¹⁴⁸**Pm** β^- decay (41.29 d) 1977Ka14

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 117, 1 (2014)	1-Oct-2013

Parent: ¹⁴⁸Pm: E=137.9 3; J^{π}=5⁻,6⁻; T_{1/2}=41.29 d 11; Q(β ⁻)=2471 6; % β ⁻ decay=95.8 6 See also ¹⁴⁸Pm IT decay.

Measured: γ (1984LaZZ,1977Ka14,1971Mo04,1970GrYP,1963Ba31), $\gamma\gamma$ (1984LaZZ,1977Ka14,1963Ba31,1962Re03), $\gamma\gamma(\theta)$ (1977Ka14,1963Ba31,1962Sc04,1962Re03), β^- (1963Ba31), ce (1963Ba31,1970GrYP).

Decay scheme is that of 1977Ka14.

¹⁴⁸Sm Levels

E(level) [†]	J ^{π‡}	Comments
0.0	0^{+}	
550.27 <i>3</i>	2+	J=2 (1977Ka14).
1161.53 4	3-	J=3 if J(1595)=5 (1963Ba31); J=3 or 4, J=4 excluded from γ intensity considerations (1977Ka14).
1180.24 4	4+	J=4 consistent with $\gamma\gamma(\theta)$ (1963Ba31); J=4 (1977Ka14).
1594.31 <i>4</i>	5-	J=3 or 5; γ from J=6 excludes J=3 (1977Ka14).
1733.48 4	4^{+}	J=4 (1977Ka14).
1894.93 <i>12</i>	4+	J=4 probable (1977Ka14).
1905.94 5	6+	J=6 (1963Ba31); $J=6$ (1977Ka14).
2095.57 4	6+	J=6 (1963Ba31); $J=4$ or 6 with $J=6$ favored (1977Ka14).
2194.05 4	6+	J=6 (1963Ba31); J=6 (1977Ka14).

[†] From a least-squares fit to $E\gamma$ data.

[‡] Adopted values; supporting assignments from this data set are given in comments.

 β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†‡}	Log ft		Comments
(415 6)	2194.05	56.4 5	7.178 22	av Eβ=122.5 21	
(513 6)	2095.57	19.5 <i>3</i>	7.949 19	av E β =156.3 21	
(703 6)	1905.94	22.9 4	8.348 16	av Eβ=225.0 23	
(1015 6)	1594.31	0.96 23	10.29 11	av E β =346.2 25	

[†] From I(γ +ce) balance at each level and assuming no β ⁻feeding to the g.s..

[‡] For absolute intensity per 100 decays, multiply by 0.958 6.

 $\gamma(^{148}\text{Sm})$

I γ normalization: I(γ +ce)(550 γ)=95.8% 6, and assuming no β^- decay to g.s.. α (K)exp were normalized to α (K)(550 γ)=0.00825 (1963Ba31), and to α (K)(630 γ)=0.0060 (1970GrYP), assuming both gammas to be E2.

Eγ	Ι _γ ‡&	E _i (level)	\mathbf{J}_i^{π}	E_f J	J_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
98.48 3	2.78 5	2194.05	6+	2095.57	6+	M1+E2	0.18	1.79	$\begin{aligned} &\alpha(\mathbf{K}) = 1.488 \ 21; \ \alpha(\mathbf{L}) = 0.236 \ 4; \ \alpha(\mathbf{M}) = 0.0511 \ 8; \\ &\alpha(\mathbf{N}+) = 0.01333 \ 19 \\ &\alpha(\mathbf{N}) = 0.01154 \ 17; \ \alpha(\mathbf{O}) = 0.001692 \ 24; \\ &\alpha(\mathbf{P}) = 9.42 \times 10^{-5} \ 14 \\ &\alpha(\mathbf{K}) \exp[=1.0 \ 2 \ (1970 \text{GrYP}), \ 1.9 \ 8 \ (1963 \text{Ba31}). \end{aligned}$

