		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 117, 1 (2014)	1-Oct-2013

Parent: ¹⁴⁸Tb: E=0.0; $J^{\pi}=2^{-}$; $T_{1/2}=60 \text{ min } l$; $Q(\varepsilon)=5738 \ l3$; $\%\varepsilon+\%\beta^+$ decay=100.0

1993KrZW,1992KrZN: measured E γ , I γ , $\gamma\gamma$ coin, ce, $\gamma(\theta)$ from oriented nuclei. The following levels with their assigned J^{π} by these authors have not been placed in the level scheme because their placement was not shown: scheme: 3521, 3795 (1,2⁺), 4274

 $(2^+,3,4^+), 4338 \ (3^-,4^+), 4559 \ (1^-,2^+), 4862 \ (2^-,3,4), 4960, 5018 \ (3,4), 5061 \ (3^-,4^+), 5303, 5400 \ (3^-,4^+).$

Measured: γ , $\gamma\gamma$ (1973Kr10,1973Vy01,1973Vy02,1974Ne01,1979ShZF,1985Ti03), $\gamma(\theta)$ (1985Ti01), ce (1973Vy01,1979ShZF),

 β^+ (1961Bo19,1975PyZZ), Gamow-Teller strength distribution (2003NaZV, 2001AlZY).

Decay scheme is that of 1979ShZF and 1985Ti03.

Level scheme is incomplete and the evaluated I β and I ε , especially for the weak transitions, are less reliable.

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0	0+	2188.67 4	2+	2632.81 9	5-	3130.87 16	$(1,2^{+})$
784.433 15	2+	2233.60 4	3-	2700.06 7	$(1^{-},2^{+})$	3295.03 15	$(1,2^+)$
1273.490 18	3-	2310.97 5	2+	2872.89 7	$(2^{-},3,4^{+})$	3574.94 21	$(1^{-},2^{+})$
1416.376 20	4+	2424.10 9	3 ⁺ ,4 ⁺ @	2886.31 10	$(2^+, 3, 4^+)$	4051.0 6	$(2^+, 3, 4^+)$
1834.59 5	2 ⁺ ,3 ⁺ #	2503.70 6	$(1,2,3)^{-}$	2915.51 8	3-	4068.24 25	(1)
1863.445 24	2+	2505.80 4	3-	3065		4542.27 22	
1912.98 7	4-	2522.03 11	4+	3076.12 24			
2082.00 7	5-	2614.59 5	2+	3089.65 8	$(1^{-},2^{+})$		

¹⁴⁸Gd Levels

[†] From a least-squares fit to $E\gamma$.

[‡] From Adopted Levels; supported by internal conversion data and $\gamma(\theta)$ of oriented nuclei from this decay.

[#] From $\gamma(\theta)$ from oriented nuclei (1993KrZW).

[@] From $\gamma(\theta)$ of oriented nuclei.

ε, β^+ radiations

 β^+ with E β =4610 80 (I β =1.00, I β /ce(K)(784 γ) \approx 10), 3840 150 (0.47), 2730 300 (0.75) (1975PyZZ); 4600, 2600 (1961Bo19) were observed. However, from $\epsilon/\beta^+=1.541$ 93 (to 1864 level) follows Q+=5290 50; therefore, E β +(g.s.)=4270 45 (1985Ti01). Level scheme is incomplete and the evaluated I β and I ϵ , especially for the weak transitions, are less reliable.

