Туре	Author	History Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 117, 1 (2014)	1-Oct-2013
$Q(\beta^{-})=-3037 \ 10; \ S(n)=8141.37 \ 28; \ S(p)=7583.1 \ 4;$	Q(α)=198	6.9 <i>10</i> 2012Wa38	
		¹⁴⁸ Sm Levels	

The band designations and suggested configurations are from (HI,xn $\gamma).$

Cross Reference (XREF) Flags

	A B C D E F G H	¹⁴⁸ Nd 2β ⁻ decay ¹⁴⁸ Pm β ⁻ decay (5. ¹⁴⁸ Pm β ⁻ decay (4) ¹⁴⁸ Eu ε decay ¹⁵² Gd α decay ¹⁴⁷ Sm(n,γ) E=therr ¹⁴⁷ Sm(n,γ) E=0.1-1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0 [@]	0+	7×10 ¹⁵ y 3	ABCDEFGHIJ LMNOPQRST	JV $\%\alpha$ =100 T _{1/2} : from 1970Gu14. Others: 8×10 ¹⁵ y 2 (1968Ko06),>3×10 ¹⁵ y (1987AlZX), see also 1960Ka23, 1961Ma05, 1946Cu01. rms charge radius <r<sup>2>^{1/2}=5.0009 fm <i>16</i> (2004An14).</r<sup>
550.255 [@] 8	2+	7.72 ps <i>32</i>	ABCD FGHIJ LMNOPQRST	JV μ =+0.508 42 (2005St24,1987Ba65) Q=-0.98 27 (2005St24,1973ClZF) J ^π : E2 to 0 ⁺ . T _{1/2} : from 2001Ra27, based on their adopted B(E2)↑=0.720 30 derived from Coul. ex., (e,e'), and T _{1/2} from RDM. μ , other: +0.61 7 (1987Be08).
1161.529 ^{&} <i>12</i>	3-	0.6 ps +4-2	BCD FGH J LM OPQRS	JV J ^π : E1 to 2 ⁺ and L(d,t)=0. T _{1/2} : from thermal-neutron capture data using γ-ray induced Doppler (GRID) broadening technique. B(E3)↑=0.37 3 (Coul. ex., 1968Ke04).
1180.261 [@] 12	4+	2.39 ps 24	CD FGH J L OPQRS	JV $T_{1/2}$: from B(E2)(2 ⁺ to 4 ⁺)=0.43 4 (Coul. ex., 1968Ke04). I^{μ_1} : I=4 from $\gamma\gamma(\theta)$ in β^- decay: π^- + from E2 to 2 ⁺
1424.46 <i>4</i> 1434.0 8	0^+		ABGLOpS FHp	J J^{π} : J=0 from $\gamma\gamma(\theta)$ in β^{-} decay; π =+ from L(p,t)=0.
1454.115 <i>13</i>	2+	285 fs 28	AB D FGHIJ M O QRS	 J T_{1/2}: from ¹⁴⁸Sm(γ,γ'); other: 0.36 ps 11 (Coul. ex., from B(E2)↑=0.36 ps 11 and and branching 1454g=0.499 5). J^π: E2 to 0⁺.
1461.1 1465.137 <i>11</i>	(1,2 ⁺) 1 ⁻	92 fs 8	l p BDFGH lMOpQ	J J ^π : γ to 0 ⁺ . J T _{1/2} : from ¹⁴⁸ Sm(γ,γ'). B(E1)↑=0.013 5 (Coul. ex., 1968Ve01). J ^π : J=1 from γγ(θ) in β ⁻ decay; π=- from E1 to 0 ⁺ .
1594.247 ^{&} 12	5-		CD FGH L OPQ S	V J^{π} : J=5 from $\gamma\gamma(\theta)$ in β^{-} decay; π =- from E1 to 4 ⁺ . This disagrees with J=3 ⁻ or 4 ⁻ from

¹⁴⁸Sm Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
1659.4 8	(2,3,4+)		F	average-resonance capture in (n, γ) . J^{π} : thermal-neutron capture γ assumed to be D from $3^{-} 4^{-}$ capturing state and γ to 2^{+} .
1664.278 22	2+	0.25 ps 8	B D GHIJ L OPQRS U	T _{1/2} : from B(E2)=0.03 <i>I</i> and 1664 γ branching=0.34 <i>I</i> . J ^{π} : J=2 from $\gamma(\theta)$ in β^- decay; π =+ from L(d,p)=3.
1717.8 10 1733.465 12 1894.824 14	4+ 4+		CD FGH J L OPQRS V CD FGHI O R	J ^{π} : J=4 from $\gamma\gamma(\theta)$ in ε decay; π =+ from L(d,p)=1+3. J ^{π} : J=4 from $\gamma\gamma(\theta)$ in ε decay; π =+ from L(d,t)=3.
1903.773 18 1905.908 [@] 13	6^+		D GH U CD G L OP R UV	J [*] : 3 ⁺ , 4 ⁺ from average neutron capture, and M1 to 2 ⁺ . J ^{π} : J=6 from $\gamma\gamma(\theta)$ in β^- decay; π =+ from E1 to 5 ⁻ .
1920.97 0 1972.480 21 2031.403 13	2^+ 4^-		GILOPR DFGHORV	J^{π} : L(d,t)=1 and γ to 0 ⁺ . J^{π} : L(d,t)=0, and log <i>ft</i> =8.9 via 5 ⁻ parent in ε decay.
2041 8 2057.960 22	2-		B G O	J ^{π} : J=2 from $\gamma\gamma(\theta)$ in β^{-} decay; π =- from M1 to 1 ⁻ .
2095.595 ^b 13 2111.053 13	6 ⁺ 4 ⁺		CD GH L OpQRS V D FGHI L OpQR	J^{π} : J=6 from $\gamma\gamma(\theta)$ in β^- decay; π =+ from E1 to 5 ⁻ . J ^{π} : E2 to 2 ⁺ and E1+M2 to 5 ⁻ . Disagrees with J=3 ⁺ (1984Kr09) in ε decay.
2128.64 ^{&} 7 2142.5 20	7 ^{-‡} (2,3,4)		DGOV I	J ^{π} : from 3 ⁻ (n, γ) resonance and average-resonance neutron capture.
2146.35 <i>3</i> 2147.499 <i>13</i>	2+# 5+	<64.1 fs	FGH MOq DG LOPqRS	T _{1/2} : from ¹⁴⁸ Sm(γ, γ'). J ^{π} : J=5 from $\gamma(\theta)$ in ε decay; π =+ from L(d,p)=1+3.
2194.061 <i>14</i> 2204.99 <i>15</i> 2208.85 <i>7</i>	$6^{+\ddagger}$ 0^{+} $(1,2^{+})$		CD GH L O R V G O S GH O	J^{π} : L(p,t)=0. J^{π} : γ to 0 ⁺ .
2214.215 <i>15</i> 2228.042 <i>17</i> 2277 <i>3</i>	5+ 4+ +		D FGH L Op R D FGHI L OpQRS 1 R	J^{π} : J=5 from $\gamma(\theta)$ in ε decay; π =+ from L(d,t)=1. J^{π} : J=4 from $\gamma(\theta)$ in ε decay; π =+ from L(d,p)=1+3. J^{π} : L(d,t)=3.
2284.406 21	(1,2 ⁺)	46 fs 5	B G 1M O	J^{π} : γ to 0 ⁺ . T _{1/2} : from ¹⁴⁸ Sm(γ , γ').
2313.57 8 2318.5 5 2227.00 5	2+ + 4+#		B GH O Q D L R	J^{π} : J=2 from $\gamma\gamma(\theta)$ in β^{-} decay; π =+ from E1 to 3 ⁻ . J ^{π} : L(d,t)=1.
2327.62 9	4 3+ #		G O	
2339.21 8 2344 <i>3</i> 2358 <i>4</i>	3 ^{-#} 3 ⁻ ,4 ⁻ 0 ⁺		DGHLOQR R S	J^{π} : L(d,t)=0. J^{π} : L(p,t)=0.
2374.447 <i>16</i> 2381.67 <i>10</i>	5 ⁺ ,6 ⁺ 2 ^{+#}	87 fs 17	DG OQ GLMOQR	J ^{π} : J=5,6 from $\gamma(\theta)$ in ε decay; π =+ from M1 to 6 ⁺ . J ^{π} : from ¹⁴⁸ Sm(γ, γ') based on angular correlations (π =+ from linear polarization In ¹⁴⁸ Sm($n, n'\gamma$)). T _{1/2} : from ¹⁴⁸ Sm(γ, γ').
2390.43 7	3+ #		D GHI O	-,
2392.32 7 2397.8 10 2440.8 10	7++		DG OV FLR FH	
2442.29 <i>10</i> 2467 38 <i>8</i>	(2^+) $3^{(-)#}$		G O	J^{π} : γ to 0^+ and γ to 4^+ .
2472.48 <i>16</i> 2490.004 <i>14</i> 2496 3	1 [#] 4 ⁺ +	37 fs 3	G MOR DGH O	T _{1/2} : from ¹⁴⁸ Sm(γ, γ'). J ^{π} : J=4 from $\gamma(\theta)$ in ε decay; π =+ from M1,E2 to 4 ⁺ .
2513.50 <i>18</i>	1 [#]	99 fs 5	GH MO	$T_{1/2}$: from ¹⁴⁸ Sm(γ, γ').

Adopted Levels, Gammas (continued)

¹⁴⁸Sm Levels (continued)

E(level) [†]	J^{π}	T _{1/2}		X	REF				Comments
2524.101 <i>16</i> 2532.39 <i>4</i>	4 ⁺ 4 ⁻ ,5 ⁻		D F D	GHI G	L	0	Q R		J^{π} : J=4 from $\gamma(\theta)$ in ε decay; π =+ from M1 to 4 ⁺ . J^{π} : J=4,5 from $\gamma\gamma(\theta)$ in ε decay; π =- from M1,E2 from $5^{-},6^{-}$. This contradicts J^{π} =+ from L(d,p)=L(d,t)=1 for levels at 2532 <i>3</i> , and 2531 <i>3</i> , respectively, both observed by 1975Oe01. In (d,t), the level is an unresolved doublet; hence, the L assignments could be suspect.
2539.82 <i>17</i> 2541.8 <i>10</i>	3-#		F	GH 7		0	S		
2544.67 <mark>b</mark> 15	8+‡							V	
2567.89 19	2 ^{+#}			G	1	0			
2570.832 19	4 ^{(-)#}		D	GH	1	0			
2583.862 <i>16</i> 2631.8 <i>10</i>	4 ^{(-)#}		D F	G 7	1	0			
2633.15 8	3-#			G		0	Q		
2641.222 17	5+ #		DF	FGH		0			
2645.50 15	4 ⁺ ,5 ⁺			G	L		R		J^{π} : L(d,p)=L(d,t)=1; γ to 5 ⁻ .
2673.07 4	4+		D	G		0			J ^{π} : J=4 from $\gamma(\theta)$ in ε decay; π =+ from polarization data in (n, γ) E=0.020-1.0 keV.
2675.20 14	(3,4,3)		D F	-					J ^{**} : gammas to 5° and 5°.
2683.467 <i>12</i> 2692.8 <i>10</i>	4-,5-		D F	G	L	0	R		J ^{π} : J=4,5 from $\gamma(\theta)$ in ε decay; π from M1 to 5 ⁻ .
2697.77 12	3 ⁺ ,4 ^{+#}			G		0			
2698.539 16	5-,6-		D						J ^{π} : J=5,6 from $\gamma(\theta)$ in ε decay; π =- from M1 to 5 ⁻ .
2701.92 4	$4^{(-)},(3^{-})^{\#}$		D	G		0	_		
2704.6 5	$(1,2^+)$	20.1 fs 12		G	LM	0	R		J^{π} : γ to 0^+ .
2711.8 10			F	7			a		$\Gamma_{1/2}$: from $\Gamma^{(\gamma,\gamma')}$.
2711.0 10	3+ 4+#		л П	C		0	ч а		
2713.33420 2714.08@16	2,4 0+‡		D	G		U	ч	v	
2714.98 10	$(4^+, 5, 6^+)$		D	G				v	J^{π} : γ' s to 4 ⁺ , 6 ⁺ .
2719.8 5	(3 ⁻ ,4 ⁻)			G			R		J^{π} : L(d,t)=(0).
2723.506 23	4+		DF	7G		0	QS		J ^{π} : J=3,4 from $\gamma\gamma(\theta)$ in ε decay and γ to 6 ⁺ ; π =+ from M1 to 4 ⁺ .
2727.31 6	5+		D	G	L	0	R		J^{π} : J=5,6 from $\gamma(\theta)$ in (n, γ), γ to 3 ⁻ makes J=6 unlikely; π =+ from L(d,p)=1+3.
2734.44 19	(3)		D			0			J^{π} : gammas to 1 ⁻ and 3 ⁻ and log $ft=10.0$ from 5 ⁻ .
2738.79 20	$(8^+)^+$							V	
2753.15 6	3+#		F	FG		0			E(level): from (n,γ) .
2762.1 5	1+ 	7.5 fs 4		6	LM		R		J^{π} : from ¹⁴⁶ Sm(γ, γ') based on angular correlations and L(d,p)=1+3.
2801.752 73	5' 2+ 4+#		D	G		0			J^{\prime} : J=5 from $\gamma\gamma(\theta)$ in ε decay; π =+ from M1 to 5 ⁺ .
2806.73 10	3,4,4			G		0			
$2807.35^{\circ\circ}$ 16 2809.3	9 +				L			V	
2812.8 10			F	7	-				
2815.584 18	4-		D	G		0			J ^{π} : J=4 from $\gamma(\theta)$ in ε decay; π =- from M1 to 5 ⁻ .
2822 2	+			~	L	~	R		$J^{n}: L(d,t)=1.$
2828.13 13 2830.660 14	5+		р	G		υ			I^{π} . I-5 from $\gamma(\theta)$ in a decay: $\pi - \pm$ from M1 to 5 ⁺
2846.9 3	$(3^{-}, 4^{-})$		2	G		0	QR		J^{π} : L(d,t)=(0).
2861.07 8	4-,5-		DF	FG		0			J ^{π} : J=4,5 from $\gamma(\theta)$ in ε decay; π =- from M1 to 5 ⁻ .

¹⁴⁸Sm Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	Σ	KREF	7			Comments
								J=3,4 from $\gamma(\theta)$ in (n,γ) E=0.020-1.0 keV; however, M1 to 5 ⁻ rules out J=3.
2862.06 <i>11</i> 2891 8 5	3+,4+#		G FG	L	0	QRS		
2908.13 22 2917.8 10	3-,4-		D G F	-		R		$J^{\pi}: L(d,t)=0.$
2928.84 5 2931.98.20	(4,5,6)+		DG	L	0	R R		J^{π} : γ 's to 4 ⁺ , 6 ⁺ and L(d,p)=1+3.
2931.98 20	2 ⁺ 3 ^{-#}		G		U	K		
2942.82 <i>18</i> 2052 7 0	8 ^{-‡}		C C	Ţ		DC	V	
2932.19	3+ 4+ #		G FC	L	0	ĸs		
2907.07	5,4 8 ^{-‡}		ru		0		v	
2970.32 20	$3^{+} 4^{+\#}$		G		0		v	
2980.30 19	$3^{+}, 4^{+}$		FG	т	0	R		
2993 3	5,1		10	-	Ŭ	R		
3004 <i>3</i>				L		R		
3014.1 6	3-,4-		G		0	R		J^{π} : L(d,t)=0.
3038.8 <i>6</i>	1	41.4 fs 22		M				J^{π} : from ¹⁴⁸ Sm(γ, γ') based on angular correlations.
3045 2	+			т		R		$I_{1/2}$: from $1.6 \text{Sm}(\gamma, \gamma')$. I^{π} : I (d p)=1+3
3050.5 4			FG	-	0	R		J : L(0,p) = 1 + 3.
3063.25 22 3073 <i>3</i>	3 ^{-#}		FG	1 1	0	R		
3082.1 4	1	10.2 fs 7		M				J^{π} : from ¹⁴⁸ Sm(γ, γ') based on angular correlations.
3089.84 23	2 ⁺ .3 ^{-#}		FG					$\Gamma_{1/2}$. nom $Om(f,f)$.
3095 25 19	$Q^{(+)}$		10				v	
3098 3	(3 ⁻ ,4 ⁻)					R		J^{π} : L(d,t)=(0).
3107.8 4	3+,4+ #		FG		0			
3112 2	+			L		R		J^{π} : L(d,p)=1+3.
3138.46 11	$3^{(-)}, 4^{(-)\#}$		FG		0	R		
3153.5 3	2+ 4+#		G	L		R		J^{n} : L(d,p)=1+3.
3164.8 <i>4</i> 3178.0 <i>15</i>	31,41		FG G	L		R		J^{π} : L(d,p)=1+3.
3188.31 ^e 17	9-‡						V	
3189.8 8	2+,3-#		G					-
3197.4 10	3-,4-		G			R		$J^{\pi}: L(d,t)=0.$
3216.15 18	9-+		C		0		V	
3224.83 19			G	i	0	R		
3235.23 ^b 17	$10^{+\ddagger}$		_				v	
3235.8 10			F					
3245 <i>3</i>	+			L		R		J^{π} : L(d,p)=1+3.
3253.45 17	$10^{-\ddagger}$						V	17
3255.3 3	$(1,2^{+})$			M				J': γ to U'. $P(E_1) \uparrow = 4 4 \gamma (10^{-5} - 2 (\gamma_1 \gamma_1^2 + 10027; 05))$
3261.8 10			F					$D(E1) =4.4\times10^{-5} (\gamma,\gamma, 1993Z105).$
3276.2 5			G	L	0	R		
3286.8 10			F					

¹⁴⁸Sm Levels (continued)

E(level) [†]	\mathbf{J}^{π}	2	KREF			Comments
3291.5 5	$(1,2^+)$		М			J^{π} : γ to 0 ⁺ . B(E1)^=1.7×10 ⁻⁵ 2 ($\gamma \gamma'$, 1993Zi05).
3308.8 10	(10+) +	F	L	R		
3322.6 3 3337.8 10	(10')*	F			V	
3347 3 3375.8 10		F	L	ĸ		$J^{*}: L(a,p)=1.$
3387.8 <i>10</i> 3397 <i>3</i>	3-,4-	F	1 1	R R		J^{π} : L(d,t)=0.
3398.13 [@] 16	10 ^{+‡}				V	
3403.8 <i>10</i> 3413.8 <i>10</i>		F F	L	R R		
3421.90 ^c 16 3428 3	11-‡			R	V	
3437.8 10		F				
3451.9 5	$(1,2^{+})$		LM	R		J^{π} : γ to 0^+ .
3465.8 10		F		R		
3479.8 10		F	L			
3483.6 5	$(1,2^{+})$		M			J^{π} : γ to 0 ⁺ . B(E1) \uparrow =6.0×10 ⁻⁵ <i>15</i> (γ , γ' , 1993Zi05).
3488 4	(3-,4-)			R		J^{π} : L(d,t)=(0).
3507.8 10		F	_	R		
3519.8 10	4-	F	T			
3526.57 18	10-+			_	V	\mathbf{T} \mathbf{T} (1.) (0)
3530 <i>4</i> 3534.9 <i>5</i>	$(3^-,4^-)$ $(1,2^+)$		l IM	R		J^{π} : L(d,t)=(0). J^{π} : γ to 0 ⁺ .
	4-					B(E1) \uparrow =5.8×10 ⁻⁵ 4 (γ,γ' , 1993Z105).
3545.63 17	10-+		_		V	
3546 4	$(3^{-}, 4^{-})$	-	1	R		J^{n} : L(d,t)=(0).
3562.8 10		F	T	D		
3586.0.5	(1.2^+)		тм	ĸ		I^{π} : γ to 0^+
3598.8 10	$(3^{-},4^{-})$	F	2.11	R		J^{π} : L(d,t)=(0).
3613.8 10	(- ,-)	F	1			
3614.76 ^{&} 17	11-‡				v	
3628 4	$(3^{-},4^{-})$		1	R		J^{π} : L(d,t)=(0).
3635.8 10		F				
3640.4 4	$(11)^{\ddagger}$				v	
3652 4	(3-,4-)		L	R		J^{π} : L(d,t)=(0).
3668 10			L			
3674 4	(2- 4-)	_		R		\mathbf{T} \mathbf{T} (1.) (0)
3701.8 10	(3,4)	F	1	R		$J^{n}: L(d,t)=(0).$
3/14 4	$(3^{-} 4^{-})$		I I	K D		I^{π} . I (d t)-(0)
3752 4	(3,4)		1	R		J : L(u,t) = (0).
3766.8 10		F	î	ĸ		
3774 4	$(3^{-},4^{-})$		L	R		J^{π} : L(d,t)=(0).
3797 4			L	R		
3806.98 ^e 18	11-‡				v	
3812.0 5	$(1,2^{+})$		М			J^{π} : γ to 0^+ .
3817 4	3-,4-			R		J^{π} : L(d,t)=0.
3831.8 10		F				
3843.6 5	$(1,2^{+})$		M			J^{n} : γ to 0^{+} .
						B(E1) \uparrow =0.6×10 ⁻⁵ 2 (γ, γ' , 1993Zi05).