 $^{148}_{62}\mathrm{Sm}_{86}$ -2

148 Pm β^- decay (41.29 d) 1977Ka14 (continued)											
γ ⁽¹⁴⁸ Sm) (continued)											
Eγ	Ι _γ ‡&	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments			
189.63 <i>3</i>	1.24 3	2095.57	6+	1905.94 6+	M1,E2		0.264 16	$\alpha(K)=0.21 \ 3; \ \alpha(L)=0.045 \ 12; \\ \alpha(M)=0.010 \ 3; \ \alpha(N+)=0.0025 \ 7 \\ \alpha(N)=0.0022 \ 6; \ \alpha(O)=0.00031 \ 7; \\ \alpha(P)=1.2\times10^{-5} \ 4 \\ \alpha(K)\exp=0.11 \ 4 \ (1970GrYP), \\ 0.17\approx(1963Ba31)$			
288.11 3	14.11 10	2194.05	6+	1905.94 6+	M1+E2	+0.088 21	0.0898	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0763 \ 11; \ \alpha(\mathbf{L}) = 0.01062 \ 15; \\ &\alpha(\mathbf{M}) = 0.00228 \ 4; \\ &\alpha(\mathbf{N}+) = 0.000599 \ 9 \\ &\alpha(\mathbf{N}) = 0.000516 \ 8; \ \alpha(\mathbf{O}) = 7.75 \times 10^{-5} \\ &11; \ \alpha(\mathbf{P}) = 4.82 \times 10^{-6} \ 7 \\ &\alpha(\mathbf{K}) \exp = 0.048 \ 9 \ (1970 \text{ Gr} \mathbf{Y} \mathbf{P}), \\ &0.062 \ 20 \ (1963 \text{ Ba} 31). \\ &\delta: \ \text{from} \ 1977 \text{Ka} 14. \end{aligned}$			
299.1 2 311.63 3	0.10 2 4.40 5	2194.05 1905.94	6+ 6+	1894.93 4 ⁺ 1594.31 5 ⁻	E1		0.01337	$\alpha(K)=0.01141 \ 16; \ \alpha(L)=0.001546 22; \ \alpha(M)=0.000330 \ 5; \alpha(N+)=8.58\times10^{-5} \ 12 \alpha(N)=7.43\times10^{-5} \ 11; \alpha(O)=1.091\times10^{-5} \ 16; \alpha(P)=6.29\times10^{-7} \ 9 \alpha(K)exp=0.011 \ 2 \ (1970GrYP), 0.012 \ 4 \ (1963Ba31). \delta(M2/E1)=+0.003 \ 19 \ (1977Ka14).$			
362.09 <i>3</i> 414.07 <i>3</i>	0.20 2 20.97 <i>1</i> 7	2095.57 1594.31	6 ⁺ 5 ⁻	1733.48 4 ⁺ 1180.24 4 ⁺	E1+M2	-0.013 10	0.00670 11	$\alpha = 0.00670 \ 11; \ \alpha(K) = 0.00572 \ 9; \alpha(L) = 0.000766 \ 13; \alpha(M) = 0.000163 \ 3; \alpha(N+) = 4.26 \times 10^{-5} \ 7 \alpha(N) = 3.68 \times 10^{-5} \ 6; \alpha(O) = 5.44 \times 10^{-6} \ 9; \alpha(P) = 3.22 \times 10^{-7} \ 6 \alpha(K) = xp = 0.0065 \ 20 \ (1963Ba31)$			
432.78 3	6.01 7	1594.31	5-	1161.53 3-	E2		0.0190	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01544\ 22;\ \alpha(\mathbf{L}) = 0.00281\ 4;\\ &\alpha(\mathbf{M}) = 0.000617\ 9;\\ &\alpha(\mathbf{N}+) = 0.0001586\ 23\\ &\alpha(\mathbf{N}) = 0.0001382\ 20;\\ &\alpha(\mathbf{O}) = 1.96 \times 10^{-5}\ 3;\\ &\alpha(\mathbf{P}) = 8.75 \times 10^{-7}\ 13\\ &\text{Mult.:}\ \alpha(\mathbf{K}) \exp = 0.017\ 5\\ &(1963Ba31),\ 0.017\ 3\ (1970\text{GrYP}).\\ &\delta(\mathbf{M}3/\text{E2}) = +0.25\ 37\ (1977\text{Ka14}). \end{aligned}$			
400.573	0.4727.588	2194.05 2095.57	6 ⁺	1/33.48 4 ⁺ 1594.31 5 ⁻	E1+M2	-0.017 14	0.00431 8	α =0.00431 8; α (K)=0.00369 7; α (L)=0.000489 9; α (M)=0.0001042 20; α (N+)=2.72×10 ⁻⁵ 5 α (N)=2.35×10 ⁻⁵ 5; α (O)=3.49×10 ⁻⁶ 7; α (P)=2.09×10 ⁻⁷ 4 α (K)exp=0.0032 8 (1970GrYP), 0.0033 9 (1963Ba31).			
550.27 3	106.6 8	550.27	2+	0.0 0 ⁺	E2		0.00998 14	α =0.00998 14; α (K)=0.00825 12; α (L)=0.001360 19; α (M)=0.000296 5;			