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(1196 13)	4542.27		0.81 6	6.72 4	0.81 6	εK=0.8334 1; εL=0.12899 9; εM+=0.03758 3
(1670 13)	4068.24	0.0047 7	0.60 7	7.16 6	0.60 7	av Eβ=303.1 57; εK=0.8298 5; εL=0.1258 2; εM+=0.03653 4
(1687 13)	4051.0	0.0048 20	0.55 22	7.20 18	0.55 22	av $E\beta$ =310.7 58; ε K=0.8292 5; ε L=0.1256 2; ε M+=0.03648 4
(2163 13)	3574.94	0.028 3	0.45 5	7.51 5	0.48 5	av E β =519.8 58; ε K=0.7899 18; ε L=0.1183 3; ε M+=0.03431 9
(2443 13)	3295.03	0.045 6	0.35 4	7.72 6	0.40 5	av Eβ=643.5 58; εK=0.744 3; εL=0.1110 4; εM+=0.03216 12
(2607 13)	3130.87	0.173 13	0.96 7	7.35 4	1.13 8	av Eβ=716.6 58; εK=0.710 3; εL=0.1057 5; εM+=0.03062 13
(2648 13)	3089.65	0.205 16	1.04 8	7.32 4	1.25 9	av E β =735.0 58; ε K=0.701 3; ε L=0.1043 5; ε M+=0.03020 14
(2662 13)	3076.12	0.084 12	0.42 6	7.73 7	0.50 7	av E β =741.0 58; ε K=0.698 3; ε L=0.1038 5; ε M+=0.03006 14

			¹⁴⁸ Tb ε deca	y (60 min)	1979ShZF,19	979ShZF,1985Ti03 (continued)					
				ϵ, β^+ radia	tions (continue	ed)					
E(decay)	E(level)	Iβ+ †	$\mathrm{I}arepsilon^\dagger$	Log <i>ft</i>	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments					
(2822 13)	2915.51	0.426 19	1.56 6	7.202 20	1.99 8	av E β =812.9 59; ε K=0.660 4; ε L=0.0979 5;					
(2852 13)	2886.31	0.20 2	0.71 9	7.56 6	0.91 11	εM +=0.02836 15 av E β =826.0 59; εK =0.653 4; εL =0.0968 5; εM +=0.02804 15					
(2865 13)	2872.89	0.342 19	1.17 6	7.342 25	1.51 8	av E β =832.0 59; ε K=0.649 4; ε L=0.0963 5;					
(3038 13)	2700.06	0.369 13	0.95 <i>3</i>	7.483 17	1.32 4	$ε_{M} = 0.0278975$ av Eβ=909.8 59; εK=0.605 4; εL=0.0896 6; εM+=0.0259375					
(3105 13)	2632.81	0.17 1	0.41 2	7.872 25	0.58 3	av $E\beta$ =940.2 59; ε K=0.587 4; ε L=0.0869 6; ε M = -0.02516 15					
(3123 13)	2614.59	0.82 4	1.86 10	7.216 25	2.68 14	av $E\beta$ =948.4 59; ε K=0.583 4; ε L=0.0862 6; ε M+=0.02495 15					
(3216 13)	2522.03	0.14 1	0.84 6	9.17 ¹ <i>u</i> 4	0.98 7	av $E\beta$ =994.9 57; ε K=0.7162 21; ε L=0.1089 4; ε M+=0.03166 11					