¹⁴⁸Sm Levels (continued)

E(level) [†]	\mathbf{J}^{π}		XREF			Comments
3844.8 10		F	L			
3865.8 10	3-,4-	F		R		J^{π} : L(d,t)=0.
3884.3 5	$(1,2^{+})$		1M	R		J^{π} : γ to 0^+ .
3895.4.5	(1.2^+)		М			J^{π} : γ to 0^+ .
3902.4	3-4-		1	R		$I^{\pi} \cdot I \cdot (d t) = 0$
3920.8.10	$3^{-}4^{-}$	F	ī	R		$J^{\pi}: L(d,t) = 0$
3051 1	5,1	-	ī	D		5 : E(a,t) = 0.
3071 8 10	$(3^{-} 4^{-})$	F	L	D		I^{π} . I (d t)-(0)
3000 1	$(3^{-}, 4^{-})$	r	т	D		J : L(u,t) = (0). $I^{\pi} : L(d,t) = (0)$
3990 4	(3,4)		L	ĸ		J : L(u,t) = (0).
3992.62 17	12++			_	V	
4005 4				R		
4011 4				R		
4026 4	3-,4-		L	R		J^{π} : L(d,t)=0.
4041 4			L	R		
4085 10			L			
4104.39 [@] 17	12+ [‡]				V	
4107 10			L			
4108 70 18	12-‡				v	
4108.70 18	12 *				v	
4110.68 17	13-+				V	
4122.8 10		F	L			
4166 10			L			
4189.28 19	12+‡				V	
4192 10			L			
4196 25 18	12-‡				v	
4214 10	12		т			
1214 10			T			
4220 10	10-+		L			
4241.52 21	13 +		_		V	
4255 10			L			
4290 10			L			
4334 10			L			
4357 10			L			
4383 10			L			
4397.78 ^{&} 18	13-‡				V	
4402 10			L			
4444 10			L			
4466 10			L			
4510 10			L			
4512.91 ^e 19	13-‡				v	
1512.71 17	12+					
4310.73 19	15.4				v	
4555 10			L			
4575 10			L			
4592 10			L			
4030 10			L .			
4649 10			L			
46/5 10			L			
4/35 10			L			
4/84 10	. 4		L			
4805.18 [@] 18	14++				V	
4824 10			L			
4842.69 ^c 18	15-‡				V	
4864 69 ^b 17	14+‡				v	
4876 10	TI.		т			
10/0 10	1 4-		-			
4009./1 19	14				V	

¹⁴⁸Sm Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
4909.65 19	14 ^{+‡}		v	
4917.55 18	14 ^{-‡}		v	
4951.75 23	14 ⁽⁻⁾ ‡		v	
5087.55 19	15-‡		v	
5136.13 ^{&} 19	15 ^{-‡}		v	
5217.20 20	15 ⁽⁻⁾ ‡		v	
5274.93 20	15+ [‡]		v	
5287.77 ^e 25	15 ^{-‡}		v	
5320.28 19	16 ^{-‡}		v	
5496.39 [@] 19	16 ^{+‡}		v	
5524.48 ^b 19	16 ^{+‡}		v	
5556.54 21	16 ^{-‡}		v	
5561.19 ^c 20	17-‡		V	
5578.31 21	16 ^{(+)‡}		V	
5649.57 20	17-‡		V	
5777.74 21	17 ⁺		V	
5837.32 ^{<i>a</i>} 22	17-‡		v	
5946.08 [@] 19	18+7		v	
6011.15 21	187		v	
6029.22 21	18-4		v	
6195.29 ^{<i>a</i>} 21	19-4		v	
6392.23 23	19-+		V	
6477.07 20	19-+		V	
6557.5? 4	$(19)^{+}$		V	
6592.79 [©] 21	$20^{(+)}$		V	
6694.32 ^a 21	$21^{(-)+}$	32 ns 3	V	$T_{1/2}$: from DSAM in (HI,xn γ) (1998UrZZ).
$6913.3^{\circ}3$	$21^{(+)}$		V	
$7329.3 \circ 3$	$22^{(-)}$		V	
7532.92" 23	23(-)		V	
70/2 5 3	$(22)^{\ddagger}$		v	
$7977.6^{@}3$	$(22)^{+}$ $24^{(+)}$		v	
8010.61^{d} 25	$25^{(-)}$		v	
8214.5 ^{<i>a</i>} 3	$25^{(-)}$		v	
8358.8 <i>3</i>	(24)		v	
8602.2 ^d 3	27 ⁽⁻⁾ ‡		v	
8659.5 [@] 5	26 ⁽⁺⁾ ‡		v	
8931.5? 7	(27) [‡]		v	
9045.9 <i>3</i>	(26) [‡]		V	
9601.2 ^d 4	29 [‡]		V	
9898.2 11	(28)‡		V	
10439.0 ^{<i>d</i>} 4	31‡		V	
10609.1 4	(30) [‡]		V	
11524.7 5	(32)‡		V	

¹⁴⁸Sm Levels (continued)

 † From the data sets which provided Ey, and other particle-transfer reactions.

- [‡] From (HI,xn γ) based on γ -ray excitation functions, $\gamma(\theta)$, DCO ratios, γ -ray linear polarization, Ice spectra, $T_{1/2}$, prompt and delayed Ice spectra. π of levels upto J=19 were deduced from linear-polarization data. J^{π} assignments of high-spin levels should be considered as tentative pending publication of detailed data.
- [#] From $\gamma(\theta)$, primary-capture $\gamma I\gamma/E_{\gamma}^{5}$, and linear-polarization data in (n,γ) E=0.020-1.0 keV and $(n,n'\gamma)$.

- [&] Band(B): band 2; octupole band.
- ^{*a*} Band(C): band 3.
- ^b Band(D): band 4.
- ^c Band(E): band 5.
- ^d Band(F): band 6.
- ^e Band(G): band 7.

[@] Band(A): band 1; g.s. band.

	Adopted Levels, Gammas (continued)												
						γ (¹⁴⁸ S	m)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.@	δ	α^{\dagger}	Comments					
550.255	2+	550.273 9	100	0.0 0+	E2		0.00998 14	$ \begin{array}{l} \alpha = 0.00998 \ 14; \ \alpha(\mathrm{K}) = 0.00825 \ 12; \ \alpha(\mathrm{L}) = 0.001360 \ 19; \\ \alpha(\mathrm{M}) = 0.000296 \ 5; \ \alpha(\mathrm{N}+) = 7.67 \times 10^{-5} \ 11 \\ \alpha(\mathrm{N}) = 6.66 \times 10^{-5} \ 10; \ \alpha(\mathrm{O}) = 9.59 \times 10^{-6} \ 14; \ \alpha(\mathrm{P}) = 4.78 \times 10^{-7} \\ 7 \end{array} $					
1161.529	3-	611.293 8	100	550.255 2+	E1		0.00277 4	B(E2)(W.u.)=31.2 <i>13</i> α =0.00277 <i>4</i> ; α (K)=0.00237 <i>4</i> ; α (L)=0.000312 <i>5</i> ; α (M)=6.63×10 ⁻⁵ <i>10</i> ; α (N+)=1.735×10 ⁻⁵ 25 α (N)=1.498×10 ⁻⁵ 2 <i>1</i> ; α (O)=2.23×10 ⁻⁶ <i>4</i> ; α (P)=1.358×10 ⁻⁷ <i>19</i> B(E1)(W.u.)=0.0018 +6- <i>12</i> Mult.: E1+M2 with δ =+0.026 <i>13</i> from ¹⁴⁸ Sm β ⁻ decay, +0.08 <i>4</i> from (HI,xn γ), and<0.4 from (n,n' γ). However, RUL estimate of δ is<0.007 and the evaluator has set the mult=E1					
1180.261	4+	629.987 8	100	550.255 2+	E2		0.00710 10	B(E2)(W.u.)=51 6 α =0.00710 10; α (K)=0.00591 9; α (L)=0.000932 13; α (M)=0.000202 3; α (N+)=5.25×10 ⁻⁵ 8 α (M)=4.55×10 ⁻⁵ 7; α (Q)=6.61×10 ⁻⁶ 10; α (D)=2.46×10 ⁻⁷ 5					
1424.46	0+	874.18 <i>3</i>	100	550.255 2+	E2		0.00332 5	$\begin{array}{l} \alpha(N)=4.53\times10^{-7}, \ \alpha(O)=0.01\times10^{-10}, \ \alpha(r)=5.40\times10^{-5} \\ \alpha=0.00332 \ 5; \ \alpha(K)=0.00280 \ 4; \ \alpha(L)=0.000406 \ 6; \\ \alpha(M)=8.74\times10^{-5} \ 13; \ \alpha(N+)=2.28\times10^{-5} \ 4 \\ \alpha(N)=1.97\times10^{-5} \ 3; \ \alpha(O)=2.91\times10^{-6} \ 4; \ \alpha(P)=1.663\times10^{-7} \\ 24 \end{array}$					
1434.0 1454.115	2+	884.2 <i>10</i> 903.831 <i>15</i>	100 100 2	550.255 2 ⁺ 550.255 2 ⁺	M1+E2	+2.32 ^c 10	0.00339 6	α =0.00339 6; α (K)=0.00287 5; α (L)=0.000406 7; α (M)=8.72×10 ⁻⁵ 14; α (N+)=2.28×10 ⁻⁵ 4 α (N)=1.97×10 ⁻⁵ 3; α (O)=2.92×10 ⁻⁶ 5; α (P)=1.72×10 ⁻⁷ 3 P(M)(Ww)=0.0022 40 (P(E2))(Ww)=20.3					
		1454.110 20	99.6 2	0.0 0+	E2		0.001230 18	B(M1)(W.u.)=0.0082 11, B(E2)(W.u.)=30.5 α =0.001230 18; α (K)=0.001000 14; α (L)=0.0001338 19; α (M)=2.86×10 ⁻⁵ 4; α (N+)=6.78×10 ⁻⁵ α (N)=6.46×10 ⁻⁶ 9; α (O)=9.66×10 ⁻⁷ 14; α (P)=5.96×10 ⁻⁸ 9; α (IPF)=6.03×10 ⁻⁵ 9 B(E2)(Wu)=3.3.4					
1461.1 1465.137	(1,2 ⁺) 1 ⁻	910.7 1461.1 303.59 <i>3</i> 914.916 <i>15</i>	56 100 0.17 2 51.6 4	$\begin{array}{cccc} 550.255 & 2^+ \\ 0.0 & 0^+ \\ 1161.529 & 3^- \\ 550.255 & 2^+ \end{array}$	E1		0.001221 17	If E2 B(E2)(W.u.)=67. α =0.001221 <i>17</i> ; α (K)=0.001050 <i>15</i> ; α (L)=0.0001354 <i>19</i> ; α (M)=2.88×10 ⁻⁵ <i>4</i> ; α (N+)=7.54×10 ⁻⁶ α (N)=6.51×10 ⁻⁶ <i>10</i> ; α (O)=9.73×10 ⁻⁷ <i>14</i> ; α (P)=6.07×10 ⁻⁸					
		1465.101 <i>13</i>	100 <i>3</i>	0.0 0+	E1		0.000704 10	9 B(E1)(W.u.)=0.00117 <i>11</i> α =0.000704 <i>10</i> ; α (K)=0.000449 7; α (L)=5.70×10 ⁻⁵ 8;					

 $^{148}_{62}\mathrm{Sm}_{86}$ -9

					Adopted	Levels, Gamm	as (continued)	
						$\gamma(^{148}\text{Sm})$ (conti	nued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.@	δ	$lpha^\dagger$	Comments
1594.247	5-	414.028 12	100 3	1180.261 4+	E1+M2	-0.013 ^a 10	0.00670 11	$\begin{array}{c} \alpha(\mathrm{M}) = 1.208 \times 10^{-5} \ 17; \ \alpha(\mathrm{N}+) = 0.000186 \ 3\\ \alpha(\mathrm{N}) = 2.74 \times 10^{-6} \ 4; \ \alpha(\mathrm{O}) = 4.11 \times 10^{-7} \ 6; \ \alpha(\mathrm{P}) = 2.61 \times 10^{-8} \\ 4; \ \alpha(\mathrm{IPF}) = 0.000183 \ 3\\ \mathrm{B(E1)(\mathrm{W.u.}) = 0.00055 \ 6} \\ \alpha = 0.00670 \ 11; \ \alpha(\mathrm{K}) = 0.00573 \ 9; \ \alpha(\mathrm{L}) = 0.000766 \ 13; \\ \alpha(\mathrm{M}) = 0.000163 \ 3; \ \alpha(\mathrm{N}+) = 4.26 \times 10^{-5} \ 7\\ \alpha(\mathrm{N}) = 3.68 \times 10^{-5} \ 6; \ \alpha(\mathrm{O}) = 5.45 \times 10^{-6} \ 9; \ \alpha(\mathrm{P}) = 3.22 \times 10^{-7} \\ 6\end{array}$
		432.745 8	27.6 15	1161.529 3-	E2		0.0190	$\alpha(K)=0.01544 \ 22; \ \alpha(L)=0.00281 \ 4; \ \alpha(M)=0.000617 \ 9; \\ \alpha(N+)=0.0001587 \ 23 \\ \alpha(N)=0.0001382 \ 20; \ \alpha(O)=1.96\times10^{-5} \ 3; \\ \alpha(P)=8.75\times10^{-7} \ 13 $
1659.4 1664.278	(2,3,4 ⁺) 2 ⁺	1109 <i>I</i> 1113.92 <i>3</i>	100 100 <i>3</i>	550.255 2 ⁺ 550.255 2 ⁺	M1+E2	-0.565 ^c 21	0.00279 5	B(M1)(W.u.)=0.032 <i>11</i> ; B(E2)(W.u.)=4.5 <i>15</i> α =0.00279 <i>5</i> ; α (K)=0.00239 <i>4</i> ; α (L)=0.000319 <i>5</i> ; α (M)=6.81×10 ⁻⁵ <i>10</i> ; α (N+)=1.85×10 ⁻⁵ <i>3</i> α (N)=1.544×10 ⁻⁵ <i>23</i> ; α (O)=2.32×10 ⁻⁶ <i>4</i> ;
		1664.20 <i>4</i>	51.6 <i>16</i>	0.0 0+	E2		0.001042 15	$\alpha(P)=1.466\times10^{-7} 23; \ \alpha(IPF)=5.65\times10^{-7} 8$ B(E2)(W.u.)=1.3 5 $\alpha=0.001042 \ 15; \ \alpha(K)=0.000775 \ 11; \ \alpha(L)=0.0001023 \ 15;$ $\alpha(M)=2.18\times10^{-5} \ 3; \ \alpha(N+)=0.000143$ $\alpha(N)=4.94\times10^{-6} \ 7; \ \alpha(O)=7.40\times10^{-7} \ 11;$
1733.465	4+	279.30 5	0.65 3	1454.115 2+	E2		0.0703	$\alpha(P)=4.62\times10^{-6} 7; \ \alpha(IPF)=0.0001375 \ 20$ $\alpha(K)=0.0542 \ 8; \ \alpha(L)=0.01261 \ 18; \ \alpha(M)=0.00282 \ 4; \ \alpha(N+)=0.000715 \ 10$ $\alpha(N)=0.000627 \ 9; \ \alpha(O)=8.56\times10^{-5} \ 12; \ \alpha(P)=2.87\times10^{-6} \ 4$
		553.231 14	100 17	1180.261 4+	M1+E2	+1.66 ^b 20	0.0117 4	$\alpha(K)=0.0098 \ 4; \ \alpha(L)=0.00150 \ 4; \ \alpha(M)=0.000324 \ 8; \\ \alpha(N+)=8.43\times10^{-5} \ 22 \\ \alpha(N)=7.31\times10^{-5} \ 18; \ \alpha(O)=1.07\times10^{-5} \ 3; \\ \alpha(P)=5 \ 83\times10^{-7} \ 24$
		571.962 7	74 2	1161.529 3-	E1		0.00320 5	$\alpha(F) = 0.0320 5; \alpha(K) = 0.00274 4; \alpha(L) = 0.000361 5; \\ \alpha(M) = 7.68 \times 10^{-5} 11; \alpha(N+) = 2.01 \times 10^{-5} 3 \\ \alpha(N) = 1.735 \times 10^{-5} 25; \alpha(O) = 2.58 \times 10^{-6} 4; \\ \alpha(D) = 1.564 \times 10^{-7} 22$
		1183.208 16	12.8 3	550.255 2+	E2		0.001761 25	$\alpha(\Gamma) = 1.504 \times 10^{-5} 22$ $\alpha = 0.001761 25; \ \alpha(K) = 0.001496 21; \ \alpha(L) = 0.000205 3;$ $\alpha(M) = 4.40 \times 10^{-5} 7; \ \alpha(N+) = 1.555 \times 10^{-5} 2$ $\alpha(N) = 9.94 \times 10^{-6} 14; \ \alpha(O) = 1.480 \times 10^{-6} 21;$ $\alpha(D) = 8.01 \times 10^{-8} 13; \ \alpha(DE) = 4.04 \times 10^{-6} 6$
1894.824	4+	300.65 7	2.9 2	1594.247 5-	[E1]		0.01463	$\alpha(\mathbf{F}) = 8.91 \times 10^{-5} I3; \ \alpha(\mathbf{IFF}) = 4.04 \times 10^{-5} \delta$ $\alpha(\mathbf{K}) = 0.01248 I8; \ \alpha(\mathbf{L}) = 0.001694 \ 24; \ \alpha(\mathbf{M}) = 0.000362 \ 5;$ $\alpha(\mathbf{N}+) = 9.40 \times 10^{-5} I4$

