¹⁴⁸Tb ε decay (2.20 min) 1991CoZY

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 117, 1 (2014)	1-Oct-2013

Parent: ¹⁴⁸Tb: E=90.1 3; $J^{\pi}=(9)^+$; $T_{1/2}=2.20 \text{ min } 5$; $Q(\varepsilon)=5738 \ 13$; $\%\varepsilon+\%\beta^+$ decay=100.0

1991CoZY: measured $E\gamma$, $I\gamma$, $\gamma\gamma$ coin, $T_{1/2}$.

1985Sc09: measured $I\beta^+/(I\varepsilon+I\beta^+)$, $I\beta^+/\varepsilon K(exp)$ to the 2693-keV level to determine Q±.

1981Sc21: measured ε/β^+ to the 2693-keV level to determine Q±.

1974Ne01: measured E γ , I γ , $\gamma\gamma$ coin, T_{1/2}.

1973Bo13: measured Ey, Iy, $\gamma\gamma$ coin, T_{1/2}.

2003NaZV: measured Gamow-Teller strength distribution.

Other: 1971Ar31.

There are problems in reconciling log ft values from ¹⁴⁸Tb ε decay (2.20 min) with ΔJ^{π} of the transitions. More data are needed to clarify these problems.

All data and the level scheme are from 1991CoZY, unless indicated otherwise.

148Gd Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0^{+}		
784.48 6	2+		
1273.36 11	3-		
1416.34 9	4+		
1810.89 <i>12</i>	6+		
1912.9 <i>3</i>	4-		
2082.13 15	5-		
2563.83 <i>13</i>	7-		
2693.28 13	8+		
2694.63 16	9-	17.5 ns	
2782.54 19			
2868.67 22	$(5)^+$		
2936.1 4	7=		
3029.49 20	8-		
3045.6 4			
3128.74	0-		
3152.49 23	8		
3156.9 4			
3337.73	(0,0)		π 1 du 7 4 6 (0) + 1 4 6 (
3477.94	(8,9)		$J^*: \log f^* t = 1.4$ from (9) and γ to 6°.
3502.1 4	(0+)		
2666 2 4	(0)		
3000.5 4	10 10 ⁺		
3768 28 25	10		
3808 27 22	(8^{+})		
3868 61 21	(0)		
3990 45 22	$(8910)^{+}$		$I^{\pi} \cdot \log f_{t=5} 9$ from $(9)^{+}$
4119 18 17	$(8,9)^+$		$I^{\pi} \log f = 52 \text{ from } (9)^+ \times \text{ to } 6^+$
4170 22 22	$(8,9^{-})$		
4271.3 4	(3,2)		
4311.95 20	$(8,9,10)^+$		J^{π} : log ft=5.1 from (9) ⁺ .
4408.86 19	(8)+		J^{π} : log <i>ft</i> =5.3 from (9) ⁺ ; γ to (5) ⁺ .

[†] From a least-squares fit to $E\gamma$.

^{\ddagger} Adopted values; supported by internal conversion data, log *ft* values from this decay, and related in-beam work.