(3232 13)	2505.80	0.89 4	1.71 7	7.282 21	2.60 11	av $E\beta$ =997.6 59; ϵK =0.554 4; ϵL =0.0819 6; ϵM +=0.02370 15					
(3234 13)	2503.70	0.73 5	1.40 9	7.37 3	2.13 13	$\epsilon/\beta^{\circ} = 3.43$ // (19851101). av $E\beta = 988.6$ 59; $\epsilon K = 0.553$ 4; $\epsilon L = 0.0818$ 6;					
(3314 <i>13</i>)	2424.10	0.39 3	0.68 6	7.71 4	1.07 9	ϵM +=0.02308 15 av E β =1034.7 59; ϵK =0.533 4; ϵL =0.0787 5; ϵM +=0.02277 15					
(3427 13)	2310.97	0.722 22	1.08 3	7.534 16	1.80 5	av E β =1086.1 60; ϵ K=0.503 4; ϵ L=0.0743 5; ϵ M+=0.02150 15					
(3504 13)	2233.60	0.84 4	1.15 6	7.528 24	1.99 10	av $E\beta$ =1121.3 60; ε K=0.484 4; ε L=0.0714 5; ε M+=0.02065 15					
(3549 13)	2188.67	1.82 4	2.33 5	7.230 14	4.15 9	Iε: $ε/β^+=3.23$ 88 (19851). av Eβ=1141.8 60; εK=0.473 4; εL=0.0697 5; εM+=0.02016 14					
(3825 13)	1912.98	1.05 6	0.98 6	7.67 3	2.03 12	av $E\beta$ =1267.9 60; ε K=0.407 3; ε L=0.0600 5; ε M+=0.01734 13					
3.75×10 ³ 30	1863.445	9.36 18	8.34 16	6.754 12	17.7 3	av $E\beta$ =1290.7 60; ε K=0.396 3; ε L=0.0583 5; ε M+=0.01686 13 I ε : ε/β^+ =1.541 93; ε K(exp)/ β^+ =1.265 100 (1985Ti01).					
(3903 13)	1834.59	0.44 2	0.38 1	8.101 <i>19</i>	0.82 3	$I\beta^+$: $I\beta^+$ (rel)=0.75. av $E\beta$ =1303.9 60; ε K=0.390 3; ε L=0.0574 5; ε M=-0.01659 13					
(4322 13)	1416.376	2.79 10	4.22 15	8.992 ¹ <i>u</i> 19	7.01 24	av E β =1485.3 59; ε K=0.504 3; ε L=0.0756 4;					
(4465 13)	1273.490	6.3 <i>3</i>	3.2 2	7.294 25	9.5 5	av E β =1563.0 61; ε K=0.2838 21; ε L=0.0417 4; ε M+=0.01204 9					
(4954 13)	784.433	21.8 13	7.5 5	7.02 3	29.3 18	av $E\beta$ =1790.7 61; ε K=0.2156 16; ε L=0.03159 23; ε M+=0.00913 7 B^+ : $L^{e}(re) = 0.47$ (1075Py/27)					
(5738 13)	0.0	≈3.0	≈1.5	≈9.9 ¹ <i>u</i>	≈4.5	av $E\beta$ =2127.6 60; εK =0.2725 16; εL =0.04045 24; εM +=0.01171 7 I(ε + β ⁺): from I β ⁺ /ce(K)(784 γ) \approx 10 (1975PyZZ), ε/β^{+} ratio, and sum of I γ , I ε +I β ⁺ to g.s.=100.					

