=0.00825 <i>12</i> ;<br>$\alpha$ (L)=0.001360 <i>19</i> ;<br>$\alpha$ (M)=0.000296 <i>5</i> ;<br>$\alpha$ (N+)=7.67×10 <sup>-5</sup> <i>11</i><br>$\alpha$ (N)=0.000296 <i>5</i> ;                                                                                                                                                       |
| 592.83 <i>3</i>                                                               | 15.9 <i>3</i>                          | 2057.961                                    | 2-                                                          | 1465.129 1-                                           | M1+E2                  |                    | 0.011 <i>3</i>     | $\alpha(N)=6.66\times 10^{-5} I0;$<br>$\alpha(O)=9.59\times 10^{-6} I4;$<br>$\alpha(P)=4.78\times 10^{-7} 7$<br>$\alpha(K)\exp=7.9\times 10^{-3} 6 (1970GrYP).$<br>$\alpha(K)=0.009 3; \alpha(L)=0.0014 3;$<br>$\alpha(M)=0.00029 6;$<br>$\alpha(N+)=7.7\times 10^{-5} I5$<br>$\alpha(N)=6.6\times 10^{-5} I3;$<br>$\alpha(O)=9.8\times 10^{-6} 2I;$<br>$(D)=5.7\times 10^{-7} I9$ |
| 611.26 3                                                                      | 46.0 <i>5</i>                          | 1161.537                                    | 3-                                                          | 550.274 2+                                            | E1 <sup>a</sup>        |                    | 0.00277 4          | $\alpha(P)=5.7\times10^{-7} \ 18$<br>$\delta: +11 + 11-4 \text{ or } -0.20 \ 5$<br>(1977Ka14).<br>$\alpha=0.00277 \ 4; \ \alpha(\text{K})=0.00237 \ 4; \ \alpha(\text{L})=0.000312 \ 5; \ \alpha(\text{M})=6.63\times10^{-5} \ 10; \ \alpha(\text{N}=)=1.735\times10^{-5} \ 25$<br>$\alpha(\text{N})=1.499\times10^{-5} \ 21; \ \alpha(\text{O})=2 \ 23\times10^{-6} \ 4;$         |
| 819.27 <i>3</i>                                                               | 0.6 1                                  | 2284.405                                    | (1,2 <sup>+</sup> )                                         | 1465.129 1-                                           |                        |                    |                    | $\alpha(6)=2.25\times10^{-7} I9$<br>$\alpha(P)=1.358\times10^{-7} I9$<br>$\alpha(K)\exp=2.5\times10^{-3} 8 (1970GrYP).$<br>$\delta: +0.026 I3 (1977Ka14);$<br>$\delta\leq 0.18 \text{ from}\leq 3\%, M2 \text{ mixing}$<br>(1970GrYP).                                                                                                                                             |
| 874.18 <i>3</i>                                                               | 10.6 <i>3</i>                          | 1424.46                                     | 0+                                                          | 550.274 2+                                            | E2                     |                    | 0.00332 5          | $\begin{array}{l} \alpha = 0.00332 \ 5; \ \alpha(\mathrm{K}) = 0.00280 \ 4; \\ \alpha(\mathrm{L}) = 0.000406 \ 6; \\ \alpha(\mathrm{M}) = 8.74 \times 10^{-5} \ 13; \\ \alpha(\mathrm{N} +) = 2.28 \times 10^{-5} \ 4 \\ \alpha(\mathrm{N}) = 1.97 \times 10^{-5} \ 3; \\ \alpha(\mathrm{O}) = 2.91 \times 10^{-6} \ 4; \end{array}$                                               |
| 896.42 <i>3</i>                                                               | 44.2 <i>4</i>                          | 2057.961                                    | 2-                                                          | 1161.537 3-                                           | M1+E2                  | +1.32 9            | 0.00386 9          | $\alpha(P)=1.663\times10^{-7} 24$ $\alpha=0.00386 9; \alpha(K)=0.00328 8;$ $\alpha(L)=0.000456 10;$ $\alpha(M)=9.77\times10^{-5} 20;$ $\alpha(N+)=2.56\times10^{-5} 6$ $\alpha(N)=2.21\times10^{-5} 5;$ $\alpha(O)=3.29\times10^{-6} 7;$ $\alpha(D)=1.00\times10^{-7} 5;$                                                                                                          |
| 903.94 <i>3</i>                                                               | 1.9 <i>1</i>                           | 1454.217                                    | 2+                                                          | 550.274 2+                                            | M1+E2                  | +2.32 10           | 0.00339 6          | δ: from 1977Ka14.<br>α = 0.00339 6; α(K) = 0.00287 5;                                                                                                                                                                                                                                                                                                                              |

