### <sup>148</sup>Ce β<sup>-</sup> decay 2004Ko05,1983Ar15,1997Gr09

|                 |         | History           |                        |
|-----------------|---------|-------------------|------------------------|
| Туре            | Author  | Citation          | Literature Cutoff Date |
| Full Evaluation | N. Nica | NDS 117, 1 (2014) | 1-Oct-2013             |

Parent: <sup>148</sup>Ce: E=0.0;  $J^{\pi}=0^+$ ;  $T_{1/2}=56.8 \text{ s} 3$ ;  $Q(\beta^-)=2137 13$ ;  $\%\beta^-$  decay=100.0

2004Ko05: <sup>148</sup>Ce produced by on-line spectrometer KUR-ISOL following the <sup>235</sup>U(n,F) E=thermal reaction, implanted In tape and transported periodically to the measuring location equipped with three Si(Li) detectors, HPGE, and plastic scintillator detectors. Measured ce (FWHM=1.8 eV At 258 keV),  $\gamma$ ,  $\beta$ -gated ce and  $\gamma$ , ce- $\gamma$  coin, T<sub>1/2</sub>.

1997Gr09,1996Gr20: total absorption  $\gamma$ -ray spectrometer (TAGS) system used to measure  $\beta^-$  decay intensities, and the g.s.  $\beta^-$  feeding when operated in the  $4\pi\gamma$ - $\beta$  coin mode.

Measured:  $\gamma$ ,  $\gamma\gamma$ , K x ray (1983Ar15,1977Bj02,1974Ar25,1973SeYX),  $\beta\gamma$  (1978St03,1981Eb01),  $\gamma$  (1979Bo26), see 1986BuZV. Level scheme is that of 1983Ar15. TAGS data with a number of pseudolevels with a substantial  $\beta^-$  feeding to them indicates that the level scheme has large uncertainties associated with it.

#### <sup>148</sup>Pr Levels

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$    | T <sub>1/2</sub> | Comments                                                                |
|-----------------------|-----------------------|------------------|-------------------------------------------------------------------------|
| 0.0                   | 1-                    | 2.29 min 2       | $\%\beta^{-}=100$ (adopted value).<br>T <sub>1/2</sub> : adopted value. |
| 98.166 <i>3</i>       | 1-,2-,3-              |                  |                                                                         |
| 98.967 20             | $0^{-}, 1^{-}, 2^{-}$ |                  |                                                                         |
| 105.161 19            | $(0,1,2)^{-}$         |                  |                                                                         |
| 121.169 3             | $0^{-}, 1^{-}, 2^{-}$ |                  |                                                                         |
| 195.993 <i>13</i>     | 1                     |                  |                                                                         |
| 273.744 25            | $0^+, 1^+, 2^+$       |                  |                                                                         |
| 287.20 5              |                       |                  |                                                                         |
| 289.656 19            | +                     |                  |                                                                         |
| 332.75 9              |                       |                  |                                                                         |
| 352.70 8              | -                     |                  |                                                                         |
| 390.684 19            | $1^{+}$               |                  | $J^{\pi}$ : log ft=4.5 for $\beta^-$ decay from 0 <sup>+</sup> .        |
| 467.77 9              |                       |                  |                                                                         |
| 520.83 4              | 1+                    |                  | $J^{\pi}$ : log ft=5.0 for $\beta^-$ decay from 0 <sup>+</sup> .        |
| 626.36 20             |                       |                  |                                                                         |
| 765.45 11             | 1+                    |                  | $J^{\pi}$ : log $ft=5.6$ for $\beta^-$ decay from $0^+$ .               |

<sup>†</sup> From a least-squares fit to E $\gamma$  data (normalized  $\chi^2 = 1.95$ >critical  $\chi^2 = 1.76$ ).

<sup>‡</sup> Adopted Levels; supported by log *ft* values, level decay patterns and level systematics (1983Ar15).

#### $\beta^-$ radiations

When the calculated feeding overlaps zero within three standard deviations, the code GTOL (part of ENSDF Analysis Programs) calculates estimated upper limits (90% confidence level) which are given by evaluator In the table comments (see "Statistics for Nuclear and Particle Physics", Louis Lyons, Cambridge University Press, 1986).

| E(decay)  | E(level) | Iβ <sup>−†‡@</sup> | Log ft        | Comments                                                                          |
|-----------|----------|--------------------|---------------|-----------------------------------------------------------------------------------|
| (1372 13) | 765.45   | 2.1 3              | 5.57 7        | av $E\beta$ =496.4 56<br>I $\beta$ <sup>-</sup> : 5.31-7.08 from TAGS (1997Gr09). |
| (1511 13) | 626.36   | 0.70 16            | 6.20 10       | av $E\beta$ =556.0 57<br>$I\beta^-$ : 2.48 from TAGS (1997Gr09).                  |
| (1616 13) | 520.83   | 16.3 9             | 4.95 <i>3</i> | av $E\beta$ =601.7 57<br>I $\beta$ <sup>-</sup> : 16.68 from TAGS (1997Gr09).     |
| (1669 13) | 467.77   | 3.3 <i>3</i>       | 5.70 5        | av E $\beta$ =624.9 57                                                            |