[†] Absolute intensity per 100 decays.

$\gamma(^{148}\text{Gd})$

I γ normalization: from I β^+ /ce(K)(784 γ) \approx 10 to g.s. (1975PyZZ), and Σ I γ , I β^+ , I ε to g.s.=100. α (K)exp were normalized to α (K)(784 γ)=0.0039 (E2) (1979ShZF,1993KrZW).

E_{γ}^{\dagger}	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{\&}$	α^{a}	Comments
142.878 14	0.367 17	1416.376	4+	1273.490	3-	E1		0.1116	$\begin{aligned} &\alpha(\text{K}) = 0.0941 \ 14; \ \alpha(\text{L}) = 0.01368 \ 20; \ \alpha(\text{M}) = 0.00296 \ 5 \\ &\alpha(\text{N}) = 0.000672 \ 10; \ \alpha(\text{O}) = 9.98 \times 10^{-5} \ 14; \\ &\alpha(\text{P}) = 5.53 \times 10^{-6} \ 8 \\ &\text{Mult.:} \ \alpha(\text{K}) \exp = 0.120 \ 24 \ (1973 \text{Vy}01). \end{aligned}$
382.0 [#] 8 489.049 <i>12</i>	0.18 [#] 9 23.5 5	2886.31 1273.490	(2 ⁺ ,3,4 ⁺) 3 ⁻	2503.70 784.433	(1,2,3) ⁻ 2 ⁺	E1+M2	+0.18 9	0.008 3	α(K)=0.0063 25; α(L)=0.0009 4; α(M)=0.00020 9 $α(N)=4.6×10^{-5} 21; α(O)=7.E-6 4; α(P)=4.5×10^{-7} 21$ Mult.: $α(K)exp=0.0046 3 (1979ShZF,1993KrZW),$ α(L)exp=0.00062 9 (1993KrZW). δ: from 1993KrZW, 1992KrZN. $A_2=0.00 16 (1993KrZW,1992KrZN).$
589.9 [#] 7	0.71 [#] 4	1863.445	2+	1273.490	3-				
631.947 <i>17</i>	12.65 25	1416.376	4+	784.433	2+	E2		0.00772	$\alpha(K)=0.00638 \ 9; \ \alpha(L)=0.001044 \ 15; \ \alpha(M)=0.000230 \ 4$ $\alpha(N)=5.25\times10^{-5} \ 8; \ \alpha(O)=7.88\times10^{-6} \ 11; \ \alpha(P)=4.36\times10^{-7} \ 6$
639.47 7	3.14 12	1912.98	4-	1273.490	3-	M1		0.01362	Mult.: α (K)exp=0.0066 4 (19/9ShZF,1993KrZW), α (L)exp=0.00112 13 (1993KrZW). A ₂ =-0.39 15 (1992KrZN). α (K)=0.01159 17; α (L)=0.001595 23; α (M)=0.000345 5 α (N)=7.94×10 ⁻⁵ 12; α (O)=1.236×10 ⁻⁵ 18; α (P)=8.44×10 ⁻⁷ 12
784.430 <i>16</i>	100.0 <i>19</i>	784.433	2+	0.0	0+	E2		0.00466	Mult.: α (K)exp=0.0086 8 (1979ShZF), 0.0087 8 (1993KrZW). α (K)=0.00390 6; α (L)=0.000597 9; α (M)=0.0001305 19 α (N)=2.99×10 ⁻⁵ 5; α (O)=4.53×10 ⁻⁶ 7; α (P)=2.69×10 ⁻⁷ 4 Mult.: α (K)exp=0.0039 (1979ShZF,1993KrZW)
808.56 7	0.524 22	2082.00	5-	1273.490	3-	E2		0.00435	normalization value; α (L)exp=0.00062 4 (1993KrZW), α (M)exp=0.000149 17 (1993KrZW). A ₂ =-0.73 24 (1992KrZN). α (K)=0.00365 6; α (L)=0.000554 8; α (M)=0.0001210 17 α (N)=2.77×10 ⁻⁵ 4; α (O)=4.21×10 ⁻⁶ 6; α (P)=2.51×10 ⁻⁷ 4 A ₂ =-0.21 16 (1992KrZN).
^x 841.59 <i>16</i> 915.30 <i>12</i> 960.09 ^c 7	0.316 22 0.36 4 1.28 ^c 11	2188.67 2233.60	2+ 3-	1273.490 1273.490	3- 3-	M1+E2		0.0040 11	α(K)=0.0034 9; α(L)=0.00048 11; α(M)=0.000103 23