Continued on next page (footnotes at end of table)

|                         |                                  |                        |                      | <sup>148</sup> <b>Pm</b> $\beta^-$ <b>d</b> | eca                  | y (5.368 d)            | 1977Ka14      | (continued)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------|----------------------------------|------------------------|----------------------|---------------------------------------------|----------------------|------------------------|---------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                                  |                        |                      |                                             |                      |                        |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $E_{\gamma}^{\ddagger}$ | Ι <sub>γ</sub> <b>#</b> <i>b</i> | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | E <sub>f</sub>                              | $\mathbf{J}_f^{\pi}$ | Mult. <sup>@</sup>     | $\delta^{\&}$ | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 914.85 <i>3</i>         | 516 4                            | 1465.129               | 1-                   | 550.274 2                                   | 2+                   | E1 <sup><i>a</i></sup> |               | 0.001221 17        | $\begin{array}{c} \alpha(\mathrm{L}){=}0.000406\ 7;\\ \alpha(\mathrm{M}){=}8.72{\times}10^{-5}\ 14;\\ \alpha(\mathrm{N}{+}){=}2.28{\times}10^{-5}\ 4\\ \alpha(\mathrm{N}){=}1.97{\times}10^{-5}\ 3;\\ \alpha(\mathrm{O}){=}2.92{\times}10^{-6}\ 5;\\ \alpha(\mathrm{P}){=}1.72{\times}10^{-7}\ 3\\ \alpha{=}0.001221\ 17;\ \alpha(\mathrm{K}){=}0.001050\\ 15;\ \alpha(\mathrm{L}){=}0.0001354\ 19;\\ \alpha(\mathrm{M}){=}2.88{\times}10^{-5}\ 4;\\ \alpha(\mathrm{N}{+}){=}7.54{\times}10^{-6}\\ \alpha(\mathrm{N}){=}6.51{\times}10^{-6}\ 10;\\ \alpha(\mathrm{O}){=}9.73{\times}10^{-7}\ 14;\\ \end{array}$ |
| 1113.88 <i>3</i>        | 1.0 <i>1</i>                     | 1664.160               | 2+                   | 550.274 2                                   | 2+                   | M1+E2                  | -0.565 21     | 0.00279 5          | $\alpha(P)=6.0/\times 10^{-6} \ 9$<br>$\alpha(K)\exp=6.8\times 10^{-4} \ 19$<br>(1963Ba31).<br>$\delta: \ \delta(M2/E1)=0.000 \ 4$<br>(1977Ka14).<br>$\alpha=0.00279 \ 5; \ \alpha(K)=0.00239 \ 4; \ \alpha(L)=0.000319 \ 5; \ \alpha(M)=6.81\times 10^{-5} \ 10; \ \alpha(N+)=1.85\times 10^{-5} \ 3$<br>$\alpha(N)=1.544\times 10^{-5} \ 23;$                                                                                                                                                                                                                                                                 |
| 1152.5 2                | 0.13 6                           | 2314.01                | 2+                   | 1161.537                                    | 3-                   | E1+M2                  | -0.10 9       | 0.00086 <i>15</i>  | $\alpha(N)=1.544\times10^{-5} 23;$<br>$\alpha(O)=2.32\times10^{-6} 4;$<br>$\alpha(P)=1.466\times10^{-7} 23;$<br>$\alpha(IPF)=5.65\times10^{-7} 8$<br>$\alpha=0.00086 15; \alpha(K)=0.00073$<br>$13; \alpha(L)=9.5\times10^{-5} 18;$<br>$\alpha(M)=2.0\times10^{-5} 4;$<br>$\alpha(N)=4.5\times10^{-6} 9;$<br>$\alpha(O)=6.8\times10^{-7} 14;$                                                                                                                                                                                                                                                                   |
| 1371.3 2<br>1454 21 3   | 0.62 6                           | 1921.58<br>1454 217    | $0^+_{2^+}$          | 550.274 2                                   | $2^+$                | F2                     |               | 0.001230.18        | $\alpha$ (P)=4.3×10 <sup>-8</sup> 9;<br>$\alpha$ (IPF)=9.8×10 <sup>-6</sup> 3<br>$\alpha$ =0.001230 <i>I</i> 8: $\alpha$ (K)=0.001000                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1434.21 3               | 2.5 1                            | 1434.217               | 2                    | 0.0                                         | U                    | EZ                     |               | 0.001230 78        | $a = 0.001250 \ 78, \ \alpha(\mathbf{K}) = 0.001000$<br>$14; \ \alpha(\mathbf{L}) = 0.0001338 \ 19;$<br>$\alpha(\mathbf{M}) = 2.86 \times 10^{-5} \ 4;$<br>$\alpha(\mathbf{N}) = 6.78 \times 10^{-5}$<br>$\alpha(\mathbf{N}) = 6.46 \times 10^{-6} \ 9;$<br>$\alpha(\mathbf{O}) = 9.66 \times 10^{-7} \ 14;$<br>$\alpha(\mathbf{P}) = 5.96 \times 10^{-8} \ 9;$<br>$(\mathbf{HE}) = 6.02 \times 10^{-5} \ 0.0000000000000000000000000000000000$                                                                                                                                                                 |
| 1465.12 <i>3</i>        | 1000                             | 1465.129               | 1-                   | 0.0 (                                       | 0+                   | E1                     |               | 0.000704 10        | $\alpha(\text{IPF})=6.03\times10^{-5} \text{ g}$ $\alpha=0.000704 \ I0; \ \alpha(\text{K})=0.000449$ 7; \(\alpha(\text{L})=5.70\times10^{-5}\) 8;<br>\(\alpha(\text{M})=1.208\times10^{-5}\) I7;<br>\(\alpha(\text{M})=1.208\times10^{-5}\) I7;<br>\(\alpha(\text{M})=1.208\times10^{-6}\) I7;<br>\(\alpha(\text{M})=2.74\times10^{-6}\) 4;<br>\(\alpha(\text{O})=4.11\times10^{-7}\) 6;<br>\(\alpha(\text{O})=4.11\times10^{-7}\) 6;<br>\(\alpha(\text{O})=2.61\times10^{-8}\) 4;<br>\(\alpha(\text{IPF})=0.000183\) 3 \\ I_{\gamma}: \ absolute \ I_{\gamma}=22.2\%\) 5 \\ (1971Ca23), \ 24.3\%\) 25 \)       |