¹⁴⁸ Tb ε decay (2.20 min) 1991CoZY (continued)											
	ε, β^+ radiations										
E(decay)	E(level)	Ιβ ⁺ ‡	I $arepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments					
(1419 13)	4408.86	0.00131	1.15	5.3	1.15	av $E\beta$ =192.5 58; ε K=0.8341; ε L=0.12762 8; ε M+=0.03712 3					
(1516 13)	4311.95	0.0050	1.80	5.2	1.80	av $E\beta$ =235.3 58; ε K=0.8333 2; ε L=0.12700 9; ε M+=0.03691 3					
(1557 13)	4271.3	0.00061	0.16	6.2	0.16	av $E\beta$ =253.4 58; ε K=0.8327 3; ε L=0.1267 1;					
(1658 13)	4170.22	0.0024	0.32	6.0	0.32	av $E\beta = 297.9 58; \epsilon K = 0.8302 5; \epsilon L = 0.1259 2;$					
(1709 13)	4119.18	0.0225	2.26	5.2	2.28	av $E\beta = 320.3 57; \varepsilon K = 0.8283 6; \varepsilon L = 0.12542 13;$					
(1838 13)	3990.45	0.0086	0.46	5.9	0.47	av $E\beta$ =376.7 57; ε K=0.8217 9; ε L=0.12397 17;					
(1959 13)	3868.61	0.0069	0.22	6.3	0.23	ϵ M+=0.03598 3 av E β =430.2 58; ϵ K=0.8124 12; ϵ L=0.12222 22;					
(2020 13)	3808.27	0.013	0.33	6.1	0.34	$\epsilon M + = 0.03546$ / av E $\beta = 456.758$; $\epsilon K = 0.8067$ 14; $\epsilon L = 0.12120$ 24;					
(2182 13)	3645.84	0.030	0.47	6.1	0.50	$\varepsilon M +=0.03515$ / av E β =528.2 58; εK =0.7874 18; εL =0.1179 3;					
(2326 13)	3502.1	0.010	0.11	6.8	0.12	$\varepsilon M += 0.03418$ 9 av E β =591.7 58; εK =0.7654 22; εL =0.1144 4;					
(2350 13)	3477.9	0.055	0.54	6.1	0.60	$\varepsilon M += 0.03314 \ II$ av E β =602.4 58; εK =0.7612 23; εL =0.1137 4;					
(2470 13)	3357.7	0.013	0.097	6.9	0.11	εM +=0.03294 11 av E β =655.7 58; εK =0.739 3; εL =0.1102 4;					
(2671 13)	3156.9	0.022	0.11	6.9	0.13	εM +=0.03192 <i>12</i> av E β =745.2 <i>59</i> ; εK =0.696 <i>3</i> ; εL =0.1035 <i>5</i> ;					
(2676 13)	3152.49	0.033	0.16	6.7	0.19	εM +=0.02997 14 av E β =747.2 59; εK =0.695 3; εL =0.1033 5;					
(2799 13)	3029.49	0.10	0.39	6.4	0.49	εM +=0.02992 14 av E β =802.2 59; εK =0.666 4; εL =0.0988 5;					
(2892 13)	2936.1	0.032	0.34	7.9^{1u}	0.37	ε M+=0.02862 15 av E β =853.2 57; ε K=0.7625 17; ε L=0.1167 3;					
(3046 13)	2782.54	0.034	0.086	7.1	0.12	εM +=0.03396 9 av E β =913.2 59; εK =0.603 4; εL =0.0893 6;					
(3133 <i>13</i>)	2694.63	0.538 12	1.20 2	5.973 14	1.74 <i>3</i>	εM +=0.02584 15 av E β =952.9 59; εK =0.580 4; εL =0.0858 6;					
3030 <i>30</i>	2693.28	27.9 4	62.2 4	4.259 12	90.1 <i>1</i>	εM +=0.02483 15 av E β =953.5 59; εK =0.580 4; εL =0.0858 6; εM +=0.02482 15					
						E(decay): from $Q \pm =5725 \ 30 \ (1985Sc09)$. Other: 5755 50 $(1981Sc21)$.					
(4017 13)	1810.89	1.25 2	0.962 20	6.288 14	2.21 4	av Eβ=1356.2 60; εK=0.366 3; εL=0.0538 4; εM+=0.01556 12					

[†] From γ transition intensity balance at each level. Based on the existing data, the following levels have negative β⁺+ε feeding (not given here): 784.48, 1273.36, 1416.34, 2563.83.
[‡] Absolute intensity per 100 decays.

¹⁴⁸Tb ε decay (2.20 min) **1991CoZY** (continued)

 $\gamma(^{148}\text{Gd})$

I γ normalization: I(784 γ +ce) to g.s.=100.

All data and the level scheme are from 1991CoZY, unless indicated otherwise.