### <sup>148</sup>Ce β<sup>-</sup> decay 2004Ko05,1983Ar15,1997Gr09 (continued)

#### $\beta^{-}$ radiations (continued)

| E(decay)                            | E(level) | Iβ <sup>−†‡@</sup> | Log ft  | Comments                                                                                                                   |
|-------------------------------------|----------|--------------------|---------|----------------------------------------------------------------------------------------------------------------------------|
|                                     |          |                    |         | $I\beta^{-}$ : 3.34 from TAGS (1997Gr09).                                                                                  |
| (1746 13)                           | 390.684  | 59 4               | 4.52 4  | av E $\beta$ =658.7 58                                                                                                     |
| (1504.10)                           | 252 50   |                    | 6.01 7  | $I\beta^{-}$ : 51.09 from TAGS (1997Gr09).                                                                                 |
| (1784-13)                           | 352.70   | 2.1 3              | 6.01 7  | av $E\beta = 6/5.4.58$                                                                                                     |
| (10048 12)                          | 222 75   |                    |         | $1\beta$ : 2.19 from TAGS (1997Gr09).                                                                                      |
| $(1804^{\circ} 13)$                 | 332.75   |                    |         | $\mu$ : 0.0 from IAGS (199/Gr09); 0.00 19 from I( $\gamma$ +ce) imbalance; GIOL upper limit (method 1): 0.3                |
| (1847 13)                           | 289.656  | 0.1 16             | 77      | av $E\beta$ =703.2.58                                                                                                      |
| ()                                  |          |                    |         | $I\beta^-$ : 5.84 from TAGS (1997Gr09); GTOL upper limit (method 1): 2.7.                                                  |
| (1850 13)                           | 287.20   | 0.1 7              | 73      | av E $\beta$ =704.3 58                                                                                                     |
|                                     |          |                    |         | $I\beta^-$ : 0.73 from TAGS (1997Gr09); GTOL upper limit (method 1): 1.1.                                                  |
| (1863 & 13)                         | 273.744  |                    |         | I $\beta^-$ : 1.67 from TAGS (1997Gr09); -2.1 <i>10</i> from I( $\gamma$ +ce) imbalance; GTOL upper limit (method 1): 0.7. |
| (1941 13)                           | 195.993  | 5.8 17             | 5.71 13 | av E $\beta$ =744.8 58                                                                                                     |
|                                     |          |                    |         | $I\beta^-$ : 1.88 from TAGS (1997Gr09); GTOL upper limit (method 1): 9.2.                                                  |
| (2016 <sup>#&amp;</sup> 13)         | 121.169  |                    |         | $I\beta^-$ : 6 3 from I( $\gamma$ +ce) imbalance; GTOL upper limit (method 1): 9.2.                                        |
| (2032 <sup>#&amp;</sup> 13)         | 105.161  |                    |         | $I\beta^-$ : 1 3 from I( $\gamma$ +ce) imbalance; GTOL upper limit (method 1): 5.3.                                        |
| (2038 <sup>#</sup> <i>13</i> )      | 98.967   |                    |         | I $\beta^-$ : 5.6 19 from I( $\gamma$ +ce) imbalance.                                                                      |
| (2039 <sup>#</sup> <i>13</i> )      | 98.166   |                    |         | $I\beta^-$ : 0.0 4 from I( $\gamma$ +ce) imbalance; GTOL upper limit (method 1): 0.6.                                      |
| (2137 <sup>#&amp;</sup> <i>13</i> ) | 0.0      |                    |         | I $\beta^-$ : 4 5 (1983Ar15); 0 6 from I( $\gamma$ +ce) imbalance; GTOL upper limit (method 1): 0.7.                       |

<sup>†</sup> From I( $\gamma$ +ce) imbalances at each level, unless indicated otherwise. In computing I( $\gamma$ +ce), 1983Ar15 assumed that  $\gamma$ 's from E(level)<380 keV were M1, and  $\gamma$ 's from E(level)>380 keV were E1 in general. The evaluator has changed these assumed multipolarities to be consistent with  $\Delta J^{\pi}$ .