ω

 $^{148}_{64}\mathrm{Gd}_{84}$ -3

				¹⁴⁸ Tb	¹⁴⁸ Tb ε decay (60 min)		1979ShZF,1	985Ti03 (cont	inued)		
$\gamma(^{148}\text{Gd})$ (continued)											
${\rm E_{\gamma}}^{\dagger}$	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	δ ^{&}	α^{a}	Comments		
									$\begin{aligned} &\alpha(\text{N})=2.4\times10^{-5}\ 6;\ \alpha(\text{O})=3.7\times10^{-6}\ 9;\ \alpha(\text{P})=2.4\times10^{-7}\ 7\\ &\text{Mult.:}\ \alpha(\text{K})\text{exp}=0.0043\ 9\ (1979\text{ShZF}),\ 0.0043\ 10\\ &(1993\text{KrZW}).\\ &\delta:\ +0.02\ +21-14\ \text{or}\ +1.3\ +4-5\ (1993\text{KrZW}).\\ &A_2=-0.45\ 13\ (1993\text{KrZW},1992\text{KrZN}). \end{aligned}$		
960.09 ^{cd} 7	1.28 ^c 11	2872.89	$(2^{-},3,4^{+})$	1912.98	4-				-		
1002.48 9	0.399 24	2915.51	3-	1912.98	4-	M1,E2		0.0036 9	$\alpha(K)=0.0031 \ 8; \ \alpha(L)=0.00043 \ 10; \ \alpha(M)=9.3\times10^{-5} \ 21 \ \alpha(N)=2.1\times10^{-5} \ 5; \ \alpha(O)=3.3\times10^{-6} \ 8; \ \alpha(P)=2.2\times10^{-7} \ 6 \ Mult.: \ \alpha(K)exp=0.0030 \ 14 \ (1979ShZF,1993KrZW). \ A_{2}=0.02 \ 24 \ (1992KrZN,1993KrZW).$		
1007.72 ^c 9	0.77 [°] 7	2424.10	3+,4+	1416.376	4+	M1+E2		0.0036 9	α (K)=0.0031 8; α (L)=0.00042 10; α (M)=9.2×10 ⁻⁵ 21 α (N)=2.1×10 ⁻⁵ 5; α (O)=3.3×10 ⁻⁶ 8; α (P)=2.2×10 ⁻⁷ 6 Mult.: α (K)exp=0.0033 8 (1979ShZF,1993KrZW). δ : -1.2 8 if J ^π =3 ⁺ ; +0.6 8 if J ^π =4 ⁺ . A ₂ =-0.44 15 if J ^π =3 ⁺ , -0.46 15 if J ^π =4 ⁺ (1992KrZN,1993KrZW).		
1007.72 [°] 9	0.77 ^C 7	3089.65	$(1^{-},2^{+})$	2082.00	5^{-}						
1050.15 4	0.965 <i>33</i>	1834.59	2+,3+	784.433	2+	E2+M3		0.00266 18	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00225 \ 15; \ \alpha(\mathbf{L}) = 0.000325 \ 24; \ \alpha(\mathbf{M}) = 7.1 \times 10^{-5} \ 6\\ &\alpha(\mathbf{N}) = 1.62 \times 10^{-5} \ 12; \ \alpha(\mathbf{O}) = 2.49 \times 10^{-6} \ 19; \\ &\alpha(\mathbf{P}) = 1.58 \times 10^{-7} \ 13\\ &\text{Mult.:} \ \alpha(\mathbf{K}) \exp = 0.0023 \ 8 \ (1979 \text{ShZF}, 1993 \text{KrZW}).\\ &\delta: \ +3 \ +4-1 \ \text{or} \ -0.12 \ 19 \ \text{if} \ J^{\pi} = 2^{+} \ \text{or} \ +0.31 \ 12 \ \text{if} \ J^{\pi} = 3^{+} \\ &(1993 \text{KrZW}).\\ &A_{2} = -0.27 \ 23 \ \text{if} \ J^{\pi} = 2^{+}; \ -0.23 \ 19 \ \text{if} \ J^{\pi} = 3^{+} \ (1993 \text{KrZW}). \end{aligned}$		
1079.025 25	13.6 3	1863.445	2+	784.433	2+	M1+E2	+4.6 +35-14	0.00242 8	α(K)=0.00205 7; α(L)=0.000291 8; α(M)=6.31×10-5 17 α(N)=1.45×10-5 4; α(O)=2.23×10-6 7; α(P)=1.42×10-7 5 Mult.: α(K)exp=0.00162 11 (1979ShZF,1993KrZW). δ: from 1985Ti01 (γγ(θ)). Other:>+4 (1993KrZW). A2=0.030 20 (1993KrZW,1992KrZN).		