Continued on next page (footnotes at end of table)

¹⁴⁸Pm $β^-$ decay (41.29 d) 1977Ka14 (continued)

γ (¹⁴⁸Sm) (continued)

Eγ	I_{γ} [‡] &	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
553.24 <i>3</i>	0.45 4	1733.48	4+	1180.24 4+	M1+E2	+1.66 20	0.0117 4	$\begin{aligned} &\alpha(N+)=7.67\times10^{-5} \ 11\\ &\alpha(N)=6.66\times10^{-5} \ 10;\\ &\alpha(O)=9.59\times10^{-6} \ 14;\\ &\alpha(P)=4.78\times10^{-7} \ 7\\ &\alpha(K)\exp=0.0079 \ 6 \ (1970GrYP).\\ &\alpha(K)=0.0098 \ 4; \ \alpha(L)=0.00150 \ 4;\\ &\alpha(M)=0.000324 \ 8;\\ &\alpha(N+)=8.43\times10^{-5} \ 22\\ &\alpha(N)=7.30\times10^{-5} \ 18; \end{aligned}$
571.95 <i>3</i>	0.24 1	1733.48	4+	1161.53 3-	E1		0.00320 5	$\alpha(O)=1.07 \times 10^{-5} 3;$ $\alpha(P)=5.83 \times 10^{-7} 24$ $\alpha=0.00320 5; \alpha(K)=0.00274 4;$ $\alpha(L)=0.000361 5;$ $\alpha(M)=7.68 \times 10^{-5} 11;$ $\alpha(M)=2.01 \times 10^{-5} 2$
599.74 <i>3</i>	14.09 <i>13</i>	2194.05	6+	1594.31 5-	E1+M2	-0.021 11	0.00290 5	$\alpha(N+)=2.01\times 10^{-5} 3$ $\alpha(N)=1.735\times 10^{-5} 25;$ $\alpha(O)=2.58\times 10^{-6} 4;$ $\alpha(P)=1.564\times 10^{-7} 22$ $\alpha=0.00290 5; \alpha(K)=0.00249 4;$ $\alpha(L)=0.000327 6;$ $\alpha(M)=6.96\times 10^{-5} 12;$ $\alpha(N+)=1.82\times 10^{-5} 3$ $\alpha(D)=1.57\times 10^{-5} 3$
611.26 <i>3</i>	6.16 <i>10</i>	1161.53	3-	550.27 2+	E1		0.00277 4	$\alpha(N)=1.57 \times 10^{-5} 3;$ $\alpha(O)=2.34 \times 10^{-6} 4;$ $\alpha(P)=1.424 \times 10^{-7} 24$ $\alpha(K)\exp=0.0020 7 (1970GrYP).$ $\alpha=0.00277 4; \alpha(K)=0.00237 4;$ $\alpha(L)=0.000312 5;$ $\alpha(M)=6.63 \times 10^{-5} 10;$ $\alpha(N+)=1.735 \times 10^{-5} 25$ $\alpha(N)=1.400 \times 10^{-5} 24;$
629.97 <i>3</i>	100	1180.24	4+	550.27 2+	E2		0.00710 <i>10</i>	$\alpha(N)=1.499\times10^{-5} 21;$ $\alpha(O)=2.23\times10^{-6} 4;$ $\alpha(P)=1.358\times10^{-7} 19$ $\alpha(K)\exp=0.0025 \ 8 \ (1970GrYP),$ $0.0024 \ 8 \ (1963Ba31).$ $\alpha=0.00710 \ 10; \ \alpha(K)=0.00591 \ 9;$ $\alpha(L)=0.000932 \ 13;$ $\alpha(M)=0.000202 \ 3;$ $\alpha(N+)=5.25\times10^{-5} \ 8$ $\alpha(N)=4.55\times10^{-5} \ 7;$ $\alpha(O)=6.61\times10^{-6} \ 10;$ $\alpha(P)=3.46\times10^{-7} \ 5$
714.7 2	0.051 6	1894.93	4+	1180.24 4+	M1+E2		0.0070 18	α(I)=5.40×10 5 (1963Ba31). δ: δ(M3/E2)=-0.007 5 (1977Ka14). α=0.0070 18; α(K)=0.0060 16; α(L)=0.00084 18; α(M)=0.00018 4; α(N+)=4.7×10 ⁻⁵ 10 α(N)=4.1×10 ⁻⁵ 9; α(Q)=6.1×10 ⁻⁶
725.70 3	36.9 <i>3</i>	1905.94	6+	1180.24 4+	E2		0.00506 7	$\begin{array}{l} 14; \ \alpha(\mathrm{P})=3.6\times10^{-7} \ 11\\ \alpha=0.00506 \ 7; \ \alpha(\mathrm{K})=0.00424 \ 6;\\ \alpha(\mathrm{L})=0.000642 \ 9;\\ \alpha(\mathrm{M})=0.0001389 \ 20;\\ \alpha(\mathrm{N}+)=3.61\times10^{-5} \ 5 \end{array}$