<sup>‡</sup> TAGS analysis gives the following pseudolevels and associated I $\beta$  (in %) in addition to the discrete levels listed. 880 keV 1.56; 970 keV 1.15-2.29; 1060 keV 0.73; 1150 keV 2.35; 1260 keV  $\leq$ 1.33; 1360 keV 0.31; and 1430 keV 0.57. The TAGS spectrum of <sup>148</sup>Ce 56s decay, while predominantly <sup>148</sup>Ce, is estimated to contain<10% contribution from <sup>148</sup>Pr 2.0 min decay. A simultaneous analysis of both these nuclides was done, and the authors feel that in the energy range from $\approx$ 750 keV to $\approx$ 1300 keV, there is some ambiguity in the final results because of overlapping peaks. Since the resolution of the TAGS system is typically 50-100 keV, the intensity assigned to a pseudolevel may represent  $\beta^-$  feeding to a single level or a group of levels. The same limitation applies to the intensity assigned to a known level, since it could include feeding to known or unknown levels in the resolution energy range.

<sup>#</sup>  $\Sigma$  I $\beta$  over g.s. and first four excited states is 0.0% 21 from TAGS analysis (1997Gr09).

<sup>@</sup> Absolute intensity per 100 decays.

<sup>&</sup> Existence of this branch is questionable.

 $\gamma(^{148}{\rm Pr})$ 

I $\gamma$  normalization: from  $\Sigma I(\gamma+ce)=100\%$  to g.s. and assuming no  $\beta^-$  feeding to g.s. as found by TAGS analysis (1997Gr09).  $\alpha(K)$ exp were derived from I $\gamma$  and I(K x ray) for the same transition (1983ChZG).

| Eγ      | $I_{\gamma}^{\&}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$   | $\mathrm{J}_f^\pi$ | Mult. <sup>‡</sup> | $\alpha^{\dagger}$ | Comments                                                                                                                                    |
|---------|-------------------|---------------|----------------------|---------|--------------------|--------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 74.5 5  | 84                | 195.993       | 1                    | 121.169 | 0-,1-,2-           | [M1]               | 3.02 8             | $\alpha(K)=2.57$ 7; $\alpha(L)=0.356$ 9; $\alpha(M)=0.0751$ 19;<br>$\alpha(N+)=0.0197$ 5                                                    |
| 90.89.3 | 123 7             | 195,993       | 1                    | 105.161 | $(0.1.2)^{-}$      | $M1.E2^{@}$        | 2.3.7              | $\alpha(N)=0.0168 \ 4; \ \alpha(O)=0.00270 \ 7; \ \alpha(P)=0.000198 \ 5 \ \alpha(K)=1.52 \ 8; \ \alpha(L)=0.6 \ 5; \ \alpha(M)=0.14 \ 11;$ |