4

 $^{148}_{64}\mathrm{Gd}_{84}\text{--}4$

L

				148 Tb ε decay (1979ShZ	F,1985Ti03 (co	ontinued)
						$\gamma(^{148}$	Gd) (continu	ued)	
E_{γ}^{\dagger}	I_{γ} ‡ b	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ ^{&}	α^{a}	Comments
1089.41 <i>3</i>	2.68 6	2505.80	3-	1416.376	4+	E1		9.69×10 ⁻⁴	$\alpha(K)=0.000832 \ 12; \ \alpha(L)=0.0001082 \ 16; \alpha(M)=2.32\times10^{-5} \ 4 \alpha(N)=5.33\times10^{-6} \ 8; \ \alpha(O)=8.27\times10^{-7} \ 12; \alpha(P)=5.60\times10^{-8} \ 8 $ Mult: $\alpha(K)=0.0014 \ 4 \ (1979ShZE \ 1993KrZW)$
1105.65 <i>11</i>	0.73 4	2522.03	4+	1416.376	4+	M1+E2		0.0029 7	Mult.: $\alpha(\mathbf{K})$ exp=0.0014 4 (19793hZt,1993KtZW). $\alpha(\mathbf{K})$ =0.0025 6; $\alpha(\mathbf{L})$ =0.00034 8; $\alpha(\mathbf{M})$ =7.4×10 ⁻⁵ 16 $\alpha(\mathbf{N})$ =1.7×10 ⁻⁵ 4; $\alpha(\mathbf{O})$ =2.6×10 ⁻⁶ 6; $\alpha(\mathbf{P})$ =1.8×10 ⁻⁷ 5; $\alpha(\mathbf{IPF})$ =3.89×10 ⁻⁷ 22 Mult.: $\alpha(\mathbf{K})$ exp=0.0023 7 (1979ShZF,1993KrZW). δ: -0.18 20 or +1.5 +10-6 (1993KrZW). A_2 =-0.30 16 (1993KrZW).
$x^{x}1167^{\#d}$ $x^{x}1215.0^{\#}6$	$0.13^{\#} 4$ $0.20^{\#} 4$								
$1230^{\#d}$	0.39 [#] 14	3065		1834.59	2+,3+				
1230.18 5	0.98 4	2503.70	(1,2,3)-	1273.490	3-	E2,M1		0.0023 5	$\alpha(K)=0.0020 5; \alpha(L)=0.00027 6; \alpha(M)=5.8\times10^{-5}$ I2 $\alpha(N)=1.3\times10^{-5} 3; \alpha(O)=2.1\times10^{-6} 5;$ $\alpha(P)=1.4\times10^{-7} 4; \alpha(IPF)=9.6\times10^{-6} 6$ Mult: $\alpha(K)=0.0022 I0$ (1979ShZF).
1248.2 [#] 8	0.24 [#] 6	2522.03	4+	1273.490	3-				
1342.2 [#] 6	0.20 [#] 9	2614.59	2+	1273.490	3-				
1404.22 <i>4</i>	2.54 6	2188.67	2+	784.433	2+	M1+E2		0.0018 4	$\alpha(K)=0.0015 \ 3; \ \alpha(L)=0.00020 \ 4; \ \alpha(M)=4.3\times10^{-5} \ 8 \ \alpha(N)=9.9\times10^{-6} \ 18; \ \alpha(O)=1.5\times10^{-6} \ 3; \ \alpha(P)=1.04\times10^{-7} \ 22; \ \alpha(IPF)=4.7\times10^{-5} \ 3 \ Mult.: \ \alpha(K)exp=0.0020 \ 5 \ (1979ShZF, 1993KrZW). \ \delta: \ +2.0 \ +10-7 \ or \ +0.04 \ +19-14 \ (1993KrZW). \ A_{2}=-0 \ 47 \ 18 \ (1993KrZW) \ Multiple \ $
1426.49 8	0.33 2	2700.06	$(1^{-},2^{+})$	1273.490	3-				$M_2 = 0.17$ TO (1993 MEL(1,1992 MEL(1)).
1449.16 <i>4</i>	1.08 4	2233.60	3-	784.433	2+	E1+M2	+0.09 10	0.00078 10	$\alpha(K)=0.00053 \ 9; \ \alpha(L)=6.8\times10^{-5} \ 13; \alpha(M)=1.5\times10^{-5} \ 3 \alpha(N)=3.4\times10^{-6} \ 7; \ \alpha(O)=5.2\times10^{-7} \ 10; \alpha(P)=3.6\times10^{-8} \ 7; \ \alpha(IPF)=0.000167 \ 5 \delta: from 1993KrZW,1992KrZN.$
									A ₂ =0.17 18 (1993KrZW,1992KrZN).
1470.1# 8 1526.45 7	0.15 [#] 6 0.76 3	2886.31 2310.97	$(2^+,3,4^+)$ 2^+	1416.376 784.433	4+ 2+	M1+E2		0.0015 3	$\alpha(K)=0.00123 \ 22; \ \alpha(L)=0.00017 \ 3; \\ \alpha(M)=3.6\times10^{-5} \ 6 \\ \alpha(N)=8.2\times10^{-6} \ 14; \ \alpha(O)=1.28\times10^{-6} \ 23; \\ \alpha(P)=8.7\times10^{-8} \ 17; \ \alpha(IPF)=8.9\times10^{-5} \ 6 \\ \alpha(P)=8.7\times10^{-8} \ 17; \ \alpha(PF)=8.9\times10^{-5} \ 10^{-8} \ $