 $^{148}_{62}{
m Sm}_{86}$ -10

						Adop	oted Levels, Ga	mmas (continu	ed)
							$\gamma(^{148}\text{Sm})$ (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_{f}	\mathbf{J}_f^{π}	Mult. [@]	δ	α^{\dagger}	Comments
	_				<u> </u>				$\alpha(N)=8.14\times10^{-5}$ 12; $\alpha(O)=1.195\times10^{-5}$ 17; $\alpha(P)=6.86\times10^{-7}$
1894.824	4+	714.769 <i>13</i>	91 2	1180.261	4+	M1+E2		0.0070 18	10 $\alpha = 0.0070 \ 18; \ \alpha(\text{K}) = 0.0060 \ 16; \ \alpha(\text{L}) = 0.00084 \ 18;$ $\alpha(\text{M}) = 0.00018 \ 4; \ \alpha(\text{N}+) = 4.7 \times 10^{-5} \ 10$ $\alpha(\text{N}) = 4.1 \times 10^{-5} \ 9; \ \alpha(\text{O}) = 6.1 \times 10^{-6} \ 14; \ \alpha(\text{P}) = 3.6 \times 10^{-7} \ 11$ $\delta_{\text{K}} = 0.25 \ 10 \ \text{ar} = 1.55 \ \text{from } \alpha(0) = 0.02 < \delta < 1.102 \ \text{from}$
		1344.740 23	100 8	550.255	2+	E2		0.001391 20	
1903.773	3+	449.66 9 723.58 5 742.16 11	73 15.47 4.54	1454.115 1180.261 1161.529	2+ 4+ 3-				0(00)(22)- 0.01 0.
		1353.509 17	100 2	550.255	2+	M1+E2	+8.2 ^c 12	0.001385 20	α =0.001385 20; α (K)=0.001155 17; α (L)=0.0001558 22; α (M)=3.33×10 ⁻⁵ 5; α (N+)=4.07×10 ⁻⁵ α (N)=7.53×10 ⁻⁶ 11; α (O)=1.125×10 ⁻⁶ 16; α (P)=6.89×10 ⁻⁸ 10: α (IPE)=3.20×10 ⁻⁵ 5
1905.908	6+	311.570 20	14.2 3	1594.247	5-	E1		0.01337	$\begin{array}{l} \alpha(\mathrm{N}) = 0.01141 \ I6; \ \alpha(\mathrm{L}) = 0.001547 \ 22; \ \alpha(\mathrm{M}) = 0.000330 \ 5; \\ \alpha(\mathrm{N}+) = 8.58 \times 10^{-5} \ I2 \\ \alpha(\mathrm{N}) = 7.43 \times 10^{-5} \ I1; \ \alpha(\mathrm{O}) = 1.092 \times 10^{-5} \ I6; \ \alpha(\mathrm{P}) = 6.29 \times 10^{-7} \\ q \end{array}$
		725.673 9	100 2	1180.261	4+	E2		0.00506 7	$\alpha = 0.00506 \ 7; \ \alpha(K) = 0.00424 \ 6; \ \alpha(L) = 0.000642 \ 9; \ \alpha(M) = 0.0001389 \ 20; \ \alpha(N+) = 3.61 \times 10^{-5} \ 5 \ \alpha(N) = 3.13 \times 10^{-5} \ 5; \ \alpha(O) = 4.58 \times 10^{-6} \ 7; \ \alpha(P) = 2.50 \times 10^{-7} \ 4$
1920.97	0^{+}	1370.71 6	100	550.255	2+				$u(\mathbf{n}) = 5.15 \times 10^{-5}, u(0) = 4.56 \times 10^{-7}, u(\mathbf{r}) = 2.50 \times 10^{-4}$
1972.480	2^{+}	308.29 11	9.5 10	1664.278	$2^+_{2^-}$				
		1422.216 20	12 2 100 <i>3</i>	550.255	3 2 ⁺	M1+E2	-0.556 ^c 24	0.001663 25	$ \begin{array}{l} \alpha = 0.001663 \ 25; \ \alpha(\mathrm{K}) = 0.001379 \ 21; \ \alpha(\mathrm{L}) = 0.000182 \ 3; \\ \alpha(\mathrm{M}) = 3.88 \times 10^{-5} \ 6; \ \alpha(\mathrm{N}+) = 6.40 \times 10^{-5} \ 9 \\ \alpha(\mathrm{N}) = 8.80 \times 10^{-6} \ 13; \ \alpha(\mathrm{O}) = 1.325 \times 10^{-6} \ 20; \ \alpha(\mathrm{P}) = 8.43 \times 10^{-8} \\ 13; \ \alpha(\mathrm{IPF}) = 5.38 \times 10^{-5} \ 8 \end{array} $
2031 403	4-	1972.8 3	9.9 8 3 5 1	0.0	0^+ 5-	M1		0.0303	$\alpha(K) = 0.0258$ /: $\alpha(I) = 0.00353$ 5: $\alpha(M) = 0.000756$ 11:
2031.403	+	4J1.10 4	5.51	1374.247	J	1911		0.0505	$\alpha(N)=0.000199 \ 3$ $\alpha(N)=0.0001715 \ 24; \ \alpha(O)=2.58\times10^{-5} \ 4; \ \alpha(P)=1.621\times10^{-6} \ 23$
		851.4 5	0.28 13	1180.261	4+				
		869.891 8	100 2	1161.529	3-	M1+E2	-1.7 ^b 3	0.00391 18	$ \begin{array}{l} \alpha = 0.00391 \ 18; \ \alpha(\mathrm{K}) = 0.00331 \ 16; \ \alpha(\mathrm{L}) = 0.000466 \ 19; \\ \alpha(\mathrm{M}) = 0.000100 \ 4; \ \alpha(\mathrm{N}+) = 2.62 \times 10^{-5} \ 11 \\ \alpha(\mathrm{N}) = 2.26 \times 10^{-5} \ 9; \ \alpha(\mathrm{O}) = 3.36 \times 10^{-6} \ 14; \ \alpha(\mathrm{P}) = 2.00 \times 10^{-7} \ 11 \end{array} $

$\gamma(^{148}\text{Sm})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [@]	δ	α^{\dagger}	Comments
2057.960	2-	393.80 <i>3</i> 592.83 <i>3</i>	1.6 2 36.0 7	1664.278 2 ⁺ 1465.137 1 ⁻	M1+E2		0.011 3	α (K)=0.009 3; α (L)=0.0014 3; α (M)=0.00029 6; α (N+)=7.7×10 ⁻⁵ 15
		896.42 <i>3</i>	100 <i>1</i>	1161.529 3-	M1+E2	+1.32 ^{&} 9	0.00386 9	$\alpha(N)=6.6\times10^{-5} \ 13; \ \alpha(O)=9.8\times10^{-6} \ 21; \ \alpha(P)=5.7\times10^{-7} \ 18$ $\delta: \ +11 \ +11-4 \ \text{or} \ -0.20 \ 5 \ \text{from} \ ^{148}\text{Pm} \ \beta^- \ \text{decay.}$ $\alpha=0.00386 \ 9; \ \alpha(K)=0.00328 \ 8; \ \alpha(L)=0.000456 \ 10;$
		1505 (0.)		550 255 at				$\alpha(M)=9.77\times10^{-5} \ 20; \ \alpha(N+)=2.56\times10^{-5} \ 6$ $\alpha(N)=2.21\times10^{-5} \ 5; \ \alpha(O)=3.29\times10^{-6} \ 7; \ \alpha(P)=1.99\times10^{-7} \ 5$
2095.595	6+	1507.68 3 189.721 <i>16</i>	0.6 <i>1</i> 6.9 2	550.255 2 ⁺ 1905.908 6 ⁺	M1,E2		0.264 16	α (K)=0.21 3; α (L)=0.045 12; α (M)=0.010 3; α (N+)=0.0025 7 α (N)=0.0022 6; α (O)=0.00031 7; α (P)=1.2×10 ⁻⁵ 4
		362.09 <i>3</i>	1.0 2	1733.465 4+		a		
		501.312 11	37.4 8	1594.247 5-	E1+M2	-0.017^{u} 14	0.00431 8	$\alpha = 0.00431 \ 8; \ \alpha(\text{K}) = 0.00369 \ 7; \ \alpha(\text{L}) = 0.000489 \ 9; \\ \alpha(\text{M}) = 0.0001041 \ 20; \ \alpha(\text{N}+) = 2.72 \times 10^{-5} \ 5 \\ \alpha(\text{M}) = 2.55 \ 10^{-5} \ 5 \ (2) \ 2.45 \ 10^{-5} \ 5 \ (2) \ 2.45 \ (2) \ 10^{-5} \ 10^{-5} \ 10^{-$
		915.331 8	100 2	1180.261 4+	E2		0.00300 5	$ \begin{array}{l} \alpha(\mathrm{N}) = 2.35 \times 10^{-5} \ 5; \ \alpha(\mathrm{O}) = 3.49 \times 10^{-6} \ 7; \ \alpha(\mathrm{P}) = 2.09 \times 10^{-6} \ 4 \\ \alpha = 0.00300 \ 5; \ \alpha(\mathrm{K}) = 0.00254 \ 4; \ \alpha(\mathrm{L}) = 0.000364 \ 5; \\ \alpha(\mathrm{M}) = 7.83 \times 10^{-5} \ 11; \ \alpha(\mathrm{N} +) = 2.04 \times 10^{-5} \ 3 \end{array} $
2111.053	4+	216.16 6	2.2 2	1894.824 4+	M1		0.195	$\begin{array}{l} \alpha(\mathrm{N}) = 1.769 \times 10^{-5} \ 25; \ \alpha(\mathrm{O}) = 2.61 \times 10^{-6} \ 4; \ \alpha(\mathrm{P}) = 1.508 \times 10^{-7} \ 22 \\ \alpha(\mathrm{K}) = 0.1657 \ 24; \ \alpha(\mathrm{L}) = 0.0232 \ 4; \ \alpha(\mathrm{M}) = 0.00497 \ 7; \\ \alpha(\mathrm{N}+) = 0.001307 \ 19 \end{array}$
		377.560 20	11.6 26	1733.465 4+	M1		0.0442	$\begin{array}{l} \alpha(\mathrm{N})=0.001127 \ 16; \ \alpha(\mathrm{O})=0.0001691 \ 24; \ \alpha(\mathrm{P})=1.052\times10^{-5} \ 15\\ \alpha(\mathrm{K})=0.0376 \ 6; \ \alpha(\mathrm{L})=0.00518 \ 8; \ \alpha(\mathrm{M})=0.001109 \ 16; \\ \alpha(\mathrm{N}+)=0.000292 \ 4 \end{array}$
		446.52 6	3.0 2	1664.278 2+	(E2)		0.01744	$ \begin{array}{l} \alpha(\mathrm{N}) = 0.000251 \ 4; \ \alpha(\mathrm{O}) = 3.78 \times 10^{-5} \ 6; \ \alpha(\mathrm{P}) = 2.37 \times 10^{-6} \ 4 \\ \alpha(\mathrm{K}) = 0.01419 \ 20; \ \alpha(\mathrm{L}) = 0.00255 \ 4; \ \alpha(\mathrm{M}) = 0.000559 \ 8; \\ \alpha(\mathrm{N}+) = 0.0001437 \ 21 \end{array} $
		516.793 14	31 1	1594.247 5-	E1+M2	0.48 8	0.015 3	$\alpha(N)=0.0001252 \ 18; \ \alpha(O)=1.778\times10^{-5} \ 25; \ \alpha(P)=8.07\times10^{-7} \ 12$ $\alpha(K)=0.013 \ 3; \ \alpha(L)=0.0019 \ 4; \ \alpha(M)=0.00041 \ 9;$ $\alpha(N)=9.3\times10^{-5} \ 20; \ \alpha(Q)=1.4\times10^{-5} \ 3; \ \alpha(P)=8.4\times10^{-7} \ 18$
								δ: calculated from %E1=81 5 estimated from Ice data in ¹⁴⁸ Eu ε decay.
		656.93 <i>3</i>	10.3 6	1454.115 2+				
		930.807 19	100 21	1180.261 4+	E2		0.00290 4	$\begin{aligned} &\alpha = 0.00290 \ 4; \ \alpha(\text{K}) = 0.00245 \ 4; \ \alpha(\text{L}) = 0.000350 \ 5; \\ &\alpha(\text{M}) = 7.53 \times 10^{-5} \ 11; \ \alpha(\text{N}+) = 1.97 \times 10^{-5} \ 3 \\ &\alpha(\text{N}) = 1.701 \times 10^{-5} \ 24; \ \alpha(\text{O}) = 2.51 \times 10^{-6} \ 4; \ \alpha(\text{P}) = 1.455 \times 10^{-7} \ 21 \\ &\text{Mult.: from Ice data in } ^{148}\text{Eu} \ \varepsilon \text{ decay. M1+E2 from } (n,n'\gamma); \\ &\text{however, since this } \gamma \text{ is doubly placed in this reaction, the} \end{aligned}$
		949.590 20	17.6 4	1161.529 3-				result is suspect.

12

 $^{148}_{62}\mathrm{Sm}_{86}$ -12

н

	Adopted Levels, Gammas (continued)												
						$\gamma(^{148}\text{Sm})$	(continued)						
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#}$	$\mathbf{E}_f = \mathbf{J}_j^r$	Mult. [@]	δ	$lpha^\dagger$	Comments					
2111.053	4+	1560.786 <i>17</i>	61.6 16	550.255 2	E2		0.001118 16	$\alpha = 0.001118 \ 16; \ \alpha(K) = 0.000874 \ 13; \ \alpha(L) = 0.0001161 \ 17; \alpha(M) = 2.48 \times 10^{-5} \ 4; \ \alpha(N+) = 0.000103 \alpha(N) = 5.61 \times 10^{-6} \ 8; \ \alpha(O) = 8.40 \times 10^{-7} \ 12; \ \alpha(P) = 5.21 \times 10^{-8} \ 8; \alpha(PE) = 9.68 \times 10^{-5} \ 14$					
2128.64	7-	222.71 12	22.9 21	1905.908 6	E1		0.0318	$\alpha(\text{K}) = 0.0270 \ 4; \ \alpha(\text{L}) = 0.00373 \ 6; \ \alpha(\text{M}) = 0.000796 \ 12; \ \alpha(\text{N}+) = 0.000206 \ 3$					
		534.38 7	100 21	1594.247 5	- E2		0.01077	$\alpha(N)=0.0001793; \alpha(O)=2.61\times10^{-5}4; \alpha(P)=1.448\times10^{-5}27$ $\alpha(K)=0.0088813; \alpha(L)=0.00148021; \alpha(M)=0.0003235;$ $\alpha(N+)=8.35\times10^{-5}12$ $\alpha(N)=7.25\times10^{-5}11; \alpha(O)=1.043\times10^{-5}15; \alpha(P)=5.14\times10^{-7}8$					
2146.35	2+	985.16 20 1596.08 3	10.4 <i>12</i> 100 <i>3</i>	1161.529 3 ⁻ 550.255 2 ⁻	- M1+E2	-0.11 ^c 5	0.001447 21	$\alpha(N) = 7.25 \times 10^{-11}, \alpha(O) = 1.043 \times 10^{-15}, \alpha(P) = 5.14 \times 10^{-8}$ $\alpha(M) = 3.18 \times 10^{-5} 5; \alpha(N+) = 0.000128$ $\alpha(N) = 7.21 \times 10^{-6} 11; \alpha(O) = 1.087 \times 10^{-6} 16; \alpha(P) = 6.98 \times 10^{-8}$ $11; \alpha(IPF) = 0.0001206 17$ B(M1)(Wn) > 0.069; B(F2)(Wn) > 0.019					
2147.499	5+	2146.3 116.01 <i>4</i>	<17 1.49 <i>4</i>	0.0 0 ⁻ 2031.403 4 ⁻	- E1		0.184	$\alpha(K)=0.1556\ 22;\ \alpha(L)=0.0225\ 4;\ \alpha(M)=0.00481\ 7;\ \alpha(N+)=0.001234\ 18$					
		241.653 15	14.3 3	1905.908 6	M1+E2	-0.34 ^b 11	0.141 3	$\alpha(K)=0.001075 \ 15, \ \alpha(C)=0.0001528 \ 22, \ \alpha(T)=7.05\times10^{-1} T$ $\alpha(K)=0.119 \ 3; \ \alpha(L)=0.0176 \ 4; \ \alpha(M)=0.00379 \ 10;$ $\alpha(N+)=0.000991 \ 23$					
		243.83 4	3.2 1	1903.773 3-	E2		0.1086	$\begin{array}{l} \alpha(\mathrm{N}) = 0.000857 \ 21; \ \alpha(\mathrm{O}) = 0.0001269 \ 23; \ \alpha(\mathrm{P}) = 7.41 \times 10^{-6} \ 25 \\ \alpha(\mathrm{K}) = 0.0817 \ 12; \ \alpha(\mathrm{L}) = 0.0210 \ 3; \ \alpha(\mathrm{M}) = 0.00472 \ 7; \\ \alpha(\mathrm{N}+) = 0.001192 \ 17 \end{array}$					
		252.60 <i>3</i>	1.33 4	1894.824 4	- M1,E2		0.112 16	$\alpha(N)=0.001046 \ I5; \ \alpha(O)=0.0001413 \ 20; \ \alpha(P)=4.22\times10^{-6} \ 6 \ \alpha(K)=0.091 \ I8; \ \alpha(L)=0.0167 \ I7; \ \alpha(M)=0.0037 \ 5; \ \alpha(N+)=0.00095 \ I0 \ \alpha(N)=0.00095 \ 0 \ \alpha(D)=0.000117 \ 7; \ \alpha(D)=5 \ 4\times10^{-6} \ I6$					
		414.057 16	100 5	1733.465 4	M1+E2	-1.8 ^b 8	0.025 4	$\alpha(\mathbf{N}) = 0.00083 \ 9, \ \alpha(\mathbf{O}) = 0.000117 \ 7, \ \alpha(\mathbf{P}) = 3.4 \times 10^{-4} \ 10^{-4} \ \alpha(\mathbf{K}) = 0.020 \ 4; \ \alpha(\mathbf{L}) = 0.00343 \ 23; \ \alpha(\mathbf{M}) = 0.00075 \ 5; \ \alpha(\mathbf{N}+) = 0.000194 \ 13^{-5} \ 5$					
		553.260 15	50 21	1594.247 5	E1		0.00344 5	$\alpha(N)=0.000168 \ 11; \ \alpha(O)=2.42\times10^{-5} \ 20; \ \alpha(P)=1.19\times10^{-6} \ 24$ $\alpha=0.00344 \ 5; \ \alpha(K)=0.00295 \ 5; \ \alpha(L)=0.000389 \ 6;$ $\alpha(M)=8.28\times10^{-5} \ 12; \ \alpha(N+)=2.16\times10^{-5} \ 3$ $\alpha(M)=0.00210^{-5} \ 22; \ \alpha(N+)=2.10^{-6} \ 4 \ (D) \ 1 \ (00\times10^{-7} \ 24)^{-7} \ 24$					
		967.306 17	26.9 6	1180.261 4	M1+E2		0.0035 8	$\alpha(N)=1.8/\times 10^{-5} 3; \ \alpha(O)=2.78\times 10^{-6} 4; \ \alpha(P)=1.680\times 10^{-7} 24$ $\alpha=0.0035 8; \ \alpha(K)=0.0030 7; \ \alpha(L)=0.00040 9; \ \alpha(M)=8.6\times 10^{-5}$ $18; \ \alpha(N+)=2.3\times 10^{-5} 5$ $\alpha(N)=2.0\times 10^{-5} 4; \ \alpha(O)=2.9\times 10^{-6} 7; \ \alpha(P)=1.8\times 10^{-7} 5$ $\delta: +0.42 \ 10 \text{ or } +2.0 5 \text{ from } \gamma\gamma(\theta); +0.55 +17-11 \text{ or } -2.8$ $+11-9 \text{ from } \gamma(\theta T) \text{ all from } ^{148}\text{Eu c decay}$					
2194.061	6+	98.530 20	12.2 2	2095.595 6	M1+E2	0.18	1.79 <i>3</i>	$\alpha(K)=1.486\ 21;\ \alpha(L)=0.235\ 4;\ \alpha(M)=0.0511\ 8;$ $\alpha(N+)=0.01330\ 19$					