 $^{148}_{59}\mathrm{Pr}_{89}$ -3

|                                       |                  |                        | <sup>148</sup> Ce /                            | $^{148}$ Ce $\beta^-$ decay |                                                | 5,1983Ar15,        | 1997Gr09           | (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|---------------------------------------|------------------|------------------------|------------------------------------------------|-----------------------------|------------------------------------------------|--------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $\gamma(^{148}\text{Pr})$ (continued) |                  |                        |                                                |                             |                                                |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| $E_{\gamma}$                          | Ι <sub>γ</sub> & | E <sub>i</sub> (level) | $\mathrm{J}_i^\pi$                             | $E_f$                       | $\mathbf{J}_f^{\pi}$                           | Mult. <sup>‡</sup> | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 98.0 <i>1</i>                         | 77 5             | 195.993                | 1                                              | 98.166                      | 1 <sup>-</sup> ,2 <sup>-</sup> ,3 <sup>-</sup> | [M1]               | 1.372              | $\begin{array}{l} \alpha(\mathrm{N}+)=0.036\ 25\\ \alpha(\mathrm{N})=0.031\ 22;\ \alpha(\mathrm{O})=0.004\ 3;\\ \alpha(\mathrm{P})=9.7\times10^{-5}\ 15\\ \mathrm{Mult.:}\ \alpha(\mathrm{K})\exp=1.11\ 10\ (2004\mathrm{Ko05});\\ \alpha(\mathrm{K})\exp=1.4\ 1\ (1983\mathrm{ChZG}).\\ \alpha(\mathrm{K})=1.168\ 17;\ \alpha(\mathrm{L})=0.1612\ 23;\\ \alpha(\mathrm{M})=0.0340\ 5;\ \alpha(\mathrm{N}+)=0.00891\ 13\\ \alpha(\mathrm{N})=0.00760\ 11;\ \alpha(\mathrm{O})=0.001223\ 18;\\ \alpha(\mathrm{P})=8\ 97\times10^{-5}\ 13\\ \end{array}$ |  |  |  |
| 98.166 <i>3</i>                       | 93 <i>5</i>      | 98.166                 | 1-,2-,3-                                       | 0.0                         | 1-                                             | E2 <sup>#</sup>    | 2.26               | $\alpha(K) = 0.57 \times 10^{-15}$ $\alpha(K) = 1.279 \ 18; \ \alpha(L) = 0.770 \ 11; \ \alpha(M) = 0.1735 \ 25; \ \alpha(N+) = 0.0428 \ 6$ $\alpha(N) = 0.0375 \ 6; \ \alpha(O) = 0.00523 \ 8; \ \alpha(P) = 6.65 \times 10^{-5} \ 10$ $E_{\gamma}: \ from \ 1979Bo26.$ Mult.: $\alpha(K)exp = 1.3 \ 2, \ \alpha = 2.6 \ 3$ (1983ChZG).                                                                                                                                                                                                               |  |  |  |
| 98.99 <i>3</i>                        | 742 40           | 98.967                 | 0-,1-,2-                                       | 0.0                         | 1-                                             | M1 <sup>#</sup>    | 1.333              | $\begin{aligned} &\alpha(\text{K}) = 1.135 \ I6; \ \alpha(\text{L}) = 0.1566 \ 22; \\ &\alpha(\text{M}) = 0.0330 \ 5; \ \alpha(\text{N}+) = 0.00866 \ I3 \\ &\alpha(\text{N}) = 0.00738 \ I1; \ \alpha(\text{O}) = 0.001188 \ I7; \\ &\alpha(\text{P}) = 8.72 \times 10^{-5} \ I3 \\ &\text{Mult.:} \ \alpha(\text{K}) \text{exp} = 0.9 \ 2 \ (1983\text{ChZG}). \end{aligned}$                                                                                                                                                                        |  |  |  |