S

From ENSDF

 $^{148}_{64}{
m Gd}_{84}$ -5

I

	¹⁴⁸ Tb ε decay (60 min) 1979ShZF,1985Ti03 (continued)												
						<u>)</u>	v(¹⁴⁸ Gd) (co	ontinued)					
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [@]	<i>δ</i> &	α ^{<i>a</i>}	Comments				
					_				δ: +2.4 +22-10 or -0.0 2 (1993KrZW,1992KrZN).				
1599 39 6	1 28 4	2872.89	$(2^{-} 3 4^{+})$	1273 490	3-				$A_2 = -0.40\ 25\ (1993 KrZW, 1992 KrZN).$				
1639.66 22	0.50 7	2424.10	$3^+, 4^+$	784.433	2^{+}								
1641.98 <i>21</i>	0.53 7	2915.51	3-	1273.490	3-								
^x 1679 ^{#d}	0.33 [#] 5												
1719.63 20	1.73 11	2503.70	$(1,2,3)^{-}$	784.433	2^+								
1722.5 3	0.41 11	2505.80	3-	784.433	2+				E_{γ} : Differ by 3σ from value calculated as ΔE_{levels} .				
1/3/.9" 6	0.20" 4	2522.03	4'	1272 400	2-								
1802.02 24	0.53.3	3089.65	$(1^{-},2^{+})$	1273.490	3-								
1830.14 4	2.17 12	2614.59	2+	784.433	2+	M1+E2		0.00120 16	$\alpha(K)=0.00084$ 12; $\alpha(L)=0.000112$ 16; $\alpha(M)=2.4\times10^{-5}$ 4				
									$\alpha(N)=5.5\times10^{-6} \ 8; \ \alpha(O)=8.6\times10^{-7} \ I3; \ \alpha(P)=5.9\times10^{-8} \ I0; \ \alpha(PF)=0.000223 \ I6$				
									I _γ : from 1985Ti03. 2.49 7 (1979ShZF).				
									δ : +2.5 +14-8, or -0.03 5 (1993KrZW).				
1949 26 9	0.60.2	2622.81	5-	791 122	2^+				$A_2 = -0.38 \ I8 \ (1992 \text{KrZN}, 1993 \text{KrZW}).$				
1863.39 4	6.69 13	1863.445	2^{+}	0.0	0^{2}								
1915.54 19	0.48 3	2700.06	$(1^{-},2^{+})$	784.433	2+	M1+E2	+0.8 6	0.00119 10	$\alpha(K)=0.00078 \ 8; \ \alpha(L)=0.000104 \ 10; \ \alpha(M)=2.25\times10^{-5} \ 21$				
									$\alpha(N)=5.2\times10^{-6} 5; \ \alpha(O)=8.1\times10^{-7} 8; \ \alpha(P)=5.6\times10^{-8} 6; \ \alpha(IPF)=0.000269 \ 13 \ A_{2}=-0.88 \ 28 \ (1992 KrZN \ 1993 KrZW)$				
^x 1988.7 4	0.39 5												
2089 1	0.52 8	2872.89	$(2^{-},3,4^{+})$	784.433	2+								
2101.87 10	0.75 6	2886.31	$(2^+,3,4^+)$	784.433	2^+	E1 . 1 (2	0 10 7	0.00101.3	I_{γ} : from 1985Ti03.				
2131.14 11	1.44 5	2915.51	3	784.433	21	E1+M2	-0.19 7	0.00101 3	$\alpha(K) = 0.00031 4; \ \alpha(L) = 4.0 \times 10^{-5} 5; \ \alpha(M) = 8.6 \times 10^{-6} 11$ $\alpha(N) = 1.97 \times 10^{-6} 24; \ \alpha(O) = 3.1 \times 10^{-7} 4; \ \alpha(P) = 2.1 \times 10^{-8} 3;$ $\alpha(HE) = 0.000650 16$				
									$\alpha(1PF)=0.000030 TO$ A ₂ =-0.18 21 (1992KrZN, 1993KrZW).				
2155.33 25	0.37 6	4068.24	(1)	1912.98	4-				I_{γ} : from 1985TiO3.				
^x 2168.0 4	0.37 5								,				
2188.65 7	2.04 7	2188.67	2+	0.0	0^{+}				$A_2 = -0.78 \ 21 \ (1992 KrZN).$				
×2247.32 12 ×2288 10 15	0.39 4												
2301.44 21	0.30 3	3574.94	$(1^{-},2^{+})$	1273.490	3-								
2311.03 7	1.38 4	2310.97	2+	0.0	0^{+}				$A_2 = -0.43 \ 23 \ (1992 KrZN).$				
^x 2331.92 15	0.61 3												
2345.1# 8	0.52 [#] 7	3130.87	$(1,2^+)$	784.433	2^{+}								
^x 2362.9 3	0.68 4												
2403.94 13	0.05 5	3295.03	(1.2^{+})	784.433	2+								
x2593.3 6	0.31 12		()		-								