E_{γ}^{\dagger}	$I_{\gamma}^{\#a}$	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	δ	$\alpha^{\&}$	Comments
123.0 3	0.7	3152.49	8-	3029.49 8-				
129.5 [‡] 2	31	2693.28	8+	2563.83 7-	E1		0.1454	$\alpha(K)=0.1225 \ 18; \ \alpha(L)=0.0180 \ 3; \ \alpha(M)=0.00389 \ 6 \ \alpha(N)=0.000882 \ 13; \ \alpha(O)=0.0001305 \ 19; \ \alpha(P)=7.10\times10^{-6} \ 11 \ I_{y}: \ 25 \ 4 \ (1973Bo13), \ 27 \ 3 \ (1974Na01)$
130.8 <i>3</i>	10.7	2694.63	9-	2563.83 7-	E2		0.956 16	$\alpha(K)=0.550 \ 9; \ \alpha(L)=0.314 \ 6; \alpha(M)=0.0735 \ 13 \alpha(N)=0.0164 \ 3; \ \alpha(O)=0.00219 \ 4; \alpha(P)=2.86\times10^{-5} \ 5$
142.7 [‡] 3	32	1416.34	4+	1273.36 3-	E1		0.1119 <i>17</i>	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0945 \ I5; \ \alpha(\mathbf{L}) = 0.01372 \ 2I; \\ &\alpha(\mathbf{M}) = 0.00297 \ 5 \\ &\alpha(\mathbf{N}) = 0.000674 \ II; \ \alpha(\mathbf{O}) = 0.0001002 \\ &I6 \ \alpha(\mathbf{P}) = 5.55 \times 10^{-6} \ 9 \\ &I_{\gamma}: \ 24 \ 3 \ (1973Bo13), \ 21 \ 3 \\ &(1974Neo1). \end{aligned}$
169.2 <i>3</i> 271.0 <i>3</i>	1.3 4.0	2082.13 2082.13	5- 5-	1912.9 4 ⁻ 1810.89 6 ⁺	E1+M2	≤0.23	0.034 14	α (K)=0.029 <i>11</i> ; α (L)=0.0045 <i>21</i> ; α (M)=0.0010 <i>5</i> α (N)=0.00023 <i>11</i> ; α (O)=3.4×10 ⁻⁵ <i>17</i> : α (P)=2 1×10 ⁻⁶ <i>10</i>
334.8 <i>3</i>	3.4	3029.49	8-	2694.63 9-	M1		0.0715	$\alpha(K)=0.0606\ 9;\ \alpha(L)=0.00853\ 13;$ $\alpha(M)=0.00185\ 3$ $\alpha(N)=0.000426\ 6;\ \alpha(O)=6.61\times10^{-5}$ $10;\ \alpha(P)=4.47\times10^{-6}\ 7$
394.55 [‡] 8	965	1810.89	6+	1416.34 4+	E2		0.0267	$\alpha(K)=0.0212 \ 3; \ \alpha(L)=0.00428 \ 6; \ \alpha(M)=0.000959 \ 14 \ \alpha(N)=0.000218 \ 3; \ \alpha(O)=3.16\times10^{-5} \ 5; \ \alpha(P)=1.386\times10^{-6} \ 20 \ I_{\gamma}: \ 860 \ 50 \ (1973Bo13), \ 900 \ 50 \ (1974Ne01).$
443.4 3	0.4	4311.95	(8,9,10)+	3868.61				
457.9 3	0.6 5.4	3152.49	8- 8-	2694.63 9-	M1		0.0303	$\alpha(\mathbf{K}) = 0.0258 4: \alpha(\mathbf{L}) = 0.00350.5:$
403.0 5	5.4	3029.49	0	2303.83 7	1411		0.0303	$\begin{array}{l} \alpha(\text{N}) = 0.000777 \ 11 \\ \alpha(\text{N}) = 0.000179 \ 3; \ \alpha(\text{O}) = 2.78 \times 10^{-5} \\ 4; \ \alpha(\text{P}) = 1.89 \times 10^{-6} \ 3 \end{array}$
481.65 [‡] <i>10</i>	38	2563.83	7-	2082.13 5-	E2		0.01541	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01249 \ 18; \ \alpha(\mathbf{L}) = 0.00228 \ 4; \\ &\alpha(\mathbf{M}) = 0.000506 \ 7 \\ &\alpha(\mathbf{N}) = 0.0001152 \ 17; \\ &\alpha(\mathbf{O}) = 1.699 \times 10^{-5} \ 24; \\ &\alpha(\mathbf{P}) = 8.34 \times 10^{-7} \ 12 \\ &\mathbf{I}_{\gamma}: \ 30 \ 4 \ (1973Bo13), \ 26 \ 3 \\ &(1974Ne01). \end{aligned}$

 $^{148}_{64}\text{Gd}_{84}\text{--}4$

¹⁴⁸Tb ε decay (2.20 min) **1991CoZY** (continued)