| 101.029 4                             | 215 11           | 390.684                | 1+                                             | 289.656                     | +                                              | M1,E2 <sup>@</sup> | 1.7 4              | $\alpha(K)=1.12 \ 6; \ \alpha(L)=0.4 \ 3; \ \alpha(M)=0.09 \ 6;$<br>$\alpha(N+)=0.023 \ 15$<br>$\alpha(N)=0.020 \ 13; \ \alpha(O)=0.0029 \ 18;$<br>$\alpha(P)=7.2\times10^{-5} \ 11$<br>$E_{\gamma}: \ from \ 1979Bo26.$<br>Mult.: $\alpha(K)exp=0.94 \ 6 \ (2004Ko05);$<br>$\alpha(K)exp=0.5 \ 2 \ (1983Cb7G)$                                                                                                                                                                                                                                        |  |  |  |
| 103.2 <i>1</i>                        | 15 <i>15</i>     | 390.684                | 1+                                             | 287.20                      |                                                | [M1]               | 1.184              | $\alpha(K) = 0.052 \ (1)050 \ (120).$ $\alpha(K) = 1.008 \ 15; \ \alpha(L) = 0.1390 \ 20;$ $\alpha(M) = 0.0293 \ 5; \ \alpha(N+) = 0.00768 \ 11$ $\alpha(N) = 0.00655 \ 10; \ \alpha(O) = 0.001054 \ 15;$ $\alpha(P) = 7.74 \times 10^{-5} \ 11$                                                                                                                                                                                                                                                                                                       |  |  |  |
| 105.20 <i>3</i>                       | 314 15           | 105.161                | (0,1,2)-                                       | 0.0                         | 1-                                             | M1,E2 <sup>@</sup> | 1.4 4              | $\alpha(K)=1.00 \ 5; \ \alpha(L)=0.35 \ 22; \ \alpha(M)=0.08 \ 5; \\ \alpha(N+)=0.019 \ 12 \\ \alpha(N)=0.017 \ 11; \ \alpha(O)=0.0024 \ 15; \\ \alpha(P)=6.4\times10^{-5} \ 10 \\ Mult.: \ \alpha(K)exp=0.75 \ 6 \ (2004Ko05); \\ \alpha(K)exp=0.9 \ 1 \ (1983ChZG). $                                                                                                                                                                                                                                                                                |  |  |  |
| 116.92 3                              | 225 12           | 390.684                | 1+                                             | 273.744                     | 0+,1+,2+                                       | M1,E2 <sup>@</sup> | 1.02 20            | $\alpha(K)=0.73$ 3; $\alpha(L)=0.23$ 13; $\alpha(M)=0.05$ 3;<br>$\alpha(N+)=0.013$ 8<br>$\alpha(N)=0.011$ 7; $\alpha(O)=0.0016$ 9;<br>$\alpha(P)=4.8\times10^{-5}$ 7<br>E <sub>y</sub> : 117.336 7 (1979Bo26) probably<br>belongs to another nuclide (1983Ar15).<br>Mult.: $\alpha(K)\exp=0.98$ 9 (2004Ko05);<br>$\alpha(K)\exp=0.6$ 2 (1983ChZG).                                                                                                                                                                                                     |  |  |  |
| 121.169 <i>3</i>                      | 790 <i>38</i>    | 121.169                | 0 <sup>-</sup> ,1 <sup>-</sup> ,2 <sup>-</sup> | 0.0                         | 1-                                             | M1,E2 <sup>@</sup> | 0.91 <i>16</i>     | $\alpha(K)=0.661\ 25;\ \alpha(L)=0.20\ 11;$<br>$\alpha(M)=0.043\ 25;\ \alpha(N+)=0.011\ 6$<br>$\alpha(N)=0.009\ 6;\ \alpha(O)=0.0014\ 7;$<br>$\alpha(P)=4.3\times10^{-5}\ 6$<br>$E_{\gamma}:\ from\ 1979Bo26.$<br>Mult.: $\alpha(K)exp=0.53\ 4\ (2004Ko05);$<br>$\alpha(K)axp=0.5\ 2\ 4(2004Ko05);$                                                                                                                                                                                                                                                    |  |  |  |
| 167.8 2                               | 66 7             | 520.83                 | 1+                                             | 352.70                      | -                                              | [E1]               | 0.0607             | $\alpha(K)=0.0519 \ 8; \ \alpha(L)=0.00703 \ 11;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |

 $^{148}_{59}\mathrm{Pr}_{89}$ -4

## <sup>148</sup>Ce β<sup>-</sup> decay 2004Ko05,1983Ar15,1997Gr09 (continued)

# $\gamma(^{148}\text{Pr})$ (continued)

| Eγ             | Ι <sub>γ</sub> & | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$   | $\mathrm{J}_f^\pi$                             | Mult. <sup>‡</sup> | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                |
|----------------|------------------|------------------------|----------------------|---------|------------------------------------------------|--------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                  |                        |                      |         |                                                |                    |                    | $\alpha(M)=0.001473 \ 22; \ \alpha(N+)=0.000380 \ 6 \ \alpha(N)=0.000326 \ 5; \ \alpha(O)=5.11\times10^{-5} \ 8; \ \alpha(D)=2.20\times10^{-6} \ 5 \ 5 \ \alpha(D)=5.11\times10^{-5} \ 8;$                                                              |
| 168.52 4       | 20 3             | 273.744                | 0+,1+,2+             | 105.161 | (0,1,2) <sup>-</sup>                           | [E1]               | 0.0600             | $\begin{array}{l} \alpha(\mathrm{P}) = 3.29 \times 10^{-6} \ \mathrm{S} \\ \alpha(\mathrm{K}) = 0.0513 \ 8; \ \alpha(\mathrm{L}) = 0.00695 \ 10; \\ \alpha(\mathrm{M}) = 0.001455 \ 21; \ \alpha(\mathrm{N}+) = 0.000376 \\ 6 \end{array}$              |
|                |                  |                        |                      |         |                                                |                    |                    | $\alpha$ (N)=0.000322 5; $\alpha$ (O)=5.05×10 <sup>-5</sup> 7;<br>$\alpha$ (P)=3.25×10 <sup>-6</sup> 5                                                                                                                                                  |
| 184.53 4       | 99 <i>5</i>      | 289.656                | +                    | 105.161 | (0,1,2)-                                       | E1 <sup>@</sup>    | 0.0469             | $\alpha$ (K)=0.0401 6; $\alpha$ (L)=0.00541 8;<br>$\alpha$ (M)=0.001132 16; $\alpha$ (N+)=0.000293 5                                                                                                                                                    |
|                |                  |                        |                      |         |                                                |                    |                    | $\alpha$ (N)=0.000251 4; $\alpha$ (O)=3.94×10 <sup>-5</sup> 6;<br>$\alpha$ (P)=2.57×10 <sup>-6</sup> 4                                                                                                                                                  |
| 187.9 2        | 90 <i>5</i>      | 520.83                 | 1+                   | 332.75  |                                                | [E1]               | 0.0447             | Mult.: $\alpha$ (K)exp=0.021 7 (2004Ko05).<br>$\alpha$ (K)=0.0382 6; $\alpha$ (L)=0.00514 8;<br>$\alpha$ (M)=0.001077 16; $\alpha$ (N+)=0.000279<br>4                                                                                                   |
|                |                  |                        |                      |         |                                                |                    |                    | $\alpha$ (N)=0.000239 4; $\alpha$ (O)=3.75×10 <sup>-5</sup> 6;<br>$\alpha$ (P)=2.45×10 <sup>-6</sup> 4                                                                                                                                                  |
| 188.5 <i>3</i> | 69 7             | 287.20                 |                      | 98.967  | 0 <sup>-</sup> ,1 <sup>-</sup> ,2 <sup>-</sup> | [E1]               | 0.0443             | $\alpha$ (K)=0.0379 6; $\alpha$ (L)=0.00510 8;<br>$\alpha$ (M)=0.001068 16; $\alpha$ (N+)=0.000276<br>4                                                                                                                                                 |
|                |                  |                        |                      |         |                                                |                    |                    | $\alpha$ (N)=0.000237 4; $\alpha$ (O)=3.72×10 <sup>-5</sup> 6;<br>$\alpha$ (P)=2.43×10 <sup>-6</sup> 4                                                                                                                                                  |
| 191.6 <i>I</i> | 99.6             | 289.656                | Ŧ                    | 98.166  | 1-,2-,3-                                       | [M1]               | 0.209              | $\alpha$ (K)=0.179 3; $\alpha$ (L)=0.0243 4;<br>$\alpha$ (M)=0.00513 8; $\alpha$ (N+)=0.001345<br>19                                                                                                                                                    |
|                |                  |                        |                      |         |                                                |                    |                    | $\alpha$ (N)=0.001147 <i>17</i> ; $\alpha$ (O)=0.000185 <i>3</i> ;<br>$\alpha$ (P)=1.366×10 <sup>-5</sup> <i>20</i>                                                                                                                                     |
|                |                  |                        |                      |         |                                                |                    |                    | $E_{\gamma}$ : 190.839 6 (1979Bo26) probably<br>belongs to another nuclide<br>(1983Ar15)                                                                                                                                                                |
| 193.8 2        | 20 4             | 467.77                 |                      | 273.744 | 0+,1+,2+                                       | [E1]               | 0.0411             | $\alpha(K)=0.03515; \alpha(L)=0.004727; \alpha(M)=0.00098915; \alpha(N+)=0.0002564$                                                                                                                                                                     |
|                |                  |                        |                      |         |                                                |                    |                    | $\alpha$ (N)=0.000219 4; $\alpha$ (O)=3.45×10 <sup>-5</sup> 5;<br>$\alpha$ (P)=2.26×10 <sup>-6</sup> 4                                                                                                                                                  |
| 194.69 5       | 240 3            | 390.684                | 1+                   | 195.993 | 1                                              | [E1]               | 0.0406             | $\alpha(K) = 0.0347 5; \alpha(L) = 0.00467 7; \alpha(M) = 0.000977 14; \alpha(N+) = 0.000253 4$                                                                                                                                                         |
|                |                  |                        |                      |         |                                                |                    |                    | $\alpha$ (N)=0.000217 3; $\alpha$ (O)=3.41×10 <sup>-5</sup> 5;<br>$\alpha$ (P)=2.24×10 <sup>-6</sup> 4                                                                                                                                                  |
| 195.977 14     | 390 20           | 195.993                | 1                    | 0.0     | 1-                                             | [M1]               | 0.197              | $\alpha$ (K)=0.1679 24; $\alpha$ (L)=0.0229 4;<br>$\alpha$ (M)=0.00482 7; $\alpha$ (N+)=0.001264<br>18                                                                                                                                                  |
|                |                  |                        |                      |         |                                                |                    |                    | $\alpha$ (N)=0.001078 <i>15</i> ; $\alpha$ (O)=0.0001736<br>25; $\alpha$ (P)=1.284×10 <sup>-5</sup> <i>18</i><br>E <sub>y</sub> : from 1979Bo26.                                                                                                        |
| 231.6 2        | 20 4             | 352.70                 | _                    | 121.169 | 0-,1-,2-                                       | M1,E2 <sup>@</sup> | 0.121 5            | $\alpha(\mathbf{K})=0.098 \ 9; \ \alpha(\mathbf{L})=0.018 \ 4; \ \alpha(\mathbf{M})=0.0038 \ 8; \ \alpha(\mathbf{N}+)=0.00098 \ 19 \ \alpha(\mathbf{N})=0.00084 \ 17; \ \alpha(\mathbf{O})=0.000129 \ 20; \ \alpha(\mathbf{O})=6 \ 0\times10^{-6} \ 13$ |
|                |                  |                        |                      |         |                                                |                    |                    | Mult.: $\alpha(K) \exp[-0.119 \ 20 \ (2004Ko05)]$ .                                                                                                                                                                                                     |