6

From ENSDF

 $^{148}_{64}\mathrm{Gd}_{84}\text{-}6$

L

				¹⁴⁸ TI	¹⁴⁸ Tb ε decay (60 min) 1979ShZF,1985Ti03 (continued)									
					$\gamma(^{148}\text{Gd})$ (continued)									
E_{γ}^{\dagger}	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	E_{γ}^{\dagger}	I_{γ} [‡] <i>b</i>	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}			
2614.3 6	0.82 6	2614.59	2+	0.0	0^{+}	3266.4 [#] 10	0.41 [#] 25	4051.0	$(2^+, 3, 4^+)$	784.433	2+			
2634.6 [#] 10	0.16 [#] 4	4051.0	$(2^+, 3, 4^+)$	1416.376	4+	3269.2 3	0.66 5	4542.27		1273.490	3-			
2700.57 20	0.76 <i>3</i>	2700.06	$(1^{-},2^{+})$	0.0	0^+	3295.5 [#] 10	0.12 [#] 4	3295.03	$(1,2^+)$	0.0	0^{+}			
2777.5 [#] 10	≈0.08 [#]	4051.0	$(2^+, 3, 4^+)$	1273.490	3-	^x 3552.9 5	0.35 4							
2794.6 [#] 10	0.19 [#] 4	4068.24	(1)	1273.490	3-	3574.6 [#] 10	0.27 [#] 4	3574.94	$(1^{-},2^{+})$	0.0	0^+			
^x 2858.5 5	0.33 8					^x 3644.9 5	0.44 5							
^x 2871.8 7	0.45 8					^x 3685.8 5	0.60 5							
3090.5 [#] 15	0.19 [#] 6	3089.65	$(1^-, 2^+)$	0.0	0^+	^x 3983.7 5	0.35 4							
3125.4 <i>3</i>	0.31 4	4542.27		1416.376	4+	4066.8 [#] 10	0.16 [#] 4	4068.24	(1)	0.0	0^{+}			
3130.89 16	0.82 6	3130.87	$(1,2^+)$	0.0	0^+									

[†] From 1979ShZF, except as indicated otherwise.
[‡] Relative intensity from 1979ShZF, except as indicated otherwise.

-

[#] From 1985Ti03. [@] From adopted gammas; supported by internal conversion data and $\gamma(\theta)$ of oriented nuclei from this decay. [&] From adopted gammas; supported by $\gamma(\theta)$ from 1993KrZW, 1992KrZN from this decay.

^{*a*} Additional information 1.

^{*b*} For absolute intensity per 100 decays, multiply by ≈ 0.84 .

^c Multiply placed with undivided intensity.

^d Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given

 $^{148}_{64}\text{Gd}_{84}$