	Adopted Levels, Gammas (continued)												
						$\gamma(^{148}\text{Sm})$ (con	ntinued)						
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [@]	δ	α^{\dagger}	Comments					
2194.061	6+	288.141 <i>13</i>	61.9 4	1905.908 6+	M1+E2	+0.088 ^a 21	0.0898	$\begin{aligned} &\alpha(N)=0.01152 \ 17; \ \alpha(O)=0.001689 \ 24; \ \alpha(P)=9.40\times10^{-5} \ 14 \\ &\delta: \ from \ M1/E2=30 \ from \ ^{148}Eu \ \varepsilon \ decay. \\ &\alpha(K)=0.0763 \ 11; \ \alpha(L)=0.01061 \ 15; \ \alpha(M)=0.00228 \ 4; \\ &\alpha(N+)=0.000599 \ 9 \end{aligned}$					
		299.1 2 460.80 20	0.44 9 2.06 9	$1894.824 \ 4^+ \ 1733.465 \ 4^+$				$\alpha(N)=0.000516\ 8;\ \alpha(O)=7.75\times10^{-3}\ 11;\ \alpha(P)=4.82\times10^{-6}\ 7$					
		599.81 3	61.8 6	1594.247 5-	E1+M2	-0.021 ^{<i>a</i>} 11	0.00290 5	$\alpha = 0.00290 5; \alpha(K) = 0.00249 4; \alpha(L) = 0.000327 6;$ $\alpha(M) = 6.96 \times 10^{-5} 12; \alpha(N+) = 1.82 \times 10^{-5} 3$ $\alpha(M) = 6.70 \times 10^{-5} 2; \alpha(Q) = 2.24 \times 10^{-5} 4$					
		1013.808 11	100 <i>I</i>	1180.261 4+	E2+M3	-0.025 ^{<i>a</i>} 14	0.00243 4	$\begin{aligned} \alpha(N) &= 1.57 \times 10^{-5} \ 5; \ \alpha(O) &= 2.54 \times 10^{-5} \ 4; \ \alpha(P) &= 1.425 \times 10^{-7} \ 24 \\ \alpha &= 0.00243 \ 4; \ \alpha(K) &= 0.00206 \ 4; \ \alpha(L) &= 0.000290 \ 5; \\ \alpha(M) &= 6.22 \times 10^{-5} \ 10; \ \alpha(N+) &= 1.62 \times 10^{-5} \ 3 \\ \alpha(N) &= 1.404 \times 10^{-5} \ 22; \ \alpha(O) &= 2.08 \times 10^{-6} \ 4; \ \alpha(P) &= 1.224 \times 10^{-7} \ 20 \\ \alpha &= 0.00243 \ \alpha(D) &= 0.00206 \ \alpha(D) = 0.002$					
2204.99 2208.85	0^+ (1,2 ⁺)	1654.72 <i>15</i> 1658.58 7 2208 0 3	100 100 <i>4</i> 24 <i>4</i>	$550.255 \ 2^+ \ 550.255 \ 2^+ \ 0.0 \ 0^+$				Additional information 1.					
2214.215	5+	66.72 9	0.33 4	0.0 0 2147.499 5 ⁺	M1		5.43	α (K)=4.60 7; α (L)=0.656 <i>10</i> ; α (M)=0.1410 <i>21</i> ; α (N+)=0.0370 6 α (N)=0.0319 5; α (O)=0.00478 7; α (P)=0.000294 5					
		182.83 <i>3</i>	1.9 4	2031.403 4-	E1		0.0537	$I_{\gamma}: \text{ from ce(K) and } \alpha(K).$ $\alpha(K)=0.0456 7; \ \alpha(L)=0.00636 9; \ \alpha(M)=0.001359 \ I9;$ $\alpha(N+)=0.000351 \ 5$					
		308.45 10	0.96 9	1905.908 6+	E2,M1		0.063 12	$ \begin{aligned} &\alpha(N) = 0.000305 \ 5; \ \alpha(O) = 4.42 \times 10^{-5} \ 7; \ \alpha(P) = 2.39 \times 10^{-6} \ 4 \\ &\alpha(K) = 0.052 \ 12; \ \alpha(L) = 0.00882 \ 13; \ \alpha(M) = 0.00193 \ 5; \\ &\alpha(N+) = 0.000498 \ 7 \end{aligned} $					
		310.14 10	1.9 4	1903.773 3+	E2		0.0507	$ \begin{array}{l} \alpha(\mathrm{N}) = 0.000433 \ 7; \ \alpha(\mathrm{O}) = 6.23 \times 10^{-5} \ 24; \ \alpha(\mathrm{P}) = 3.1 \times 10^{-6} \ 10 \\ \alpha(\mathrm{K}) = 0.0397 \ 6; \ \alpha(\mathrm{L}) = 0.00863 \ 13; \ \alpha(\mathrm{M}) = 0.00192 \ 3; \\ \alpha(\mathrm{N}+) = 0.000489 \ 7 \end{array} $					
		319.270 20	2.0 1	1894.824 4+	M1,E2		0.057 12	$ \begin{aligned} &\alpha(N) = 0.000428 \ 6; \ \alpha(O) = 5.90 \times 10^{-5} \ 9; \ \alpha(P) = 2.15 \times 10^{-6} \ 3 \\ &\alpha(K) = 0.047 \ 11; \ \alpha(L) = 0.00792 \ 18; \ \alpha(M) = 0.001730 \ 25; \\ &\alpha(N+) = 0.000448 \ 10 \end{aligned} $					
		480.89 8	1.21 6	1733.465 4+	M1		0.0238	$\begin{aligned} \alpha(N) &= 0.000389 \ 7; \ \alpha(O) &= 5.6 \times 10^{-5} \ 3; \ \alpha(P) &= 2.8 \times 10^{-6} \ 9 \\ \alpha(K) &= 0.0203 \ 3; \ \alpha(L) &= 0.00276 \ 4; \ \alpha(M) &= 0.000591 \ 9; \\ \alpha(N+) &= 0.0001555 \ 22 \\ \alpha(N) &= 0.0001340 \ 19; \ \alpha(O) &= 2.02 \times 10^{-5} \ 3; \ \alpha(P) &= 1.269 \times 10^{-6} \end{aligned}$					
		620.04 <i>3</i>	11.6 7	1594.247 5-	E1+M2	+0.13 ^b 5	0.0033 5	<i>18</i> α =0.0033 5; α (K)=0.0028 5; α (L)=0.00037 7; α (M)=8.0×10 ⁻⁵ <i>14</i> ; α (N+)=2.1×10 ⁻⁵ <i>4</i> α (N)=1.8×10 ⁻⁵ <i>4</i> ; α (O)=2.7×10 ⁻⁶ 5; α (P)=1.6×10 ⁻⁷ <i>3</i>					

 $^{148}_{62}\mathrm{Sm}_{86}$ -14

				led)				
						$\gamma(^{148}\text{Sm})$ (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.@	δ	$lpha^{\dagger}$	Comments
2214.215	5+	1033.986 14	100 2	1180.261 4+	M1+E2	-1.9 ^b 6	0.00260 21	$ \begin{array}{l} \alpha = 0.00260 \ 21; \ \alpha(\mathrm{K}) = 0.00222 \ 18; \ \alpha(\mathrm{L}) = 0.000306 \ 22; \\ \alpha(\mathrm{M}) = 6.5 \times 10^{-5} \ 5; \ \alpha(\mathrm{N}+) = 1.71 \times 10^{-5} \ 13 \\ \alpha(\mathrm{N}) = 1.48 \times 10^{-5} \ 11; \ \alpha(\mathrm{O}) = 2.21 \times 10^{-6} \ 17; \ \alpha(\mathrm{P}) = 1.33 \times 10^{-7} \\ 12 \end{array} $
2228.042	4+	322 <i>1</i> 495.25 <i>6</i>	4.6 24 11 5	1905.908 6 ⁺ 1733.465 4 ⁺	M1		0.0221	α (K)=0.0188 3; α (L)=0.00256 4; α (M)=0.000548 8; α (N+)=0.0001442 21 α (N)=0.0001243 18; α (O)=1.87×10 ⁻⁵ 3; α (P)=1.177×10 ⁻⁶ 17
		774.2 5	2.4 12	1454.115 2+				
		1047.570 20	46 7	1180.261 4+	M1		0.00353 5	$ \begin{array}{l} \alpha = 0.00353 \ 5; \ \alpha(\mathrm{K}) = 0.00302 \ 5; \ \alpha(\mathrm{L}) = 0.000401 \ 6; \\ \alpha(\mathrm{M}) = 8.55 \times 10^{-5} \ 12; \ \alpha(\mathrm{N} +) = 2.25 \times 10^{-5} \ 4 \\ \alpha(\mathrm{N}) = 1.94 \times 10^{-5} \ 3; \ \alpha(\mathrm{O}) = 2.92 \times 10^{-6} \ 4; \ \alpha(\mathrm{P}) = 1.87 \times 10^{-7} \ 3 \end{array} $
		1066.75 <i>3</i> 1677.85 <i>3</i>	91.7 22 100 <i>3</i>	1161.529 3 ⁻ 550.255 2 ⁺	E2		0.001034 15	$ \begin{array}{l} \alpha = 0.001034 \ 15; \ \alpha(\mathrm{K}) = 0.000763 \ 11; \ \alpha(\mathrm{L}) = 0.0001007 \ 15; \\ \alpha(\mathrm{M}) = 2.15 \times 10^{-5} \ 3; \ \alpha(\mathrm{N} +) = 0.000148 \\ \alpha(\mathrm{N}) = 4.86 \times 10^{-6} \ 7; \ \alpha(\mathrm{O}) = 7.28 \times 10^{-7} \ 11; \ \alpha(\mathrm{P}) = 4.55 \times 10^{-8} \ 7; \\ \alpha(\mathrm{IPF}) = 0.0001432 \ 20 \end{array} $
2284.406	(1,2 ⁺)	362.8 ^{<i>f</i>} 2 819.27 <i>3</i> 1734.12 <i>3</i> 2284.39 <i>3</i>	<5 30 5 87 2 100 5	$\begin{array}{cccc} 1920.97 & 0^+ \\ 1465.137 & 1^- \\ 550.255 & 2^+ \\ 0.0 & 0^+ \end{array}$	D			
2313.57	2+	1152.20 15	42 3	1161.529 3-	E1+M2	-0.10 ^C 9	0.00086 15	$\alpha = 0.00086 \ 15; \ \alpha(\text{K}) = 0.00073 \ 13; \ \alpha(\text{L}) = 9.5 \times 10^{-5} \ 18; \alpha(\text{M}) = 2.0 \times 10^{-5} \ 4; \ \alpha(\text{N}+) = 1.50 \times 10^{-5} \ 8 \alpha(\text{N}) = 4.5 \times 10^{-6} \ 9; \ \alpha(\text{O}) = 6.8 \times 10^{-7} \ 14; \ \alpha(\text{P}) = 4.3 \times 10^{-8} \ 9; \alpha(\text{IPE}) = 9.7 \times 10^{-6} \ 3$
		1763.26 8	100 4	550.255 2+	M1+E2	+2.2 ^c 5	0.00104 3	$\alpha = 0.00104 \ 3; \ \alpha(K) = 0.000732 \ 22; \ \alpha(L) = 9.6 \times 10^{-5} \ 3; \alpha(M) = 2.05 \times 10^{-5} \ 6; \ \alpha(N+) = 0.000189 \ 4 \alpha(N) = 4.64 \times 10^{-6} \ 14; \ \alpha(O) = 6.97 \times 10^{-7} \ 21; \ \alpha(P) = 4.39 \times 10^{-8} \ 14; \ \alpha(IPF) = 0.000183 \ 3$
		2314.0 ^{<i>f</i>} 2	<4	0.0 0+				
2318.5 2327.09	+ 4+	$ \begin{array}{r} 1138.4 \\ 5 \\ 216.16 \\ 423.5 \\ 4 \end{array} $	100 0.99 7 1.9 5	$\begin{array}{c} 1180.261 & 4^{+} \\ 2111.053 & 4^{+} \\ 1903.773 & 3^{+} \end{array}$				
		432.745 8	53	1894.824 4+	M1		0.0311	$ \begin{aligned} &\alpha(\mathrm{K}) {=} 0.0265 \ 4; \ \alpha(\mathrm{L}) {=} 0.00363 \ 5; \ \alpha(\mathrm{M}) {=} 0.000776 \ 11; \\ &\alpha(\mathrm{N}{+}) {=} 0.000204 \ 3 \\ &\alpha(\mathrm{N}) {=} 0.0001761 \ 25; \ \alpha(\mathrm{O}) {=} 2.65 {\times} 10^{-5} \ 4; \ \alpha(\mathrm{P}) {=} 1.664 {\times} 10^{-6} \\ &24 \end{aligned} $
		662.79 5	5.1 2	$1664.278 \ 2^{+}$				
		1146.805 <i>14</i>	2.9 3 100 2	1394.247 5 1180.261 4 ⁺	M1+E2	-2.0 ^b 5	0.00207 11	<i>α</i> =0.00207 <i>11</i> ; <i>α</i> (K)=0.00176 <i>10</i> ; <i>α</i> (L)=0.000240 <i>12</i> ;

228

15

From ENSDF

					Adopte	ed Levels, Ga	mmas (continue	ed)
						γ (¹⁴⁸ Sm) (c	ontinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} #	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [@]	δ	α^{\dagger}	Comments
				<u>×</u>				$\alpha(M) = 5.14 \times 10^{-5} 25; \ \alpha(N+) = 1.51 \times 10^{-5} 7$ $\alpha(N) = 1.16 \times 10^{-5} 6; \ \alpha(O) = 1.74 \times 10^{-6} 9; \ \alpha(P) = 1.06 \times 10^{-7} 7;$ $\alpha(IPF) = 1.61 \times 10^{-6} 3$
2327.09	4+	1165.54 5	4.1 2	1161.529 3-				
2327 62	3+	1776.87 4	3.3 <i>I</i> 11 3 <i>I</i> 6	$550.255\ 2^+$ 1161 529 3 ⁻				
2521.02	5	1777.35 10	100 4	550.255 2+				
2339.21	3-	885.6 8	19 <i>3</i>	$1454.115 \ 2^+$				
		1159.15 20	30 4 8 5	$1180.201 4^{\circ}$ $1161.529 3^{-}$				
		1788.90 9	100 4	550.255 2+	E1+M2	+0.06 ^c 4	0.000804 15	$ \begin{array}{l} \alpha = 0.000804 \ 15; \ \alpha(\mathrm{K}) = 0.000328 \ 12; \ \alpha(\mathrm{L}) = 4.15 \times 10^{-5} \ 16; \\ \alpha(\mathrm{M}) = 8.8 \times 10^{-6} \ 4; \ \alpha(\mathrm{N}+) = 0.000425 \ 7 \\ \alpha(\mathrm{N}) = 1.99 \times 10^{-6} \ 8; \ \alpha(\mathrm{O}) = 2.99 \times 10^{-7} \ 11; \ \alpha(\mathrm{P}) = 1.91 \times 10^{-8} \\ 7; \ \alpha(\mathrm{IPF}) = 0.000423 \ 7 \end{array} $
2374.447	5+,6+	468.500 12	100 2	1905.908 6+	M1+E2	≥0.41 ^b	0.020 5	$\alpha(K)=0.016$ 4; $\alpha(L)=0.0025$ 4; $\alpha(M)=0.00055$ 7; $\alpha(N+)=0.000142$ 19
		780 11 6	27 4 0	1504 247 5-				$\alpha(N)=0.000123 \ 16; \ \alpha(O)=1.8\times10^{-5} \ 3; \ \alpha(P)=1.0\times10^{-6} \ 3$
		1194.185 17	30.4 7	$1180.261 4^+$				
2381.67	2+	1831.40 <i>10</i>	100	550.255 2+	M1+E2	+0.46 ^C 8	0.001167 21	$\begin{aligned} &\alpha = 0.001167 \ 21; \ \alpha(\text{K}) = 0.000804 \ 15; \ \alpha(\text{L}) = 0.0001051 \ 20; \\ &\alpha(\text{M}) = 2.24 \times 10^{-5} \ 5; \ \alpha(\text{N}+) = 0.000235 \\ &\alpha(\text{N}) = 5.07 \times 10^{-6} \ 10; \ \alpha(\text{O}) = 7.65 \times 10^{-7} \ 15; \ \alpha(\text{P}) = 4.91 \times 10^{-8} \\ &10; \ \alpha(\text{IPF}) = 0.000229 \ 4 \\ &\text{B}(\text{M1})(\text{W.u.}) < 0.042; \ \text{B}(\text{E2})(\text{W.u.}) > 0.79 \end{aligned}$
2390.43	3+	1229.6 5	59 <i>30</i>	1161.529 3-				
		1840.06 8	100 6	550.255 2+	M1+E2	-1.37 ^c 12	0.001047 18	$\alpha = 0.001047 \ 18; \ \alpha(K) = 0.000707 \ 13; \ \alpha(L) = 9.25 \times 10^{-5} \ 17; \\ \alpha(M) = 1.97 \times 10^{-5} \ 4; \ \alpha(N+) = 0.000228 \ 4 \\ \alpha(N) = 4.47 \times 10^{-6} \ 8; \ \alpha(O) = 6.72 \times 10^{-7} \ 13; \ \alpha(P) = 4.26 \times 10^{-8} \\ 8; \ \alpha(IPF) = 0.000223 \ 4 \\ \end{array}$
2392.32	7+	263.96 20	20 4	2128.64 7-	Q+D			
		486.45 6	100 5	1905.908 6+	M1+E2	-0.15 ^d 8	0.0229 5	α (K)=0.0195 4; α (L)=0.00267 5; α (M)=0.000571 9; α (N+)=0.0001500 24 α (N)=0.0001294 21; α (O)=1.94×10 ⁻⁵ 4; α (P)=1.220×10 ⁻⁶ 24
2442.29	(2+)	778.19 <i>11</i> 1262.0 <i>3</i> 2441 88 20	25 2 15 3	$\begin{array}{cccc} 1664.278 & 2^+ \\ 1180.261 & 4^+ \\ 0.0 & 0^+ \end{array}$				
2467.38	3(-)	1305.75 10	42 4	1161.529 3				
	-	1917.25 12	100 5	550.255 2+				
2472.48	1	1922.28 25	100 12	550.255 2^+	D			
2490.004	4+	583.4 <i>5</i>	1.5 8	1905.908 6 ⁺	D			