#### <sup>148</sup>Ce $\beta^-$ decay 2004Ko05,1983Ar15,1997Gr09 (continued) $\gamma(^{148}\text{Pr})$ (continued) $\alpha^{\dagger}$ $I_{\gamma}^{\&}$ Mult.<sup>‡</sup> Eγ E<sub>i</sub>(level) $\mathbf{J}_{f}^{\pi}$ Comments $E_f$ 233.71 5 520.83 $1^{+}$ [M1] 0.1221 $\alpha(K)=0.1042$ 15; $\alpha(L)=0.01413$ 20; 60.6 287.20 α(M)=0.00297 5; α(N+..)=0.000780 11 $\alpha$ (N)=0.000665 10; $\alpha$ (O)=0.0001072 15; $\alpha(P)=7.95\times10^{-6}$ 12 E<sub>γ</sub>: 233.844 *13* (1979Bo26) probably belongs to another nuclide (1983Ar15). 247.52 9 56 6 352.70 105.161 (0,1,2)-[M1] 0.1046 $\alpha(K)=0.0893 \ 13; \ \alpha(L)=0.01209 \ 17;$ α(M)=0.00254 4; α(N+..)=0.000668 10 $\alpha(N)=0.000569 \ 8; \ \alpha(O)=9.18\times 10^{-5} \ 13;$ $\alpha(P) = 6.81 \times 10^{-6} 10$ E<sub>v</sub>: 247.086 25 (1979Bo26) probably belongs to another nuclide (1983Ar15). E1<sup>@</sup> $1^{+}$ 121.169 0-,1-,2-269.52 5 1018 51 390.684 0.01713 $\alpha(K)=0.01468\ 21;\ \alpha(L)=0.00194\ 3;$ α(M)=0.000407 6; α(N+..)=0.0001057 15 $\alpha(N)=9.04\times10^{-5}$ 13; $\alpha(O)=1.431\times10^{-5}$ 20; $\alpha(P)=9.75\times10^{-7}$ 14 E<sub>v</sub>: from 1979Bo26. Mult.: $\alpha$ (K)exp=0.0097 8 (2004Ko05); $\alpha$ (K)exp=0.022 8 (1983ChZG). $\alpha(K)=0.01440\ 21;\ \alpha(L)=0.00191\ 3;$ 271.5 2 40 6 467.77 195.993 1 [E1] 0.01681 α(M)=0.000399 6; α(N+..)=0.0001036 15 $\alpha(N)=8.86\times10^{-5}$ 13; $\alpha(O)=1.404\times10^{-5}$ 20; $\alpha$ (P)=9.58×10<sup>-7</sup> 14 E1<sup>@</sup> 273.77 5 326 16 273.744 $0^+, 1^+, 2^+$ 0.0 1-0.01645 $\alpha(K)=0.01409\ 20;\ \alpha(L)=0.00187\ 3;$ $\alpha(M)=0.000390$ 6; $\alpha(N+..)=0.0001014$ 15 $\alpha(N) = 8.67 \times 10^{-5}$ 13; $\alpha(O) = 1.374 \times 10^{-5}$ 20: $\alpha(P)=9.38\times10^{-7}$ 14 Mult.: $\alpha$ (K)exp=0.0086 18 (2004Ko05). $1^{+}$ 285.5 1 48 5 [E1] 0.01476 $\alpha(K)=0.01265$ 18; $\alpha(L)=0.001671$ 24; 390.684 $105.161 \quad (0,1,2)^{-1}$ $\alpha(M)=0.000350$ 5; $\alpha(N+..)=9.09\times10^{-5}$ 13 $\alpha(N)=7.77\times10^{-5}$ 11; $\alpha(O)=1.232\times10^{-5}$ 18; $\alpha(P)=8.44\times10^{-7}$ 12 $1^{-}$ 0.0 0.01454 *α*(K)=0.01246 *18*; *α*(L)=0.001646 *23*; 287.17 10 110 10 287.20 [E1] $\alpha(M)=0.000344$ 5; $\alpha(N+..)=8.95\times10^{-5}$ 13 $\alpha(N)=7.65\times10^{-5}$ 11; $\alpha(O)=1.214\times10^{-5}$ 17; $\alpha$ (P)=8.32×10<sup>-7</sup> 12 1- $\alpha(K)=0.0588 9; \alpha(L)=0.00793 12;$ 289.64 6 340 20 289.656 0.0 [M1] 0.0689 $\alpha(M)=0.001667\ 24;\ \alpha(N+..)=0.000438$ 7 $\alpha$ (N)=0.000373 6; $\alpha$ (O)=6.01×10<sup>-5</sup> 9; $\alpha(P)=4.47\times10^{-6}$ 7 E1@ 291.724 17 1000 50 390.684 $1^{+}$ 98.967 0-,1-,2-0.01396 $\alpha(K)=0.01197 \ 17; \ \alpha(L)=0.001579 \ 23;$ $\alpha(M)=0.000331$ 5; $\alpha(N+..)=8.59\times10^{-5}$ 12 $\alpha(N)=7.35\times10^{-5}$ 11; $\alpha(O)=1.165\times10^{-5}$ 17; $\alpha(P)=8.00\times10^{-7}$ 12 E<sub>v</sub>: from 1979Bo26. Mult.: $\alpha$ (K)exp=0.0086 9 (2004Ko05). $1^{+}$ 324.85 5 453 20 520.83 195.993 1 [E1] 0.01062 $\alpha(K)=0.00911$ 13; $\alpha(L)=0.001197$ 17;