 $^{148}_{62}\mathrm{Sm}_{86}$ -4

|                                           |                                |                        |                                       | $^{148}$ Pm $\beta^{-}$                 | deca                 | y (5.368 d)                    | 1977K              | a14 (continued)    |                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|-------------------------------------------|--------------------------------|------------------------|---------------------------------------|-----------------------------------------|----------------------|--------------------------------|--------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                           |                                |                        |                                       |                                         |                      | $\gamma$ <sup>(148</sup> Sm) ( | continued          | <u>)</u>           |                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| $E_{\gamma}^{\ddagger}$                   | $I_{\gamma}^{\#b}$             | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                  | $E_f$                                   | $\mathbf{J}_f^{\pi}$ | Mult. <sup>@</sup>             | δ <sup>&amp;</sup> | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 1507.68.3                                 | 0.25.4                         | 2057 961               | 2-                                    | 550 274                                 | 2+                   |                                |                    |                    | (1971Mo04), 24% 2 (1962Re03),<br>23% 5 (1963Ba31).<br>$\alpha$ (K)exp=4.7×10 <sup>-4</sup> <i>14</i> (1963Ba31).                                                                                                                                                                                                                                                            |  |  |
| 1664.15 3                                 | 0.51 5                         | 1664.160               | 2+                                    | 0.0                                     | 0 <sup>+</sup>       | E2                             |                    | 0.001042 15        | $\begin{aligned} &\alpha = 0.001042 \ 15; \ \alpha(\text{K}) = 0.000775 \\ &11; \ \alpha(\text{L}) = 0.0001024 \ 15; \\ &\alpha(\text{M}) = 2.18 \times 10^{-5} \ 3; \\ &\alpha(\text{N} = 4.94 \times 10^{-6} \ 7; \\ &\alpha(\text{O}) = 7.40 \times 10^{-7} \ 11; \\ &\alpha(\text{P}) = 4.62 \times 10^{-8} \ 7; \\ &\alpha(\text{IPF}) = 0.0001375 \ 20 \end{aligned}$ |  |  |
| 1734.12 <i>3</i><br>1763.7 <i>2</i>       | 1.74 <i>3</i><br>0.28 <i>3</i> | 2284.405<br>2314.01    | (1,2 <sup>+</sup> )<br>2 <sup>+</sup> | 550.274<br>550.274                      | 2+<br>2+             | M1+E2                          | +2.2 5             | 0.00104 3          | $\alpha = 0.00104 \ 3; \ \alpha(K) = 0.000732 \ 22; \alpha(L) = 9.6 \times 10^{-5} \ 3; \alpha(M) = 2.05 \times 10^{-5} \ 6; \alpha(N+) = 0.000189 \ 4 \alpha(N) = 4.64 \times 10^{-6} \ 14; \alpha(O) = 6.97 \times 10^{-7} \ 21; \alpha(P) = 4.39 \times 10^{-8} \ 14; \alpha(DF) = 0.000183 \ 3$                                                                         |  |  |
| 2284.39 <i>3</i><br>2314.0 <sup>c</sup> 2 | 2.0 <i>1</i><br><0.01          | 2284.405<br>2314.01    | (1,2 <sup>+</sup> )<br>2 <sup>+</sup> | $\begin{array}{c} 0.0\\ 0.0\end{array}$ | $0^+ \\ 0^+$         | D                              |                    |                    | a(111)=0.000105 5                                                                                                                                                                                                                                                                                                                                                           |  |  |

<sup>†</sup> Additional information 1.
<sup>‡</sup> From 1977Ka14.
<sup>#</sup> Relative intensity from 1977Ka14.
<sup>@</sup> From adopted gammas. Supporting data from this decay are given in comments.

<sup>&</sup> From adopted gammas.

<sup>*a*</sup> From  $\alpha(K)$ exp.

<sup>b</sup> For absolute intensity per 100 decays, multiply by 0.0222 5.

<sup>c</sup> Placement of transition in the level scheme is uncertain.

# $^{148}$ Pm $\beta^-$ decay (5.368 d) 1977Ka14