Continued on next page (footnotes at end of table)

 $^{148}_{62}$ Sm₈₆-4

				148 Pm β^{-}	- de	ecay (41.29	d) 1977K a	a14 (continued)	
						γ (¹⁴⁸ Sr	n) (continued)		
Eγ	Ι _γ ‡&	E _i (level)	\mathbf{J}_i^{π}	E_f .	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{@}$	$lpha^\dagger$	Comments
915.33 <i>3</i>	19.29 20	2095.57	6+	1180.24 4	4+	E2		0.00300 <i>5</i>	$\alpha(N)=3.13\times10^{-5} 5;$ $\alpha(O)=4.58\times10^{-6} 7;$ $\alpha(P)=2.50\times10^{-7} 4$ $\alpha(K)\exp=0.0046 4 (1970GrYP),$ 0.0038 7 (1963Ba31). $\delta(M3/E2)=+0.002 8 (1977Ka14).$ $\alpha=0.00300 5; \alpha(K)=0.00254 4;$ $\alpha(L)=0.000364 5;$ $\alpha(M)=7.83\times10^{-5} 11;$ $\alpha(N+)=2.04\times10^{-5} 3$ $\alpha(N)=1.769\times10^{-5} 25;$ $\alpha(O)=2.61\times10^{-6} 4;$
1013.81 <i>3</i>	22.79 19	2194.05	6+	1180.24 4	4+	E2+M3	-0.025 14	0.00243 4	$\alpha(O)=2.01\times10^{-7}, 22$ $\alpha(P)=1.508\times10^{-7}, 22$ $\alpha(K)\exp=0.0025, 4 (1970GrYP), 0.0025, 5 (1963Ba31).$ $\delta(M3/E2)=+0.016, 27 (1977Ka14).$ $\alpha=0.00243, 4; \alpha(K)=0.00206, 4; \alpha(L)=0.000290, 5; \alpha(M)=6.22\times10^{-5}, 10; \alpha(N+)=1.62\times10^{-5}, 3$ $\alpha(N)=1.404\times10^{-5}, 22; \alpha(O)=2, 08\times10^{-6}, 4; 0.000000000, 0000000, 000000, 00000, 00000, 00000, 00000, 0000, 0000, 0000, 0000, 0000, 0000, 000$
1344.6 2	0.066 <i>5</i>	1894.93	4+	550.27 2	2+	E2		0.001392 20	$\begin{array}{l} \alpha(0) = 2.50 \times 10^{-7} \ 20 \\ \alpha(R) \exp = 0.0024 \ 4 \ (1970 \text{GrYP}), \\ 0.0020 \ 4 \ (1963 \text{Ba31}). \\ \text{Additional} \\ \text{information 1.} \\ \alpha = 0.001392 \ 20; \ \alpha(R) = 0.001163 \\ 17; \ \alpha(L) = 0.0001570 \ 22; \\ \alpha(M) = 3.35 \times 10^{-5} \ 5; \\ \alpha(N+) = 3.86 \times 10^{-5} \\ \alpha(N) = 7.59 \times 10^{-6} \ 11; \\ \alpha(O) = 1.133 \times 10^{-6} \ 16; \\ \alpha(P) = 6.93 \times 10^{-8} \ 10; \\ \alpha(\text{IPF}) = 2.98 \times 10^{-5} \ 5 \end{array}$

[†] Additional information 2. [‡] Relative intensity from 1977Ka14. [#] From adopted gammas. Supporting data from this decay are from α (K)exp (1963Ba31,1970GrYP), $\gamma\gamma(\theta)$ (1977Ka14). [@] From adopted gammas. δ from $\gamma\gamma(\theta)$ (1977Ka14) are given in comments. [&] For absolute intensity per 100 decays, multiply by 0.890 9.

148 Pm β^- decay (41.29 d) 1977Ka14