|           |                     |                        | 1                    | $^{48}$ Ce $\beta^-$ d | ecay 2                | 004Ko05,19                      | 983Ar15,19970      | Gr09 (continued)                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|---------------------|------------------------|----------------------|------------------------|-----------------------|---------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                     |                        |                      |                        |                       | $\gamma$ <sup>(148</sup> Pr) (c | continued)         |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Eγ        | Iγ <sup>&amp;</sup> | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$                  | $\mathbf{J}_f^\pi$    | Mult. <sup>‡</sup>              | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                           |
| 332.7 1   | 90 9                | 332.75                 |                      | 0.0                    | 1-                    | [M1]                            | 0.0478             | $\begin{aligned} &\alpha(M) = 0.000250 \ 4; \ \alpha(N+) = 6.51 \times 10^{-5} \ 10 \\ &\alpha(N) = 5.57 \times 10^{-5} \ 8; \ \alpha(O) = 8.85 \times 10^{-6} \ 13; \\ &\alpha(P) = 6.14 \times 10^{-7} \ 9 \\ &\alpha(K) = 0.0409 \ 6; \ \alpha(L) = 0.00549 \ 8; \\ &\alpha(M) = 0.001154 \ 17; \ \alpha(N+) = 0.000303 \ 5 \\ &\alpha(N) = 0.000258 \ 4; \ \alpha(O) = 4.16 \times 10^{-5} \ 6; \end{aligned}$ |
| 346.3 2   | 35 4                | 467.77                 |                      | 121.169                | 0-,1-,2-              | [E1]                            | 0.00905 13         | $\alpha(P)=3.10\times10^{-6} 5$<br>$\alpha=0.00905 \ 13; \ \alpha(K)=0.00776 \ 11;$<br>$\alpha(L)=0.001017 \ 15; \ \alpha(M)=0.000213 \ 3;$<br>$\alpha(N+)=5.54\times10^{-5} \ 8$<br>$\alpha(N)=4.73\times10^{-5} \ 7; \ \alpha(O)=7.53\times10^{-6} \ 11;$                                                                                                                                                        |
| 352.4 2   | 106 12              | 352.70                 | _                    | 0.0                    | 1-                    | [M1]                            | 0.0412             | $\alpha(P)=5.25\times10^{-7} 8$<br>$\alpha(K)=0.0352 5; \alpha(L)=0.00472 7;$<br>$\alpha(M)=0.000991 14; \alpha(N+)=0.000260 4$<br>$\alpha(N)=0.000222 4; \alpha(O)=3.58\times10^{-5} 5;$<br>$\alpha(P)=2.67\times10^{-6} 4$                                                                                                                                                                                       |
| 369.09 12 | 97 13               | 467.77                 |                      | 98.967                 | $0^{-}, 1^{-}, 2^{-}$ |                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 375.0 2   | 41 9                | 765.45                 | $1^{+}$              | 390.684                | 1+                    |                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 390.79 16 | 79 14               | 390.684                | $1^{+}$              | 0.0                    | 1-                    |                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 399.43 19 | 46 12               | 520.83                 | $1^{+}$              | 121.169                | 0-,1-,2-              |                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 421.78 6  | 218 11              | 520.83                 | $1^{+}$              | 98.967                 | $0^{-}, 1^{-}, 2^{-}$ |                                 |                    | $E_{\gamma}$ : from 1979Bo26.                                                                                                                                                                                                                                                                                                                                                                                      |
| 478.17 12 | 80 12               | 765.45                 | $1^{+}$              | 287.20                 |                       |                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 521.2 2   | 41 9                | 626.36                 |                      | 105.161                | $(0,1,2)^{-}$         |                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                    |

<sup>†</sup> Additional information 1. <sup>‡</sup>  $\gamma$ 's from E(level)>380 keV were assumed to be M1, and  $\gamma$ 's from E(level)>380 keV were assumed to be E1 in general by 1983Ar15, except as indicated otherwise. The evaluator has changed these multipolarities to be consistent with  $\Delta J^{\pi}$ .

<sup>#</sup> From  $\alpha$ (K)exp (1983ChZG).

<sup>@</sup> From  $\alpha$ (K)exp (2004Ko05).

& For absolute intensity per 100 decays, multiply by 0.0171 7.





7

 $^{148}_{59}\mathrm{Pr}_{89}\text{-}7$