From ENSDF

$\gamma(^{148}\text{Sm})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.@	δ	α^{\dagger}	Comments
2490.004	4+	594.89 <i>4</i> 756.581 <i>12</i>	14.7 <i>5</i> 23.1 <i>5</i>	1894.824 4 ⁺ 1733.465 4 ⁺	M1,E2		0.0061 16	$\alpha = 0.0061 \ 16; \ \alpha(\text{K}) = 0.0052 \ 14; \ \alpha(\text{L}) = 0.00073 \ 16; \ \alpha(\text{M}) = 0.00016 \ 4; \ \alpha(\text{N}+) = 4.1 \times 10^{-5} \ 9 \ \alpha(\text{N}) = 3.5 \times 10^{-5} \ 8; \ \alpha(\text{O}) = 5.3 \times 10^{-6} \ 12; \ \alpha(\text{P}) = 3.2 \times 10^{-7} \ 9 \ 10^{-7} \ 9 \ 10^{-7} \ 9^{-7} \ 10^{-7} \ 9^{-7} \ 10^{-7} \ 9^{-7} \ 10^{-7} \ 9^{-7} \ 10^{-7} \ 9^{-7} \ 10^{-7} \ 9^{-7} \ 10^{-7} \ 9^{-7} \ 10^{-7} \ 9^{-7} \ 10^{-7} \ 9^{-7} \ 10^{-7} $
		826.30 16	2.0 2	1664.278 2+				$u(1)=5.5\times10^{-5}$, $u(0)=5.5\times10^{-12}$, $u(1)=5.2\times10^{-5}$
		1036 <i>1</i>	8.2 16	1454.115 2+				
		1309.778 <i>16</i>	36.1 8	1180.261 4+	M1+E2		0.0018 4	$\alpha = 0.0018 \ 4; \ \alpha(K) = 0.0015 \ 3; \ \alpha(L) = 0.00020 \ 4; \alpha(M) = 4.3 \times 10^{-5} \ 8; \ \alpha(N+) = 3.4 \times 10^{-5} \ 3 \alpha(N) = 9.7 \times 10^{-6} \ 18; \ \alpha(O) = 1.5 \times 10^{-6} \ 3; \ \alpha(P) = 9.2 \times 10^{-8} \ 19; \alpha(IPF) = 2.31 \times 10^{-5} \ 9 \delta; \ -0.21 \le \delta \le +1.47 \ from \ ^{148} Eu \ c \ decay$
		1328.504 <i>15</i>	100 2	1161.529 3-	E1		0.000708 10	$\alpha = 0.000708 \ 10; \ \alpha(\text{K}) = 0.000531 \ 8; \ \alpha(\text{L}) = 6.76 \times 10^{-5} \ 10; \alpha(\text{M}) = 1.434 \times 10^{-5} \ 20; \ \alpha(\text{N}+) = 9.44 \times 10^{-5} \ 1 \alpha(\text{N}) = 3.25 \times 10^{-6} \ 5; \ \alpha(\text{O}) = 4.87 \times 10^{-7} \ 7; \ \alpha(\text{P}) = 3.09 \times 10^{-8} \ 5; \alpha(\text{IPF}) = 9.06 \times 10^{-5} \ 13$
		1939.17 4	5.2 2	550.255 2+				
2513.50	1	2513.48 18	100	$0.0 0^+$	D			
2524.101	4+	296.21 7	3.2 2	2228.042 4+	M1		0.0836	$\alpha(K)=0.0711 \ 10; \ \alpha(L)=0.00985 \ 14; \ \alpha(M)=0.00211 \ 3; \ \alpha(N+)=0.000555 \ 8 \ \alpha(N)=0.000479 \ 7; \ \alpha(O)=7.19\times10^{-5} \ 10; \ \alpha(P)=4.49\times10^{-6} \ 7$
		310.14 10	6.0 17	2214.215 5+	M1		0.0740	$\alpha(K) = 0.0630 \ 9; \ \alpha(L) = 0.00871 \ 13; \ \alpha(M) = 0.00187 \ 3; \alpha(N+) = 0.000491 \ 7 \alpha(N) = 0.000424 \ 6; \ \alpha(O) = 6.36 \times 10^{-5} \ 9; \ \alpha(P) = 3.98 \times 10^{-6} \ 6$
		620.04 <i>3</i>	11.9 26	1905.908 6+				
		790.20 20	2.4 3	1733.465 4+				
		859.90 20	2.1.3	1664.278 2+				
		929.85 3	72 13	1594.247 5-	[E1]		0.001184 17	α =0.001184 <i>17</i> ; α (K)=0.001018 <i>15</i> ; α (L)=0.0001312 <i>19</i> ; α (M)=2.79×10 ⁻⁵ <i>4</i> ; α (N+)=7.30×10 ⁻⁶ α (N)=6.30×10 ⁻⁶ <i>9</i> ; α (O)=9.43×10 ⁻⁷ <i>14</i> ; α (P)=5.88×10 ⁻⁸ <i>9</i>
		1069.82 4	13.0 4	1454.115 2+				
		1343.87 <i>3</i>	100 8	1180.261 4+	M1+E2	+0.20 ^b	0.00198 3	$\alpha = 0.00198 \ 3; \ \alpha(K) = 0.001668 \ 24; \ \alpha(L) = 0.000220 \ 3; \\ \alpha(M) = 4.69 \times 10^{-5} \ 7; \ \alpha(N+) = 4.41 \times 10^{-5} \ 7 \\ \alpha(N) = 1.064 \times 10^{-5} \ 15; \ \alpha(O) = 1.604 \times 10^{-6} \ 23; \\ \alpha(N) = 1.026 \times 10^{-7} \ 15; \ \alpha(D) = 1.804 \times 10^{-5} \ 5 \\ \alpha(D) = 1.026 \times 10^{-7} \ 15; \ \alpha(D) = 1.804 \times 10^{-5} \ 5 \\ \alpha(D) = 1.026 \times 10^{-7} \ 15; \ \alpha(D) = 1.804 \times 10^{-5} \ 5 \\ \alpha(D) = 1.026 \times 10^{-7} \ 15; \ \alpha(D) = 1.804 \times 10^{-5} \ 5 \\ \alpha(D) = 1.026 \times 10^{-7} \ 15; \ \alpha(D) = 1.804 \times 10^{-5} \ 5 \\ \alpha(D) = 1.026 \times 10^{-7} \ 15; \ \alpha(D) = 1.804 \times 10^{-5} \ 5 \\ \alpha(D) = 1.026 \times 10^{-7} \ 15; \ \alpha(D) = 1.804 \times 10^{-5} \ 5 \\ \alpha(D) = 1.026 \times 10^{-7} \ 15; \ \alpha(D) = 1.804 \times 10^{-5} \ 5 \\ \alpha(D) = 1.026 \times 10^{-7} \ 15; \ \alpha(D) = 1.804 \times 10^{-5} \ 5 \\ \alpha(D) = 1.026 \times 10^{-7} \ 15; \ \alpha(D) = 1.804 \times 10^{-5} \ 5 \\ \alpha(D) = 1.026 \times 10^{-7} \ 15; \ \alpha(D) = 1.804 \times 10^{-5} \ 15; \ \alpha(D) = 1.804 \times 1$
		1362.640 <i>19</i>	35.3 8	1161.529 3-	E1		0.000702 10	$\alpha(\mathbf{r}) = 1.020 \times 10^{-7} I_{3}, \alpha(\mathbf{lPF}) = 3.18 \times 10^{-5} J_{3}$ $\alpha = 0.000702 I_{0}; \alpha(\mathbf{K}) = 0.000509 \ 8; \alpha(\mathbf{L}) = 6.46 \times 10^{-5} 9;$ $\alpha(\mathbf{M}) = 1.371 \times 10^{-5} I_{0}; \alpha(\mathbf{N} +) = 0.0001155$ $\alpha(\mathbf{N}) = 3.10 \times 10^{-6} 5; \alpha(\mathbf{O}) = 4.66 \times 10^{-7} 7; \alpha(\mathbf{P}) = 2.95 \times 10^{-8} 5;$ $\alpha(\mathbf{IPF}) = 0.0001119 I_{6}$
2532.39	4-,5-	1973.81 <i>4</i> 157.8 <i>5</i> 938.10 9 1370.97 <i>17</i>	3.2 <i>1</i> 9 <i>4</i> 100 <i>4</i> 16.7 <i>1</i> 2	550.255 2 ⁺ 2374.447 5 ⁺ ,6 ⁺ 1594.247 5 ⁻ 1161.529 3 ⁻				

17

$\gamma(^{148}\text{Sm})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ‡	$I_{\gamma}^{\#}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [@]	δ	α^{\dagger}	Comments
2539.82	3-	1378.31 23	100 10	1161.529 3-				
	- 1	1989.52 25	73 7	550.255 2+				
2544.67	8+	152.1 2	1.23	2392.32 7+				
		350.5 2	100.5	$2194.061 6^{-1}$	E1		0.00661.70	$\alpha = 0.00661, 10, \alpha(K) = 0.00565, 8, \alpha(L) = 0.000755, 11;$
		415.7 1	100 5	2120.04 /	LI		0.00001 10	$\alpha(M) = 0.000161023; \alpha(N+) = 4.20 \times 10^{-5} 6$
		449.0 11	35 4	2095.595 6+	E2		0.0172 3	$\alpha(N) = 3.63 \times 10^{-5} 5; \ \alpha(O) = 5.3 \times 10^{-6} 8; \ \alpha(P) = 5.18 \times 10^{-7} 5$ $\alpha(K) = 0.01398 \ 22; \ \alpha(L) = 0.00250 \ 4; \ \alpha(M) = 0.000549 \ 9; \ \alpha(N+) = 0.0001413 \ 23$
		638.5 1	32	1905.908 6+	E2		0.00687 10	$\begin{array}{l} \alpha(\mathrm{N}) = 0.0001230\ 20;\ \alpha(\mathrm{O}) = 1.75 \times 10^{-5}\ 3;\ \alpha(\mathrm{P}) = 7.96 \times 10^{-7}\ 13\\ \alpha = 0.00687\ 10;\ \alpha(\mathrm{K}) = 0.00573\ 8;\ \alpha(\mathrm{L}) = 0.000899\ 13;\\ \alpha(\mathrm{M}) = 0.000195\ 3;\ \alpha(\mathrm{N}+) = 5.06 \times 10^{-5}\ 7 \end{array}$
								$\alpha(N)=4.39\times10^{-5}$ 7; $\alpha(O)=6.38\times10^{-6}$ 9; $\alpha(P)=3.35\times10^{-7}$ 5
2567.89	2+	2017.65 <i>19</i>	100 7	550.255 2+	M1+E2		0.00102 10	$\alpha = 0.00102 \ 10; \ \alpha(\text{K}) = 0.00061 \ 7; \ \alpha(\text{L}) = 7.9 \times 10^{-5} \ 9; \\ \alpha(\text{M}) = 1.69 \times 10^{-5} \ 19; \ \alpha(\text{N}+) = 0.000319 \ 18 \\ \alpha(\text{N}) = 3.8 \times 10^{-6} \ 5; \ \alpha(\text{O}) = 5.8 \times 10^{-7} \ 7; \ \alpha(\text{P}) = 3.7 \times 10^{-8} \ 5; $
								α (IPF)=0.000314 <i>18</i>
								δ: -0.46 19 or 1/δ=+0.01 13 from (n,n'γ).
	.()	2567.0 10	30 6	$0.0 0^+$				
2570.832	4(-)	356.47 15	8.7 20	2214.215 5+				
		423.5 4	217	2147.499 5				
		667,170,20	76 15	$1903.773 3^+$				
		976.50 4	57.6 15	1594.247 5-				
		1390.44 14	6.9 8	1180.261 4+				
		1409.160 20	100 3	1161.529 3-	D+Q			δ: +0.04 <i>12</i> if J=4 ⁻ ;>+0.47 or<-0.47 if J=3 ⁻ , from ¹⁴⁸ Eu ε decay.
2583.862	4(-)	989.606 <i>10</i>	100 2	1594.247 5-	M1,E2		0.0033 8	$\alpha = 0.0033 \ 8; \ \alpha(\text{K}) = 0.0028 \ 7; \ \alpha(\text{L}) = 0.00038 \ 8; \ \alpha(\text{M}) = 8.2 \times 10^{-5} \ 17; \ \alpha(\text{N}+) = 2.1 \times 10^{-5} \ 5 \ \alpha(\text{N}) = 1.0 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 2.8 \times 10^{-6} \ 6; \ \alpha(\text{P}) = 1.7 \times 10^{-7} \ 5$
		1422 21 18	292	1161 529 3-				$u(\mathbf{N}) = 1.9 \times 10^{-4}, u(\mathbf{O}) = 2.8 \times 10^{-6}, u(\mathbf{F}) = 1.7 \times 10^{-5}$
2633.15	3-	1471.61 16	21.8 20	1161.529 3				
		2082.88 9	100 4	550.255 2+	E1		0.000931 13	α =0.000931 <i>13</i> ; α (K)=0.000253 <i>4</i> ; α (L)=3.17×10 ⁻⁵ <i>5</i> ; α (M)=6.73×10 ⁻⁶ <i>10</i> ; α (N+)=0.000640 <i>9</i>
2641.000	- +	402 51 20	4.0.10	21.17.1 00 5t				α (N)=1.523×10 ⁻⁶ 22; α (O)=2.29×10 ⁻⁷ 4; α (P)=1.471×10 ⁻⁸ 21; α (IPF)=0.000638 9
2641.222	5'	493.51 20	4.9 18	2147.499 5		h .		
		735.00 5	10.5 18	1905.908 6+	M1+E2	-1.1° 6	0.0064 12	$\alpha = 0.0064 \ I2; \ \alpha(K) = 0.0055 \ I1; \ \alpha(L) = 0.00077 \ I2; \alpha(M) = 0.000165 \ 24; \ \alpha(N+) = 4.3 \times 10^{-5} \ 7 \alpha(N) = 3.7 \times 10^{-5} \ 6; \ \alpha(O) = 5.6 \times 10^{-6} \ 9; \ \alpha(P) = 3.3 \times 10^{-7} \ 7 $
		736.90 20	1.8 4	1903.773 3+				$u_{(1)}=5.7\times10^{-0}, u_{(0)}=5.0\times10^{-0}, u_{(1)}=5.5\times10^{-0}$
		745.87 5	4.6 3	1894.824 4+				
		1047.570 20	4.3 25	1594.247 5-				

18

				Ad	lopted Leve	els, Gammas	(continued)	
					$\gamma(^{148}$	Sm) (continu	ied)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	δ	α^{\dagger}	Comments
2641.222	5+	1460.630 <i>19</i>	100 2	1180.261 4+	M1+E2	+2.1 ^b 16	0.0013 3	$\alpha = 0.0013 \ 3; \ \alpha(\text{K}) = 0.00107 \ 25; \ \alpha(\text{L}) = 0.00014 \ 4; \\ \alpha(\text{M}) = 3.0 \times 10^{-5} \ 7; \ \alpha(\text{N}+) = 7.1 \times 10^{-5} \ 6 \\ \alpha(\text{N}) = 6.9 \times 10^{-6} \ 16; \ \alpha(\text{O}) = 1.03 \times 10^{-6} \ 24; \ \alpha(\text{P}) = 6.4 \times 10^{-8} \\ 17; \ \alpha(\text{IPF}) = 6.3 \times 10^{-5} \ 4 $
2645.50 2673.07	4+,5+ 4+	1051.25 <i>14</i> 478.4 <i>4</i> 1219.01 9 1492.81 <i>4</i> 1511.49 7 2122.75 8	100 22 3 51 4 100 3 42 3 13.9 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
2675.20	(3+,4,5-)	460.80 20 643.90 20	100 <i>12</i> 84 7 46 <i>1</i> 2	2214.215 5 ⁺ 2031.403 4 ⁻ 1161.529 3 ⁻				
2683.467	4-,5-	455.30 <i>15</i> 489.2 <i>5</i> 587.52 <i>6</i> 651.5 <i>5</i> 787.98 <i>18</i>	40 12 13.3 14 9 5 57.2 21 9 5 13.0 18	1101.329 5 2228.042 4 ⁺ 2194.061 6 ⁺ 2095.595 6 ⁺ 2031.403 4 ⁻ 1894.824 4 ⁺				
		1089.154 <i>18</i>	100 2	1594.247 5-	M1		0.00322 5	$ \begin{array}{l} \alpha = 0.00322 \ 5; \ \alpha(\mathrm{K}) = 0.00275 \ 4; \ \alpha(\mathrm{L}) = 0.000365 \ 6; \\ \alpha(\mathrm{M}) = 7.79 \times 10^{-5} \ 11; \ \alpha(\mathrm{N} +) = 2.05 \times 10^{-5} \ 3 \\ \alpha(\mathrm{N}) = 1.767 \times 10^{-5} \ 25; \ \alpha(\mathrm{O}) = 2.66 \times 10^{-6} \ 4; \\ \alpha(\mathrm{P}) = 1.701 \times 10^{-7} \ 24 \end{array} $
2697.77	3+,4+	1503.200 2 1521.85 3 1517.81 22 1536.03 22 2147 47 16	91 2 75 2 24 3 55 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
2698.539	5-,6-	166.15 3	18.4 6	2532.39 4 ⁻ ,5 ⁻	M1,E2		0.397 8	$\alpha(\mathbf{K})=0.30 \ 4; \ \alpha(\mathbf{L})=0.073 \ 25; \ \alpha(\mathbf{M})=0.016 \ 6; \ \alpha(\mathbf{N}+)=0.0041 \ 15 \ \alpha(\mathbf{N})=0.0036 \ 13; \ \alpha(\mathbf{O})=0.00050 \ 15; \ \alpha(\mathbf{P})=1.7\times10^{-5} \ 5$
		504.57 7 587.52 6 602.62 3 667.170 20 792.59 6	37.6 <i>14</i> 31.9 <i>12</i> 9 <i>4</i> 18 <i>6</i> 32.1 <i>14</i>	2194.061 6 ⁺ 2111.053 4 ⁺ 2095.595 6 ⁺ 2031.403 4 ⁻ 1905.908 6 ⁺				u(1)-0.0000 13, u(0)-0.00000 13, u(1)-1.7×10 - 3
		1104.321 16	100 2	1594.247 5-	M1		0.00311 5	$\alpha = 0.00311 \ 5; \ \alpha(K) = 0.00267 \ 4; \ \alpha(L) = 0.000353 \ 5; \alpha(M) = 7.54 \times 10^{-5} \ 11; \ \alpha(N+) = 2.02 \times 10^{-5} \ 3 \alpha(N) = 1.710 \times 10^{-5} \ 24; \ \alpha(O) = 2.58 \times 10^{-6} \ 4; \alpha(P) = 1.646 \times 10^{-7} \ 23; \ \alpha(IPF) = 4.01 \times 10^{-7} \ 6$
2701.92	$4^{(-)},(3^{-})$	1107.67 <i>3</i> 1540 27 <i>1</i> 5	100 <i>3</i> 61 6	$1594.247 5^{-}$ 1161 529 3 ⁻				
2704.6	(1,2 ⁺)	2154.6 3	33.5 22	550.255 2+				

 $^{148}_{62}\mathrm{Sm}_{86}$ -19

I

From ENSDF

 $^{148}_{62}\mathrm{Sm}_{86}$ -19

$\gamma(^{148}\text{Sm})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ‡	$I_{\gamma}^{\#}$	$E_f J_f^{\pi}$	Mult.@	$lpha^\dagger$	Comments
2704.6 2713 334	$(1,2^+)$ $3^+ 4^+$	2704.6 5	100	$0.0 0^+$ 2327 09 4^+			
2715.551	5,1	485.90 14	7.4 13	2228.042 4+			
		979.843 15	100 2	1733.465 4+			
		1533.10 20	15.1 13	$1180.261 \ 4^+$			
2714 08	Q+	2103.9 3	2.0 5	$330.233 2^{-1}$	E1	0.00303.5	$\alpha = 0.003035; \alpha(K) = 0.002604; \alpha(L) = 0.0003425; \alpha(M) = 7.27 \times 10^{-5} L1;$
2/14.90	0	J80.2 I		2120.04 /	EI	0.00505 5	$\alpha(N+)=1.90\times10^{-5}$ 3
							$\alpha(N)=1.643\times10^{-5}\ 23;\ \alpha(O)=2.44\times10^{-6}\ 4;\ \alpha(P)=1.484\times10^{-7}\ 21$
		808.7 1		1905.908 6+	E2	0.00395 6	α =0.00395 6; α (K)=0.00333 5; α (L)=0.000490 7; α (M)=0.0001056 15; α (N+)=2.75×10 ⁻⁵ 4
							$\alpha(N)=2.38\times10^{-5} 4; \ \alpha(O)=3.50\times10^{-6} 5; \ \alpha(P)=1.97\times10^{-7} 3$
2716.05	$(4^+, 5, 6^+)$	810.12 4	74.8 24	1905.908 6+			
		1121.70.20	22.8 24	1594.247 5			
2719.8	$(3^{-} 4^{-})$	2169 5 5	100 4	550 255 2+			
2712.0	(5, , -) 4 ⁺	332.91.73	143	2390.43 3 ⁺			E.: 1985Si16 relate this γ to ¹⁵⁰ Eu ε decay
2723.300	·	495.25 6	35 1	2228.042 4+	M1	0.0221	$\alpha(K)=0.0188 \ 3; \ \alpha(L)=0.00256 \ 4; \ \alpha(M)=0.000548 \ 8; \ \alpha(N+)=0.0001442 \ 21$
							$\alpha(N)=0.0001243 \ 18; \ \alpha(O)=1.87\times10^{-5} \ 3; \ \alpha(P)=1.177\times10^{-6} \ 17$
		575.97 10	6.2 8	2147.499 5+			
		817.5 5	1.4 7	1905.908 6+			
		828.61 12	4.7 4	1894.824 4+			
		1058.7 5	1.4 7	$1664.278 \ 2^+$			
		1209.5 4	1.8 4	$1454.115 2^{+}$	M1 + E2	0.00122.21	$a = 0.00122, 21, a(K) = 0.00106, 17, a(L) = 0.000140, 22, a(M) = 2.0 (10^{-5})$
		1343.289 27	100 5	1160.201 4	MIT+E2	0.00155 21	$\alpha = 0.00135 \ 27; \ \alpha(R) = 0.00106 \ 17; \ \alpha(L) = 0.000140 \ 22; \ \alpha(M) = 5.0 \times 10^{-5}; \ \alpha(N+) = 0.000102 \ 6$
							$\alpha(N)=6.8\times10^{-6}$ 11; $\alpha(O)=1.02\times10^{-6}$ 16; $\alpha(P)=6.4\times10^{-8}$ 12;
							α (IPF)=9.5×10 ⁻⁵ 5
		2173 28 1	31 2 8	550 255 2+			$0: -0.1/11$ or ± 1.35 30 from ± 6 Eu ε decay.
2727 31	5+	832.82.14	27.6.16	1894 824 4+			
2727.31	5	1133.12 8	52.8 24	$1594.247 5^{-}$			
		1547.14 10	100 16	1180.261 4+			
		1565.29 11	35.8 16	1161.529 3-			
2734.44	(3)	1269.3 4	100 21	1465.137 1-			
		1572.90 20	84 7	1161.529 3-			
2738.79	(8^{+})	544.6 2		$2194.061 6^+$			
0750.15	2+	643.0 2	100	2095.595 6+		0.00100.0	
2753.15	3-	2202.88 6	100	550.255 2+	M1+E2	0.00100 8	$\alpha = 0.00100 \ 8; \ \alpha(K) = 0.00051 \ 5; \ \alpha(L) = 6.6 \times 10^{-5} \ 7; \ \alpha(M) = 1.41 \times 10^{-5} \ 14; \ \alpha(N+) = 0.000412 \ 24$
							$\alpha(N)=3.2\times10^{-6}$ 3; $\alpha(O)=4.8\times10^{-7}$ 5; $\alpha(P)=3.1\times10^{-6}$ 4;

20

					ed)				
							$\gamma(^{148}\text{Sm})$ (co	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_{f}	\mathbf{J}_f^{π}	Mult. [@]	δ	$lpha^\dagger$	Comments
									α(IPF)=0.000409 24
2762-1	1+	2213.0.10	68 4	550 255	2+				δ : +0.05 6 or -5.6 +30-14 from (n,n' γ).
2702.1	1	2762.1 5	100	0.0	0^{+}				
2801.752	5+	161.00 6	0.62 3	2641.222	5^+				
		474.2 4	$0.11\ 6$ $0\ 42\ 22$	2327.62	3^{+}				
		654.220.8	34.8.8	2147.499	- 5 ⁺	M1+E2	$+0.9^{b}$ 3	0.0090.9	$\alpha = 0.0090$ 9: $\alpha(K) = 0.0076$ 8: $\alpha(L) = 0.00108$ 8:
		00 11220 0	0 110 0	=:	U		1017 0	0.00707	$\alpha(M)=0.000231 \ 17; \ \alpha(N+)=6.1\times10^{-5} \ 5$
									$\alpha(N)=5.2\times10^{-5}$ 4; $\alpha(O)=7.8\times10^{-6}$ 6; $\alpha(P)=4.7\times10^{-7}$ 5
		690.74 <i>3</i>	2.62 6	2111.053	4^+				
		770.307 10	9.1 2	2093.393	4^{-}				
		895.847 10	13.9 <i>3</i>	1905.908	6+	M1+E2	-0.20 ^b 11	0.00504 12	α =0.00504 <i>12</i> ; α (K)=0.00431 <i>11</i> ; α (L)=0.000576 <i>13</i> ;
									α (M)=0.000123 3; α (N+)=3.24×10 ⁻⁵ 8
		006.07.2	451	1004.004	4+				$\alpha(N)=2.79\times10^{-5}$ 7; $\alpha(O)=4.20\times10^{-6}$ 10; $\alpha(P)=2.67\times10^{-7}$ 7
		906.87 3	4.5 1	1894.824	4 · 4+				
		1207.473 14	13.6 3	1594.247	5-	E1+M2		0.003 3	α=0.003 3; α(K)=0.0029 23; α(L)=0.0004 4; α(M)=8.E-5
									7; α (N+)=3.8×10 ⁻⁵ 4
									$\alpha(N)=1.9\times10^{-5}$ 16; $\alpha(O)=2.9\times10^{-6}$ 24; $\alpha(P)=1.8\times10^{-7}$ 15;
									α (IPF)=1.5×10 ° 14 δ : -0.36< δ <+1.52 from ¹⁴⁸ Eu s decay
		1621.510 20	100 2	1180.261	4+	M1+E2		0.00124 18	$\alpha = 0.00124 \ 18; \ \alpha(K) = 0.00096 \ 15; \ \alpha(L) = 0.000126 \ 19;$
									$\alpha(M)=2.7\times10^{-5}$ 4; $\alpha(N+)=0.000133$ 8
									$\alpha(N)=6.1\times10^{-6} 9; \alpha(O)=9.2\times10^{-7} 14; \alpha(P)=5.8\times10^{-8} 10;$
									α (IPF)=0.000120 / δ : +4.1.6 or +1.75.50 or +0.45 10 from ¹⁴⁸ Fu s decay
2806.73	3+,4+	1073.32 16	74 5	1733.465	4+				0. 14.10, 01 11.75 50, 01 10.45 10 1011 Ed e decay.
		1626.38 18	54 5	1180.261	4+				
		1645.7 <i>3</i>	43 5	1161.529	$3^{-}_{2^{+}}$				
2807.35	9-	92.2 2	100 /	2714.98	$\frac{2}{8^{+}}$	E1		0.343 6	$\alpha(K)=0.289$ 5; $\alpha(L)=0.0429$ 7; $\alpha(M)=0.00918$ 14;
									α(N+)=0.00234 4
		2(2.5	10	2544 67	0+	F 1		0.0207	α (N)=0.00204 4; α (O)=0.000288 5; α (P)=1.384×10 ⁻⁵ 21
		202.3	16	2344.07	0	EI		0.0207	$\alpha(\mathbf{K})=0.01704\ 25,\ \alpha(\mathbf{L})=0.00241\ 4,\ \alpha(\mathbf{M})=0.000514\ 8,\ \alpha(\mathbf{N}+)=0.0001336\ 19$
									$\alpha(N)=0.0001157 \ 17; \ \alpha(O)=1.694\times10^{-5} \ 24; \ \alpha(P)=9.59\times10^{-7}$
			100 5		_			0.00577.7	14
		678.6 <i>1</i>	100 6	2128.64	7-	E2		0.00593 9	$\alpha = 0.00593 \ 9; \ \alpha(\text{K}) = 0.00496 \ 7; \ \alpha(\text{L}) = 0.000764 \ 11;$ $\alpha(\text{M}) = 0.0001656 \ 24; \ \alpha(\text{N}_{\perp}) = 4.20 \times 10^{-5} \ 6$
									$\alpha(N)=3.73\times10^{-5} 6; \alpha(O)=5.43\times10^{-6} 8; \alpha(P)=2.91\times10^{-7} 4$

From ENSDF

 $^{148}_{62}\mathrm{Sm}_{86}$ -21

					mmas (continu	ed)			
					continued)				
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#}$	E_{f}	J_f^{π}	Mult. [@]	δ	α^{\dagger}	Comments
2815.584	4-	92.6 5	10 5	2723.506	4+				
		291.3 <i>3</i>	5.7 8	2524.101	4+				
		441.23 14	6.1 11	2374.447	$5^+, 6^+$				
		587.52 0 704 4 3	10.3	2228.042	4 4				
		1082.096 17	100 2	1733.465	4+				
		1151.3 4	10 5	1664.278	2+				
		1221.37 4	73 3	1594.247	5-	M1		0.00247 4	$ \begin{array}{l} \alpha = 0.00247 \ 4; \ \alpha(\mathrm{K}) = 0.00211 \ 3; \ \alpha(\mathrm{L}) = 0.000278 \ 4; \\ \alpha(\mathrm{M}) = 5.94 \times 10^{-5} \ 9; \ \alpha(\mathrm{N}+) = 2.44 \times 10^{-5} \ 4 \\ \alpha(\mathrm{N}) = 1.347 \times 10^{-5} \ 19; \ \alpha(\mathrm{O}) = 2.03 \times 10^{-6} \ 3; \ \alpha(\mathrm{P}) = 1.299 \times 10^{-7} \\ 19; \ \alpha(\mathrm{IPF}) = 8.80 \times 10^{-6} \ 13 \end{array} $
		1635.31 <i>3</i>	84 2	1180.261	4+	E1+M2		0.0018 11	α =0.0018 <i>11</i> ; α (K)=0.0014 <i>11</i> ; α (L)=0.00019 <i>14</i> ; α (M)=4.E-5 <i>3</i> ; α (N+)=0.00019 <i>12</i>
									α (N)=9.E-6 7; α (O)=1.4×10 ⁻⁶ 11; α (P)=9.E-8 7; α (IPF)=0.00018 13
		1654 02 15	(2,7)	1161 520	2-				δ : $-0.05 \le \delta \le +1.06$ from ¹⁴⁸ Eu ε decay.
2828-13		1034.02 13	100	1594 247	5 5-				
2830.660	5+	157.8 5	0.27 14	2673.07	4 ⁺				
		602.62 <i>3</i>	8.0 2	2228.042	4+				
		636.86 7	0.78 14	2194.061	6+				
		683.153 7	34.5 8	2147.499	5+	M1+E2		0.0079 21	$\alpha = 0.0079 \ 21; \ \alpha(K) = 0.0067 \ 18; \ \alpha(L) = 0.00094 \ 20; \\ \alpha(M) = 0.00020 \ 4; \ \alpha(N+) = 5.3 \times 10^{-5} \ 11 \\ \alpha(M) = 0.0020 \ 4; \ \alpha(N+) = 5.3 \times 10^{-5} \ 11 \\ \alpha(M) = 0.0020 \ 4; \ \alpha(N+) = 5.3 \times 10^{-5} \ 11 \\ \alpha(M) = 0.0020 \ 4; \ \alpha(N+) = 5.3 \times 10^{-5} \ 11 \\ \alpha(M) = 0.0020 \ 4; \ \alpha(N+) = 5.3 \times 10^{-5} \ 11 \\ \alpha(M) = 0.0020 \ 4; \ \alpha(N+) = 5.3 \times 10^{-5} \ 11 \\ \alpha(M) = 0.0020 \ 4; \ \alpha(N+) = 5.3 \times 10^{-5} \ 11 \\ \alpha(M) = 0.0020 \ 4; \ \alpha(N+) = 5.3 \times 10^{-5} \ 11 \\ \alpha(M) = 0.0020 \ 4; \ \alpha(N+) = 5.3 \times 10^{-5} \ 10^{-5$
									$\alpha(N) = 4.6 \times 10^{-5} I0; \ \alpha(O) = 6.8 \times 10^{-5} I3; \ \alpha(P) = 4.1 \times 10^{-5} I2$
		701 9 5	0.52.27	2128.64	7-				$0. +0.05 +55 -50 \text{ or } -0.00 +58 -18 \text{ from}$ Eu ε decay.
		719.64 7	7.4 4	2111.053	, 4 ⁺				
		735.00 5	0.8 4	2095.595	6+	M1+E2	-1.1 ^b 6	0.0064 12	α =0.0064 <i>12</i> ; α (K)=0.0055 <i>11</i> ; α (L)=0.00077 <i>12</i> ; α (M)=0.000165 <i>24</i> ; α (N+)=4.3×10 ⁻⁵ <i>7</i>
		700 00 0	11.2.2	2021 402	4-				$\alpha(N)=3.7\times10^{-5} 6; \alpha(O)=5.6\times10^{-6} 9; \alpha(P)=3.3\times10^{-7} 7$
		799.23 3 924 75 3	11.33	2031.403 4	4 6 ⁺	M1		0.00474.7	$\alpha = 0.00474.7$; $\alpha(K) = 0.00406.6$; $\alpha(L) = 0.000541.8$;
		924.75 5	0.5 2	1905.908	0	1411		0.004747	$\alpha(M) = 0.001155 \ 17 \ \alpha(N+) = 3.04 \times 10^{-5} \ 5$
									$\alpha(N)=2.62\times10^{-5}$ 4: $\alpha(O)=3.95\times10^{-6}$ 6: $\alpha(P)=2.51\times10^{-7}$ 4
		935.20 20	1.43 14	1894.824	4+				
		1097.18 <i>3</i>	3.35 12	1733.465	4+	M1		0.00316 5	$\alpha = 0.00316 5; \alpha(K) = 0.00271 4; \alpha(L) = 0.000359 5;$ $\alpha(M) = 7.66 \times 10^{-5} 11; \alpha(N+) = 2.02 \times 10^{-5} 3$
									$\alpha(N)=1.757\times10^{-2}23; \alpha(O)=2.02\times10^{-4}4; \alpha(P)=1.072\times10^{-7}$
		1236.374 <i>16</i>	11.0 2	1594.247	5-	E1		0.000743 11	α =0.000743 <i>11</i> ; α (K)=0.000603 <i>9</i> ; α (L)=7.69×10 ⁻⁵ <i>11</i> ; α (M)=1.632×10 ⁻⁵ <i>23</i> ; α (N+)=4.69×10 ⁻⁵ <i>7</i>

From ENSDF

 $^{148}_{62} \mathrm{Sm}_{86}\text{--}22$

					A	dopted Leve	ls, Gammas (c	ontinued)
						$\gamma(^{148}$	Sm) (continued	<u>)</u>
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbf{E}_{f}	J_f^π	Mult.@	α^{\dagger}	Comments
2830.660	5+	1650.436 24	100 3	1180.261	4+	M1+E2	0.00121 17	$\begin{aligned} &\alpha(\mathrm{N}) = 3.69 \times 10^{-6} \ 6; \ \alpha(\mathrm{O}) = 5.54 \times 10^{-7} \ 8; \ \alpha(\mathrm{P}) = 3.50 \times 10^{-8} \ 5; \\ &\alpha(\mathrm{IPF}) = 4.26 \times 10^{-5} \ 6 \\ &\alpha = 0.00121 \ 17; \ \alpha(\mathrm{K}) = 0.00092 \ 14; \ \alpha(\mathrm{L}) = 0.000121 \ 18; \\ &\alpha(\mathrm{M}) = 2.6 \times 10^{-5} \ 4; \ \alpha(\mathrm{N}+) = 0.000145 \ 8 \\ &\alpha(\mathrm{N}) = 5.9 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 8.8 \times 10^{-7} \ 13; \ \alpha(\mathrm{P}) = 5.6 \times 10^{-8} \ 9; \\ &\alpha(\mathrm{IPF}) = 0.000138 \ 7 \\ &\delta: \ +0.53 \ +6-5 \ \mathrm{or} \ +2.92 \ 42; \ +0.50 \ 15 \ \mathrm{or} \ +1.75 \ 50 \ \mathrm{from}^{148} \mathrm{Eu} \ \varepsilon \end{aligned}$
2846.9	$(3^{-},4^{-})$	1685.2 <i>3</i>	100 18	1161.529	3-			decay.
2861.07	4 ⁻ ,5 ⁻	2297.0 5 485.90 14 646.9 5 1127 69 4	50 <i>14</i> 11 2 7 3 58 2	550.255 2374.447 2214.215 1733.465	2 ⁺ 5 ⁺ ,6 ⁺ 5 ⁺ 4 ⁺			
		1266.76 5	100 2	1594.247	5-	M1	0.00228 4	$\alpha = 0.00228 \ 4; \ \alpha(K) = 0.00194 \ 3; \ \alpha(L) = 0.000255 \ 4; \ \alpha(M) = 5.45 \times 10^{-5} \ 8; \ \alpha(N+) = 3.02 \times 10^{-5} \ 5 \ \alpha(N) = 1.236 \times 10^{-5} \ 18; \ \alpha(O) = 1.86 \times 10^{-6} \ 3; \ \alpha(P) = 1.193 \times 10^{-7} \ 17; \ \alpha(IPF) = 1.581 \times 10^{-5} \ 23$
		1680.90 15	20.3 25	1180.261	4+			
2862.06	3+,4+	1699.54 6 1128.04 <i>15</i> 1682.91 <i>25</i> 2312 13 <i>21</i>	10.5 4 85 6 55 10 100 7	1161.529 1733.465 1180.261 550.255	3^{-} 4^{+} 4^{+} 2^{+}			
2891.8		2341.5 5	100	550.255	2+ 2+			
2908.13 2928.84	$3^{-},4^{-}$ (4,5,6) ⁺	1746.59 22 817.5 5 832.9 5	100 29 15 29 15	1161.529 2111.053 2095.595	3^{-} 4^{+} 6^{+}			
2931.98		1748.58 5 1477.3 <i>4</i>	100 3 26 5	1180.261 1454.115	$\frac{4}{2^{+}}$			
2941.1	2+.3-	2381.89 22 2390.8 7	100 8 100	550.255 550.255	2^+ 2^+			
2942.82	8-,0	814.1 2	100	2128.64	- 7- 2+			
2952.7 2967.6	3+.4+	$2402.4 \ 9$ 936.38 f_{10}	100 100 <i>10</i>	550.255 2031.403	21 4-			
20074.00	o-	2417.3 7	49 10	550.255	2+		0.0045.10	
2976.32	8	847.4 2	100	2128.64		E2(+M1)	0.0047 12	$\alpha = 0.004/ 12; \ \alpha(\mathbf{K}) = 0.0040 \ 10; \ \alpha(\mathbf{L}) = 0.00055 \ 12; \ \alpha(\mathbf{M}) = 0.000119$ 25; \alpha(\mathbf{N}+)=3.1×10 ⁻⁵ 7 \alpha(\mathbf{N})=2.7×10 ⁻⁵ 6; \alpha(\mathbf{O})=4.0×10 ⁻⁶ 9; \alpha(\mathbf{P})=2.4×10 ⁻⁷ 7 \delta: large \delta (from \gamma(\theta) in (HI \xny))
2980.50	3+,4+	1800.26 19	100	1180.261	4+			······································
2991.78	3+,4+	1258.41 ^{<i>f</i>} 10 1810.94 25 2441.88 20	45 <i>3</i> 28 <i>3</i> 100 <i>6</i>	1733.465 1180.261 550.255	4+ 4+ 2+			

From ENSDF

 $^{148}_{62} \mathrm{Sm}_{86}\text{--}23$

I

						Adopted	Levels, Gam	mas (continu	ed)
						2	/(¹⁴⁸ Sm) (cor	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	δ	α^{\dagger}	Comments
3014.1	34-	2463.8 6	100	550.255	2+				
3038.8	1	2489	<10	550.255	2^{+}				
		3038.5 7	100 4	0.0	0^{+}				
3050.5		1888.7 4	100 15	1161.529	3-				
		2500.6 5	76 17	550.255	2^{+}				
3063.25	3-	1399.02 22	100	1664.278	2+				
3082.1	1	2531.9 9	8.8 15	550.255	2+				
		3082.0 4	100 3	0.0	0+				
3089.84	2+,3-	1909.4 4	78 15	1180.261	4+				
		1928.4 3	100 16	1161.529	3-				
2005.25	$O(\pm)$	2539.6 6	82 18	550.255	2'				
3095.25	9(+)	702.6 2	100	2392.32	7 ⁺				
3107.8	$3^{+}, 4^{+}$	2557.54	100	550.255	2				
3138.46	3(),4()	1976.91 10	100	1161.529	3 4+				
3133.3	2+ 4+	19/3.3 3	100	1160.201	4 · 2-				
2178.0	5,4 +	2005.5 4	100	550 255	5 2+				
3188 31	0-	2027.775	100	2976 32	2 8-				
5100.51)	245.2.2		2942.82	8-				
		381.4 2		2807.35	9-				
		473.3 2		2714.98	8+				
		643.6 2		2544.67	8+				
		1059.5 2		2128.64	7-				
3189.8	2+,3-	2639.5 8	100	550.255	2^{+}				
3197.4	3-,4-	1743.3	100	1454.115	2^{+}				E_{γ} : multiplet.
3216.15	9-	671.4 2		2544.67	8+				
		1087.5 2		2128.64	7-				
3221.2		2041.0 4	100	1180.261	4+				
3224.83	1.0+	2044.58 19	100	1180.261	4 ⁺			0.00560.0	
3235.23	10+	690.6 <i>I</i>	100	2544.67	8-	E2		0.00569 8	α =0.00569 8; α (K)=0.004/6 7; α (L)=0.000/30 11;
									$\alpha(M) = 0.0001581 \ 23; \ \alpha(N+) = 4.11 \times 10^{-3} \ 6$
					(\cdot)				$\alpha(N)=3.56\times10^{-5} 5; \alpha(O)=5.19\times10^{-6} 8; \alpha(P)=2.80\times10^{-7} 4$
3253.45	10-	158.2 <i>1</i>		3095.25	9(+)				
		446.1 <i>1</i>		2807.35	9-	M1+E2	-0.10^{d} 5	0.0287 5	α (K)=0.0244 4; α (L)=0.00334 5; α (M)=0.000716 11; α (N+)=0.000188 3
									α (N)=0.0001624 24; α (O)=2.44×10 ⁻⁵ 4; α (P)=1.531×10 ⁻⁶ 24
3255.3	$(1,2^+)$	3255.3 5	100	0.0	0^+				
3276.2		2725.9 5	100	550.255	2+				
3291.5	$(1,2^{+})$	3291.5 5	100	0.0	0^{+}				
3322.6	(10^{+})	583.8 2	100	2738.79	(8 ⁺)				
3398.13	10^{+}	590.8 <i>1</i>		2807.35	9-	E1		0.00298 5	α =0.00298 5; α (K)=0.00255 4; α (L)=0.000336 5;

 $^{148}_{62}\mathrm{Sm}_{86}$ -24

L

From ENSDF

 $^{148}_{62}\mathrm{Sm}_{86}$ -24

E _i (level)	\mathbf{J}^{π}_{\cdot}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	Ef	J^{π}_{c}	Mult. [@]	α^{\dagger}	Comments
	1	7	/		f			$\alpha(M) = 7.15 \times 10^{-5}$ 10: $\alpha(N+) = 1.87 \times 10^{-5}$ 3
								$\alpha(N)=1.615\times10^{-5} 23; \ \alpha(O)=2.40\times10^{-6} 4; \ \alpha(P)=1.460\times10^{-7} 21$
3398.13	10^{+}	683.1 <i>1</i>		2714.98	8+	E2	0.00584 9	α =0.00584 9; α (K)=0.00488 7; α (L)=0.000751 11; α (M)=0.0001627 23;
								α (N+)=4.23×10 ⁻⁵ 6
		C						$\alpha(N)=3.66\times10^{-5} 6; \alpha(O)=5.34\times10^{-6} 8; \alpha(P)=2.87\times10^{-7} 4$
		853.4 ^J 3		2544.67	8+			
3421.90	11-	168.5 1		3253.45	10-	-	0.0500	
		186.7 1		3235.23	10+	El	0.0508	$\alpha(K)=0.0432$ 6; $\alpha(L)=0.00601$ 9; $\alpha(M)=0.001284$ 18; $\alpha(N+)=0.000332$ 5 $\alpha(N)=0.000288$ 4, $\alpha(O)=4.17\times10^{-5}$ 6, $\alpha(D)=2.27\times10^{-6}$ 4
		205.8.2		3216.15	9-			u(1) = 0.0002004, u(0) = 4.1/1000, u(1) = 2.2/1004
		614.5 1		2807.35	9-	E2	0.00755 11	α =0.00755 11; α (K)=0.00628 9; α (L)=0.000998 14; α (M)=0.000217 3;
								α (N+)=5.62×10 ⁻⁵ 8
	14 - 11				<u>.</u>			α (N)=4.87×10 ⁻⁵ 7; α (O)=7.07×10 ⁻⁶ 10; α (P)=3.67×10 ⁻⁷ 6
3451.9	$(1,2^+)$	3451.9 5	100	0.0	0^+			
3483.0 3526.57	$(1,2^{+})$ 10 ⁻	3483.0 3	100	0.0	0-			
5520.57	10	310.0 3		3188 31	7 0-			
		71917		2807 35	9-			
3534.9	$(1,2^+)$	3534.9 5	100	0.0	0^{+}			
3545.63	10-	329.4 2	-	3216.15	9-			
		357.4 1		3188.31	9-			
		568.8 <i>3</i>		2976.32	8-			
		602.9 1		2942.82	8-			
2506 0	$(1, 2^{+})$	738.5 2	100	2807.35	9 ⁻			
3614 76	$(1,2^{+})$ 11^{-}	216.6.1	100	3398-13	10+	E1	0.0342	$\alpha(K) = 0.02914; \alpha(L) = 0.004026; \alpha(M) = 0.00085812; \alpha(N+) = 0.0002224$
5511.70	11	210.0 1		5570.15	10	<i>L</i> 1	0.0012	$\alpha(\mathbf{n}) = 0.000193 \ 3; \ \alpha(\mathbf{O}) = 2.81 \times 10^{-5} \ 4; \ \alpha(\mathbf{P}) = 1.553 \times 10^{-6} \ 22$
		807.4 1		2807.35	9-	E2	0.00396 6	α =0.00396 6; α (K)=0.00334 5; α (L)=0.000492 7; α (M)=0.0001060 15;
								α (N+)=2.76×10 ⁻⁵ 4
								$\alpha(N)=2.39\times10^{-5}$ 4; $\alpha(O)=3.52\times10^{-6}$ 5; $\alpha(P)=1.97\times10^{-7}$ 3
3640.4	(11)	317.8 2	100	3322.6	(10 ⁺)			
3806.98	11-	261.2 2		3545.63	10-			
		385.4 2		3421.90	11 0-			
3812.0	(1.2^{+})	010.0 <i>I</i> 3811 0 5	100	0.0	9 0 ⁺			
3843.6	$(1,2^+)$	3843.5.5	100	0.0	0^{+}			
3884.3	$(1,2^+)$	3884.2 5	100	0.0	0^{+}			
3895.4	$(1,2^+)$	3895.3 5	100	0.0	0^{+}			
3992.62	12+	570.6 2		3421.90	11-	E1	0.00322 5	α =0.00322 5; α (K)=0.00275 4; α (L)=0.000363 5; α (M)=7.72×10 ⁻⁵ 11;
								$\alpha(N+)=2.02\times10^{-5}$ 3
		504 5 6		2200 12	1.0+			α (N)=1.744×10 ⁻⁵ 25; α (O)=2.59×10 ⁻⁶ 4; α (P)=1.572×10 ⁻⁷ 22
		594.7 2		3398.13	10"	E2	0.00450.7	$\alpha = 0.00450.7$, $\alpha(\mathbf{V}) = 0.00295.6$, $\alpha(\mathbf{L}) = 0.000576.9$, $\alpha(\mathbf{M}) = 0.0001245.19$.
		131.31		3433.43	10	$\mathbf{E} \mathbf{Z}$	0.00439 /	$\alpha = 0.00+37$ /, $\alpha(\mathbf{K}) = 0.00363$ 0, $\alpha(\mathbf{L}) = 0.0003$ /0 6; $\alpha(\mathbf{M}) = 0.0001243$ 18;

$\gamma(^{148}\text{Sm})$ (continued)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_{f}^{π}	Mult.@	α^{\dagger}	Comments
$ \begin{array}{c} \operatorname{arc}(N) = 23 x 0^{-5} 4; (\alpha(0) = 0.23876; a, a(b) = 0.00514 3; (\alpha(b) = 0.00514 3; a(b) = 0.00220 3; a(b) = 0.00230 3; a(b) = 0.00250 3; a(b) = 0.00051 4; a(b) = $	l									α (N+)=3.24×10 ⁻⁵ 5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	l									$\alpha(N)=2.81\times10^{-5} 4; \ \alpha(O)=4.11\times10^{-6} 6; \ \alpha(P)=2.27\times10^{-7} 4$
$ \begin{array}{c} \operatorname{div} = 2.47 \times 10^{-3} 4; \operatorname{arc}(0) = 3.66 \times 10^{-6} 6; \operatorname{arc}(P) = 2.20 \times 10^{-7} 3 \\ \operatorname{arc}(N) = 2.47 \times 10^{-3} 4; \operatorname{arc}(N) = 3.66 \times 10^{-6} 6; \operatorname{arc}(P) = 2.20 \times 10^{-7} 3 \\ \operatorname{arc}(N) = 2.47 \times 10^{-3} 4; \operatorname{arc}(N) = 3.66 \times 10^{-6} 6; \operatorname{arc}(P) = 2.20 \times 10^{-7} 16 \\ \operatorname{arc}(N) = 1.137 \times 10^{-7} 20 \\ \operatorname{arc}(N) = 1.137 \times 10^{-7} 20 \\ \operatorname{arc}(N) = 1.137 \times 10^{-7} 3 \\ \operatorname{arc}(N) = 3.36 \times 10^{-6} 5; \operatorname{arc}(N) = 4.000149 \\ \operatorname{arc}(N) = 3.36 \times 10^{-5} 5; \operatorname{arc}(O) = 4.90 \times 10^{-6} 7; \operatorname{arc}(P) = 2.66 \times 10^{-7} 4 \\ \operatorname{arc}(N) = 3.36 \times 10^{-5} 5; \operatorname{arc}(O) = 4.90 \times 10^{-6} 7; \operatorname{arc}(P) = 2.66 \times 10^{-7} 4 \\ \operatorname{arc}(N) = 3.36 \times 10^{-5} 5; \operatorname{arc}(O) = 4.90 \times 10^{-6} 7; \operatorname{arc}(P) = 2.66 \times 10^{-7} 4 \\ \operatorname{arc}(N) = 3.36 \times 10^{-5} 5; \operatorname{arc}(O) = 4.90 \times 10^{-6} 7; \operatorname{arc}(P) = 2.66 \times 10^{-7} 4 \\ \operatorname{arc}(N) = 3.36 \times 10^{-5} 5; \operatorname{arc}(O) = 4.90 \times 10^{-6} 7; \operatorname{arc}(P) = 2.66 \times 10^{-7} 4 \\ \operatorname{arc}(N) = 3.36 \times 10^{-5} 5; \operatorname{arc}(O) = 4.90 \times 10^{-6} 7; \operatorname{arc}(P) = 2.66 \times 10^{-7} 4 \\ \operatorname{arc}(N) = 3.36 \times 10^{-5} 5; \operatorname{arc}(O) = 4.90 \times 10^{-6} 7; \operatorname{arc}(P) = 2.66 \times 10^{-7} 4 \\ \operatorname{arc}(N) = 3.36 \times 10^{-5} 5; \operatorname{arc}(O) = 4.90 \times 10^{-6} 7; \operatorname{arc}(P) = 2.66 \times 10^{-7} 4 \\ \operatorname{arc}(N) = 3.36 \times 10^{-5} 5; \operatorname{arc}(O) = 4.90 \times 10^{-6} 7; \operatorname{arc}(P) = 2.66 \times 10^{-7} 4 \\ \operatorname{arc}(N) = 3.36 \times 10^{-5} 5; \operatorname{arc}(O) = 4.00 \times 10^{-5} 7; \operatorname{arc}(N) = 3.38 \times 10^{-5} 5; \operatorname{arc}(O) = 1.00^{-7} 10^{-6} 5; \operatorname{arc}(O) = 1.00^{-7} 10^{-7} 4 \\ \operatorname{arc}(N) = 3.48 \times 10^{-5} 5; \operatorname{arc}(O) = 1.00^{-7} 10^{-6} 5; \operatorname{arc}(N) = 0.000 \times 10^{-6} 7; \operatorname{arc}(N) = 5.30 \times 10^{-7} 7; \operatorname{arc}(N) = 4.00 \times 10^{-5} 7$	l	4104.39	12+	489.6 <i>1</i>		3614.76	11-	E1	0.00452 7	$\alpha = 0.00452$ 7; $\alpha(K) = 0.00387$ 6; $\alpha(L) = 0.000514$ 8; $\alpha(M) = 0.0001094$ 16;
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										$\alpha(N)=2.80\times10^{-5} 4$; $\alpha(\Omega)=3.66\times10^{-6} 6$; $\alpha(P)=2.20\times10^{-7} 3$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				682.2 2		3421.90	11-	E1	0.00220 3	α =0.00220 3; α (K)=0.00188 3; α (L)=0.000246 4; α (M)=5.24×10 ⁻⁵ 8;
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										α (N+)=1.370×10 ⁻⁵ 20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				70(0 1		2200 12	10+	50	0.00540.0	$\alpha(N)=1.183 \times 10^{-5} \ 17; \ \alpha(O)=1.763 \times 10^{-6} \ 25; \ \alpha(P)=1.082 \times 10^{-7} \ 16$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				/06.2 1		3398.13	101	E2	0.00540 8	$\alpha = 0.00540 \ 8; \ \alpha(\text{K}) = 0.00452 \ /; \ \alpha(\text{L}) = 0.000689 \ 10; \ \alpha(\text{M}) = 0.0001491 \ 21; \ \alpha(\text{N} + 1) = 3.87 \times 10^{-5} \ 6$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										$\alpha(N)=3.36\times10^{-5}$ 5; $\alpha(O)=4.90\times10^{-6}$ 7; $\alpha(P)=2.66\times10^{-7}$ 4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				869.6 2		3235.23	10^{+}			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4108.70	12^{-}	855.2 1	100	3253.45	10-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4110.68	13-	688.8 <i>1</i>	100	3421.90	11-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4189.28	12^{+}	196.5 2		3992.62	12^{+}			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				767.5 2		3421.90	11-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4196.25	12-	389.2 2		3806.98	11-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				650.8 <i>1</i>		3545.63	10-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				669.4 2		3526.57	10-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4241.52	13-	248.9 2		3992.62	12^{+}			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				819.9 3		3421.90	11-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4397.78	13-	293.3 2		4104.39	12+	E1	0.01558	$\alpha(K)=0.01329$ 19; $\alpha(L)=0.00181$ 3; $\alpha(M)=0.000385$ 6; $\alpha(N+)=0.0001002$ 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				702.0.1		2614 76	11-	50	0.00405 ($\alpha(N) = 8.6 / \times 10^{-5} I_3; \ \alpha(O) = 1.2 / 3 \times 10^{-5} I_8; \ \alpha(P) = 7.29 \times 10^{-7} I_1$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				/83.0 1		3614.76	11	E2	0.00425 6	$\alpha = 0.00425$ 6; $\alpha(K) = 0.00557$ 5; $\alpha(L) = 0.000530$ 8; $\alpha(M) = 0.0001145$ 76;
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										$\alpha(N+)=2.98\times10^{-5}$ 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										$\alpha(N)=2.58\times10^{-5} 4; \ \alpha(O)=3.79\times10^{-6} 6; \ \alpha(P)=2.11\times10^{-7} 3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4512.91	13	316.7 2		4196.25	12			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				402.2 2		4110.68	13-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4516 75	12+	/05.9 2	100	3806.98	11			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4516.75	13'	408.0 1	100	4108.70	12	F 1	0.00/04.10	0.00(04.10) (IX) 0.00502.0 (IX) 0.000704.12 (IX) 0.0001(02.24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4805.18	14	407.4 2		4397.78	13	EI	0.00694 10	$\alpha = 0.00694 \ 10; \ \alpha(\mathbf{K}) = 0.00593 \ 9; \ \alpha(\mathbf{L}) = 0.000794 \ 12; \ \alpha(\mathbf{M}) = 0.0001692 \ 24; \ \alpha(\mathbf{M} + 1) = 4.41 \times 10^{-5} \ 7$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										$\alpha(N) = 3.92 \times 10^{-5} 6. \alpha(O) = 5.64 \times 10^{-6} 8. \alpha(D) = 3.33 \times 10^{-7} 5$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				616.0.2		1180 28	12+			$u(1)=3.02 \wedge 10 = 0, u(0)=3.04 \wedge 10 = 0, u(1)=3.33 \times 10 = 3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				604 7 2		+107.20	12-	E 1	0.00211.2	$\alpha = 0.00211$ 2; $\alpha(K) = 0.00181$ 2; $\alpha(L) = 0.000227$ 4; $\alpha(M) = 5.04 \times 10^{-5}$ 7;
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				094.7 2		4110.08	15	EI	0.00211 5	$\alpha = 0.00211 \text{ 5}; \ \alpha(\mathbf{N}) = 0.00181 \text{ 5}; \ \alpha(\mathbf{L}) = 0.000257 \text{ 4}; \ \alpha(\mathbf{N}) = 3.04 \times 10^{-5} \text{ 7};$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										$\alpha(N) = 1.312 \times 10^{-12}$ $\alpha(N) = 1.38 \times 10^{-5}$ 16: $\alpha(O) = 1.607 \times 10^{-6}$ 24: $\alpha(P) = 1.042 \times 10^{-7}$ 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				700.8.2		4104 30	12+	F2	0.005/19.8	$a(10)=1.158\times10$ 10, $a(0)=1.097\times10$ 24, $a(1)=1.042\times10$ 15 $\alpha=0.00540$ 8: $\alpha(K)=0.00460$ 7: $\alpha(L)=0.000703$ 10: $\alpha(M)=0.0001521$ 22:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				700.8 2		4104.39	12	62	0.00349 8	$a=0.00549.6, a(\mathbf{K})=0.00400.7, a(\mathbf{L})=0.000705.70, a(\mathbf{M})=0.0001521.22,$ $a(\mathbf{M}+1)=2.05\times10^{-5}.6$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										$\alpha_{(1)T}$, β_{-3} , β_{-3} , β_{-3} , β_{-3} , α_{-3} , β_{-3} , $\beta_$
4842.69 15 ⁻ 732.0 <i>I</i> 100 4110.68 13 ⁻				01262		2002 62	12+			$\alpha(1)=5.45\times10^{-5}$; $\alpha(0)=5.00\times10^{-5}$ /; $\alpha(P)=2.71\times10^{-5}$ 4
+0+2.07 1 <i>J</i> / <i>J</i> 2.0 <i>I</i> 100 $+110.00$ 1 <i>J</i>		1812 60	15-	012.0 Z	100	3992.02 4110.69	12			
		7072.07	13	152.01	100	+110.00	15			

From ENSDF

$\gamma(^{148}\text{Sm})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.@	α^{\dagger}	Comments
4864.69	14+	466.9 2 623.3 2 675.3 2 754.0 2 760.3 2 872.0 1		4397.78 4241.52 4189.28 4110.68 4104.39 3992.62	13 ⁻ 13 ⁻ 12 ⁺ 13 ⁻ 12 ⁺ 12 ⁺			
4889.71	14-	373.0 2		4516.75	13+	E1	0.00858 12	α =0.00858 <i>12</i> ; α (K)=0.00733 <i>11</i> ; α (L)=0.000984 <i>14</i> ; α (M)=0.000210 <i>3</i> ; α (N+)=5.47×10 ⁻⁵ <i>8</i> α (N)=4.73×10 ⁻⁵ 7: α (Q)=6.98×10 ⁻⁶ <i>10</i> ; α (P)=4.09×10 ⁻⁷ 6
		781.0 <i>1</i>		4108.70	12-	E2	0.00427 6	$\alpha(N) = 2.60 \times 10^{-5} 4; \ \alpha(O) = 0.50 \times 10^{-16}, \ \alpha(P) = 2.50 \times 10^{-7} 3$
4909.65	14+	799.0 2 805.2 2 917.1 2		4110.68 4104.39 3992.62	13 ⁻ 12 ⁺ 12 ⁺			
4917.55	14-	400.5 2 404.6 2 721.4 <i>1</i> 808.9 2		4516.75 4512.91 4196.25 4108.70	13 ⁺ 13 ⁻ 12 ⁻ 12 ⁻			
4951.75 5087.55	14 ⁽⁻⁾ 15 ⁻	843.0 2 170.0 2 198.0 2 244.9 2 976 8 2	100	4108.70 4917.55 4889.71 4842.69 4110.68	12 ⁻ 14 ⁻ 14 ⁻ 15 ⁻ 13 ⁻			
5136.13	15-	331.0 2		4805.18	13 14 ⁺	E1	0.01150	α (K)=0.00982 <i>14</i> ; α (L)=0.001326 <i>19</i> ; α (M)=0.000283 <i>4</i> ; α (N+)=7.37×10 ⁻⁵ <i>11</i> α (N)=6.37×10 ⁻⁵ <i>9</i> ; α (O)=9.38×10 ⁻⁶ <i>14</i> ; α (P)=5.44×10 ⁻⁷ 8
		738.3 2		4397.78	13-	E2	0.00486 7	$\alpha = 0.00486 \ 7; \ \alpha(K) = 0.00408 \ 6; \ \alpha(L) = 0.000615 \ 9; \ \alpha(M) = 0.0001328 \ 19; \\ \alpha(N+) = 3.46 \times 10^{-5} \ 5 \\ \alpha(N) = 2.99 \times 10^{-5} \ 5; \ \alpha(O) = 4.38 \times 10^{-6} \ 7; \ \alpha(P) = 2.41 \times 10^{-7} \ 4$
5217.20	15(-)	265.4 2 327.6 2 819.3 2		4951.75 4889.71 4397.78	14 ⁽⁻⁾ 14 ⁻ 13 ⁻			
5274.93	15+	385.1 2		4889.71	14-	E1	0.00794 12	α =0.00794 <i>12</i> ; α (K)=0.00678 <i>10</i> ; α (L)=0.000910 <i>13</i> ; α (M)=0.000194 <i>3</i> ; α (N+)=5.06×10 ⁻⁵ <i>8</i>
		758.2 1		4516.75	13+	E2	0.00457 7	$\alpha(N) = 4.56 \times 10^{-5} / (\alpha(N) = 0.40 \times 10^{-5} / (\alpha(P) = 3.50 \times 10^{-5} / 0.0001241 \ 18;$ $\alpha(N+) = 3.23 \times 10^{-5} \ 5$ $\alpha(N) = 2.80 \times 10^{-5} \ 4; \ \alpha(O) = 4.10 \times 10^{-6} \ 6; \ \alpha(P) = 2.27 \times 10^{-7} \ 4$
5287.77	15-	445.0 ^e 3 774.9 2		4842.69 4512.91	15 ⁻ 13 ⁻			$a_{(17)} = 2.00 \times 10^{-7}, a_{(0)} = 4.10 \times 10^{-0}, a_{(1)} = 2.27 \times 10^{-7}$
5320.28	16-	103.1 <i>3</i> 184.1 <i>2</i>		5217.20 5136.13	15 ⁽⁻⁾ 15 ⁻			

From ENSDF

$\gamma(^{148}\text{Sm})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ} ‡	$I_{\gamma}^{\#}$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	α^{\dagger}	Comments
5320.28	16-	233.0 2		5087.55 15-			
		402.8 2		4917.55 14-			
		430.6 2		4889.71 14-			
5496.39	16+	360.3 2		5136.13 15-	E1	0.00933 14	α =0.00933 14; α (K)=0.00797 12; α (L)=0.001073 15; α (M)=0.000229 4; α (N+)=5.96×10 ⁻⁵ 9
							$\alpha(N) = 5.15 \times 10^{-5} 8$; $\alpha(O) = 7.60 \times 10^{-6} 11$; $\alpha(P) = 4.44 \times 10^{-7} 7$
		586.6 2		4909.65 14+			
		631.8 2		4864.69 14+			
		653.7 2		4842.69 15-	E1	0.00240 4	$\alpha = 0.00240 4$; $\alpha(K) = 0.00206 3$; $\alpha(L) = 0.000270 4$; $\alpha(M) = 5.74 \times 10^{-5} 8$;
							$\alpha(N+)=1.501\times10^{-5}.21$
							$\alpha(N) = 1.296 \times 10^{-5}$ 19: $\alpha(O) = 1.93 \times 10^{-6}$ 3: $\alpha(P) = 1.181 \times 10^{-7}$ 17
		691 2 2		4805 18 14+	F2	0.00568.8	$\alpha = 0.00568 \ 8 \ \alpha(K) = 0.00475 \ 7 \ \alpha(L) = 0.000728 \ 11 \ \alpha(M) = 0.0001577 \ 23$
		0)1.2 2		1005.10 11	112	0.0020000	$\alpha(N+) - 4.10 \times 10^{-5} 6$
							$\alpha(N) = 3.55 \times 10^{-5} 5$; $\alpha(O) = 5.18 \times 10^{-6} 8$; $\alpha(P) = 2.70 \times 10^{-7} 4$
5524 48	16+	615.0.2		4909 65 14+			$u(1)=5.55\times10^{-5}, u(0)=5.10\times10^{-6}, u(1)=2.75\times10^{-4}$
5521.10	10	659.6.2		4864.69 14+			
		681.7 2		4842.69 15-			
		719.4 2		4805.18 14+			
5556 54	16-	281 7 $\frac{f}{5}$ 5		5274 93 15+			
5550.51	10	666.8.1		4889.71 14-			
5561.19	17^{-}	718.5 1	100	4842.69 15-			
5578.31	$16^{(+)}$	442.2 2		5136.13 15-			
		713.4 2		4864.69 14+			
		773.3 2		4805.18 14+			
5649.57	17^{-}	92.7 <i>3</i>		5556.54 16-			
		329.8 2		5320.28 16-			
		432.0 5		5217.20 15 ⁽⁻⁾			
		561.9 2		5087.55 15-			
		806.7 f 5		4842.69 15-			
5777.74	17^{+}	281.4 3		5496.39 16+			
		502.8 1		5274.93 15+			
5837.32	17^{-}	517.0 2	100	5320.28 16-			
5946.08	18+	108.7 2		5837.32 17-	E1	0.220	$\alpha(K)=0.185 \ 3; \ \alpha(L)=0.0270 \ 4; \ \alpha(M)=0.00577 \ 9; \ \alpha(N+)=0.001479 \ 22$ $\alpha(N)=0.001288 \ 20; \ \alpha(O)=0.000183 \ 3; \ \alpha(P)=9.09\times10^{-6} \ 14$
		296.5 2		5649.57 17-			
		384.9 2		5561.19 17-	E1	0.00795 12	α =0.00795 <i>12</i> ; α (K)=0.00679 <i>10</i> ; α (L)=0.000911 <i>13</i> ; α (M)=0.000194 <i>3</i> ; α (N+)=5.07×10 ⁻⁵ 8
							$\alpha(N) = 4.38 \times 10^{-5}$ 7; $\alpha(O) = 6.47 \times 10^{-6}$ 9; $\alpha(P) = 3.80 \times 10^{-7}$ 6
		421.6 2		5524.48 16+			
		449.7 2		5496.39 16+	E2	0.01710	$\alpha(K)=0.01392\ 20;\ \alpha(L)=0.00249\ 4;\ \alpha(M)=0.000546\ 8;\ \alpha(N+)=0.0001406\ 20$
							$\alpha(N)=0.0001224$ 18; $\alpha(O)=1.739\times10^{-5}$ 25; $\alpha(P)=7.93\times10^{-7}$ 12
6011.15	18	233.4 2		5777.74 17+			

L

28

$\gamma(^{148}\text{Sm})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\ddagger}$	$I_{\gamma}^{\#}$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	$lpha^{\dagger}$	Comments
6011.15 6029.22 6195.29	18 18 ⁻ 19 ⁻	361.5 2 379.9 2 708.8 2 166.1 1		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		184.0 2 249^{f}		6011.15 18 5946.08 18 ⁺	E1	0.0237	$\alpha(K)=0.0202 \ 3; \ \alpha(L)=0.00277 \ 4; \ \alpha(M)=0.000591 \ 9; \ \alpha(N+)=0.0001535 \ 22$
		358.0 2		5837.32 17-	E2	0.0329	$\alpha(N)=0.0001329 \ I9; \ \alpha(O)=1.94\times10^{-5} \ 3; \ \alpha(P)=1.094\times10^{-6} \ I6$ $\alpha(K)=0.0262 \ 4; \ \alpha(L)=0.00524 \ 8; \ \alpha(M)=0.001159 \ I7; \ \alpha(N+)=0.000296 \ 5$ $\alpha(N)=0.000259 \ 4; \ \alpha(O)=3.61\times10^{-5} \ 6; \ \alpha(P)=1.448\times10^{-6} \ 2I$
6392.23	19-	381.0 <i>3</i> 742.6 <i>2</i>		6011.15 18 5649.57 17 ⁻			
6477.07	19-	466.0 2 531.0 <i>1</i> 827.6 2		6011.15 18 5946.08 18 ⁺ 5649.57 17 ⁻			
6557.5?	(19)	915.9 ^ƒ 5 779.8 <i>3</i>	100	5561.19 17 ⁻ 5777.74 17 ⁺			
6592.79	20 ⁽⁺⁾	397.5 2		6195.29 19-	E1	0.00736 11	α =0.00736 <i>11</i> ; α (K)=0.00629 <i>9</i> ; α (L)=0.000842 <i>12</i> ; α (M)=0.000180 <i>3</i> ; α (N+)=4.68×10 ⁻⁵ <i>7</i>
		646.6 2		5946.08 18+	E2	0.00666 10	$\alpha(N)=4.05\times10^{-5} 6; \ \alpha(O)=5.98\times10^{-6} 9; \ \alpha(P)=3.53\times10^{-7} 5$ $\alpha=0.00666 \ 10; \ \alpha(K)=0.00556 \ 8; \ \alpha(L)=0.000869 \ 13; \ \alpha(M)=0.000188 \ 3; \ \alpha(N+)=4.89\times10^{-5} 7$ $\alpha(N)=4.24\times10^{-5} \ 6; \ \alpha(O)=6.17\times10^{-6} 9; \ \alpha(P)=3.26\times10^{-7} 5$
6694.32	21 ⁽⁻⁾	101.5 <i>1</i> 217.3 <i>1</i> 302.0 2		6592.79 20 ⁽⁺⁾ 6477.07 19 ⁻ 6392.23 19 ⁻			
6913.3	$21^{(-)}$	718.0 2	100	$6195.29 19^{-}$	F 1	0.00660.10	a = 0.00660, 10, a(K) = 0.00565, 8, a(L) = 0.000755, 11, a(M) = 0.0001600, 22,
1329.3	22(.)	410.0 3		0913.3 21	EI	0.00660 10	$\alpha = 0.00000 \ 10; \ \alpha(\text{K}) = 0.00505 \ 8; \ \alpha(\text{L}) = 0.000755 \ 11; \ \alpha(\text{M}) = 0.0001009 \ 25;$ $\alpha(\text{N}+) = 4.20 \times 10^{-5} \ 6$ $\alpha(\text{N}) = 3.63 \times 10^{-5} \ 6; \ \alpha(\text{O}) = 5.36 \times 10^{-6} \ 8; \ \alpha(\text{P}) = 3.17 \times 10^{-7} \ 5$
		736.5 2		6592.79 20 ⁽⁺⁾	E2	0.00489 7	$\alpha(N) = 3.01 \times 10^{-5} 5; \alpha(N) = 4.41 \times 10^{-6} 7; \alpha(P) = 2.42 \times 10^{-7} 4$
7332.92	23(-)	638.6 1	100	6694.32 21 ⁽⁻⁾			$u(1) = 5.01 \times 10^{-5}, u(0) = 4.41 \times 10^{-7}, u(1) = 2.42 \times 10^{-7}$
7620.4	23(-)	291.2 2		7329.3 22 ⁽⁺⁾	E1	0.01587	α (K)=0.01353 <i>19</i> ; α (L)=0.00184 <i>3</i> ; α (M)=0.000393 <i>6</i> ; α (N+)=0.0001021 <i>15</i> α (N)=8.84×10 ⁻⁵ <i>13</i> ; α (O)=1.297×10 ⁻⁵ <i>19</i> ; α (P)=7.42×10 ⁻⁷ <i>11</i>
		707.1 2		6913.3 21 ⁽⁻⁾	E2	0.00538 8	$\alpha = 0.00538 \ 8; \ \alpha(K) = 0.00451 \ 7; \ \alpha(L) = 0.000687 \ 10; \ \alpha(M) = 0.0001486 \ 21; \ \alpha(N+) = 3.86 \times 10^{-5} \ 6$
7942.5	(22)	1248.2.2	100	$6694.32 \ 21^{(-)}$			$\alpha(N)=3.35\times10^{-5}$ 5; $\alpha(O)=4.89\times10^{-6}$ 7; $\alpha(P)=2.65\times10^{-7}$ 4
7977.6	24 ⁽⁺⁾	357.2 3	100	7620.4 23 ⁽⁻⁾	E1	0.00953 14	α =0.00953 <i>14</i> ; α (K)=0.00814 <i>12</i> ; α (L)=0.001096 <i>16</i> ; α (M)=0.000234 <i>4</i> ;

29

						Au	opteu Levels, (sammas (continueu)
							a (148 cm)	(apptiqued)
							<u> </u>	(continued)
E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_{f}^{π}	Mult.@	α^{\dagger}	Comments
7977.6	24 ⁽⁺⁾	648.2 2		7329.3	22 ⁽⁺⁾	E2	0.00662 10	$\alpha(N+)=6.09\times10^{-5} 9$ $\alpha(N)=5.27\times10^{-5} 8; \ \alpha(O)=7.76\times10^{-6} 11; \ \alpha(P)=4.53\times10^{-7} 7$ $\alpha=0.00662 \ 10; \ \alpha(K)=0.00553 \ 8; \ \alpha(L)=0.000863 \ 13; \ \alpha(M)=0.000187 \ 3; \ \alpha(N+)=4.86\times10^{-5} 7$ $\alpha(N+)=4.86\times10^{-5} \ 6; \ \alpha(Q)=6 \ 13\times10^{-6} \ 0; \ \alpha(D)=3 \ 24\times10^{-7} \ 5$
8010 61	25(-)	677 7 1	100	7332 02	$23^{(-)}$			$a(\mathbf{N})=4.21\times10^{-6}$ 0; $a(\mathbf{O})=0.15\times10^{-6}$ 9; $a(\mathbf{P})=5.24\times10^{-6}$ 5
8214.5	25 ⁽⁻⁾	236.9 2	100	7977.6	24 ⁽⁺⁾	E1	0.0270	$\alpha(K)=0.0230 4; \alpha(L)=0.00316 5; \alpha(M)=0.000675 10; \alpha(N+)=0.0001751 25$ $\alpha(N)=0.0001517 22; \alpha(O)=2.21\times10^{-5} 4; \alpha(P)=1.239\times10^{-6} 18$
		594.2 2		7620.4	23(-)	E2	0.00821 12	$\alpha(1) = 0.00821 \ 12; \ \alpha(K) = 0.00682 \ 10; \ \alpha(L) = 0.001095 \ 16; \ \alpha(M) = 0.000238 \ 4; \\ \alpha(N+) = 6.17 \times 10^{-5} \ 9$
								$\alpha(N)=5.35\times10^{-5} 8$; $\alpha(O)=7.75\times10^{-6} 11$; $\alpha(P)=3.97\times10^{-7} 6$
8358.8	(24)	348.0 ^f 5		8010.61	$25^{(-)}$			
		1025.8 2		7332.92	$23^{(-)}$			
8602.2	$27^{(-)}$	591.6 <i>1</i>	100	8010.61	$25^{(-)}$			
8659.5	$26^{(+)}$	445.0 ^e 3		8214.5	$25^{(-)}$			
		681.4 ^{<i>f</i>} 5		7977.6	$24^{(+)}$			
8931.5?	(27)	272.0 5	100	8659.5	$26^{(+)}$			
9045.9	(26)	687.0 <i>3</i>		8358.8	(24)			
		1035.3 2		8010.61	$25^{(-)}$			
9601.2	29	999.0 2	100	8602.2	$27^{(-)}$			
9898.2	(28)	1296.0		8602.2	$27^{(-)}$			E_{ν} : doublet.
10439.0	31	837.8 2	100	9601.2	29			, ,
10609.1	(30)	1007.9 2	100	9601.2	29			
11524.7	(32)	915.0 ^f 5		10609.1	(30)			
		1085.7 2		10439.0	31			

Adapted Levels Common (continued)

30

[†] Additional information 2.

[±] From β^- decay, ε decay, (n,γ) , (γ,γ') , $(n,n'\gamma)$, Coulomb ex., and (HI,xn γ) data.

[#] Relative photon branching from each level. [@] From $\alpha(K)exp$, $\gamma\gamma(\theta)$ in ¹⁴⁸Pm β^- decay (5.370 d, and 41.29 d); Ice, $\gamma(\theta)$ of polarized nuclei, and $\gamma\gamma(\theta)$ in ¹⁴⁸Eu ε decay; $\gamma(\theta)$ and linear polarization of gammas in $(n,n'\gamma)$; $\gamma(\theta)$, DCO, $\alpha(K)$ exp, linear polarization of gammas and $T_{1/2}$ in $(HI,xn\gamma)$. See individual data sets for details.

⁴⁸ From ¹⁴⁸ Pm $β^-$ decay (5.370 d). ^a From ¹⁴⁸ Pm $β^-$ decay (41.29 d). ^b From ¹⁴⁸ Eu ε decay.

^{*c*} From $(n,n'\gamma)$.

^{*d*} From (HI,xn γ).

^e Multiply placed.

^f Placement of transition in the level scheme is uncertain.

 $^{148}_{62}\mathrm{Sm}_{86}\text{--}30$

From ENSDF

¹⁴⁸₆₂Sm₈₆

 $^{148}_{62}{
m Sm}_{86}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁴⁸₆₂Sm₈₆

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁴⁸₆₂Sm₈₆

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $---- \sim \gamma$ Decay (Uncertain)

¹⁴⁸₆₂Sm₈₆

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) + 1399.00 148. > 100 -25-0-5-1-0-5-20-.5 100 20 3063.25 3-8 3050.5 $\frac{\frac{1}{3^{-},4^{-}}}{\frac{3^{+},4^{+}}{3^{+},4^{+}}}$ æ 3038.8 41.4 fs 22 <u>_</u>e 3014.1 Ę. &_ 936 | 36.38 | 2991.78 24173 8 2980.50 S. $\frac{8^{-}}{3^{+},4^{+}}$ 2976.32 S \$ 2967.6 -%ŝ 2952.7 <u>ر</u>ې. -8 ŝ $\frac{8^{-}}{2^{+},3^{-}}$ 2942.82 . مي ا $\begin{array}{c|c} & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$ 6.39 S 2941.1 2931.98 $(4,5,6)^+$. ~. 2928.84 3-,4-2908.13 2891.8 $\frac{3^+,4^+}{4^-,5^-}$ 2862.06 2861.07 5+,6+ 2374.447 $\frac{\frac{5^+}{7^-}}{\frac{4^+}{6^+}}$ 2214.215 Т ¥ ¥ 2128.64 ¥ 2111.053 2095.595 i ¥ 4 2031.403 4^+ 1733.465 2^{+} 1664.278 0.25 ps 8 5-1594.247 <u>1454.115</u> 285 fs 28 2^{+} 1180.261 2.39 ps 24 $\frac{4^{-1}}{3^{-1}}$ 1161.529 0.6 ps +4-2 ¥ ¥. 550.255 7.72 ps 32 2^{+} 0^+ 0.0 7×10¹⁵ y 3

¹⁴⁸₆₂Sm₈₆

Level Scheme (continued)

¹⁴⁸₆₂Sm₈₆

Level Scheme (continued)

 $^{148}_{62}{
m Sm}_{86}$

Level Scheme (continued)

From ENSDF

Adopted Levels, Gammas

Level Scheme (continued)

40

 $^{148}_{62}\mathrm{Sm}_{86}\text{--}40$

 $^{148}_{\ 62}{\rm Sm}_{86}$

 $^{148}_{62} \mathrm{Sm}_{86}\text{--}42$

 $^{148}_{62} \mathrm{Sm}_{86}\text{--}42$

From ENSDF

Adopted Levels, Gammas

Level Scheme (continued)

¹⁴⁸₆₂Sm₈₆

 $^{148}_{62}$ Sm₈₆

 $^{148}_{62}{
m Sm}_{86}$