γ (¹⁴⁸Gd) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\#a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f} .	\mathbf{J}_{f}^{π}	Mult. [@]	δ	α &	Comments
488.83 [‡] 10	62	1273.36	3-	784.48	2+	E1+M2	+0.18 9	0.008 3	$\alpha(K)=0.0064 \ 25; \ \alpha(L)=0.0009 \ 4; \\ \alpha(M)=0.00020 \ 9 \\ \alpha(N)=4.6\times10^{-5} \ 21; \ \alpha(O)=7.E-6 \ 4; \\ \alpha(P)=4.5\times10^{-7} \ 21 \\ I_{\gamma}: \ 52 \ 5 \ (1973Bo13), \ 52 \ 5 \\ (1974Ne01).$
540.3 <i>3</i> 588.6 <i>3</i>	0.5 0.6	4408.86 3152.49	(8) ⁺ 8 ⁻	3868.61 2563.83	7-	M1		0.01675	$\alpha(K)=0.01424 \ 20; \ \alpha(L)=0.00197 \ 3; \\ \alpha(M)=0.000425 \ 6 \\ \alpha(N)=9.79\times10^{-5} \ 14; \\ \alpha(O)=1.525\times10^{-5} \ 22; \\ \alpha(P)=1.039\times10^{-6} \ 15$
631.87 [‡] 6	937	1416.34	4+	784.48	2+	E2		0.00772	$\alpha(K)=0.00639 \ 9; \ \alpha(L)=0.001045 \ 15; \\ \alpha(M)=0.000230 \ 4 \\ \alpha(N)=5.25\times10^{-5} \ 8; \ \alpha(O)=7.88\times10^{-6} \\ 11; \ \alpha(P)=4.36\times10^{-7} \ 7 \\ I_{\gamma}: \ 950 \ 50 \ (1973Bo13), \ 900 \ 50 \\ (1974Nc01)$
639.5 5	1.3	1912.9	4-	1273.36	3-	M1		0.01362	$\begin{aligned} \alpha(K) = 0.01158 \ 17; \ \alpha(L) = 0.001595 \ 23; \\ \alpha(M) = 0.000345 \ 5 \\ \alpha(N) = 7.94 \times 10^{-5} \ 12; \\ \alpha(O) = 1.236 \times 10^{-5} \ 18; \\ \alpha(P) = 8.44 \times 10^{-7} \ 12 \end{aligned}$
640.4 <i>3</i> 665.8 <i>3</i>	1.3 4.0	4408.86 2082.13	(8) ⁺ 5 ⁻	3768.28 1416.34	4+ 1	E1+M2	≤0.34	0.0042 17	α (K)=0.0036 <i>14</i> ; α (L)=0.00051 <i>22</i> ; α (M)=0.00011 <i>5</i> α (N)=2.5×10 ⁻⁵ <i>11</i> ; α (O)=3.9×10 ⁻⁶ <i>17</i> ; α (P)=2.6×10 ⁻⁷ <i>12</i>
753.0 [‡] 1	21	2563.83	7-	1810.89	6+ 1	E1		0.00197	$\begin{aligned} &\alpha(\mathbf{K}) = 0.001686\ 24;\ \alpha(\mathbf{L}) = 0.000223\ 4;\\ &\alpha(\mathbf{M}) = 4.79 \times 10^{-5}\ 7\\ &\alpha(\mathbf{N}) = 1.100 \times 10^{-5}\ 16;\\ &\alpha(\mathbf{O}) = 1.698 \times 10^{-6}\ 24;\\ &\alpha(\mathbf{P}) = 1.126 \times 10^{-7}\ 16\\ &\mathbf{I}_{\gamma}:\ 17\ 2\ (1973Bo13),\ 20\ 2\\ &(1974Ne01). \end{aligned}$
784.48 [‡] 6	1000	784.48	2+	0.0	0+	E2		0.00466	α (K)=0.00390 6; α (L)=0.000597 9; α (M)=0.0001305 19 α (N)=2.99×10 ⁻⁵ 5; α (O)=4.53×10 ⁻⁶ 7; α (P)=2.68×10 ⁻⁷ 4
808.1 [‡] 6	29	2082.13	5-	1273.36	3-	E2		0.00436	$\alpha(K)=0.00365 \ 6; \ \alpha(L)=0.000555 \ 8; \alpha(M)=0.0001212 \ 18 \alpha(N)=2.77\times10^{-5} \ 4; \ \alpha(O)=4.21\times10^{-6} 6; \ \alpha(P)=2.52\times10^{-7} \ 4 I_{\gamma}: \ 29 \ 3 \ (1973Bo13), \ 27 \ 3 (1974Ne01).$
882.41 [‡] 8	900	2693.28	8+	1810.89	6+	E2		0.00359	$\alpha(K)=0.00302 \ 5; \ \alpha(L)=0.000449 \ 7; \\ \alpha(M)=9.79\times10^{-5} \ 14 \\ \alpha(N)=2.24\times10^{-5} \ 4; \ \alpha(O)=3.42\times10^{-6} \\ 5; \ \alpha(P)=2.09\times10^{-7} \ 3 \\ I_{\gamma}: \ 920 \ 40 \ (1973Bo13), \ 944 \ 50 \\ (1974Ne01)$
883.6 <i>3</i>	11.1	2694.63	9-	1810.89	6+	E3		0.00802	$\alpha(K)=0.00650 \ 10; \ \alpha(L)=0.001186 \ 17; \ \alpha(M)=0.000264 \ 4$

Continued on next page (footnotes at end of table)

 $^{148}_{64}\text{Gd}_{84}\text{-}5$

				$^{148} {\rm Tb} \ \varepsilon \ {\rm decay} \ ({\rm 2.20 \ min})$		1991C o	ZY (continued	1)			
					$\gamma(^{148}\text{Gd})$ (c	ontinued)					
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\#a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ	α ^{&}	Comments		
938.3 <i>3</i>	1.2	3502.1		2563.83	7-				$\alpha(N)=6.04\times10^{-5} 9;\alpha(O)=9.02\times10^{-6} 13;\alpha(P)=4.76\times10^{-7} 7$ Additional information 1.		
952.7 <i>3</i> 954.3 <i>3</i>	1.0 2.0	3645.84 4311.95	(8 ⁺) (8,9,10) ⁺	2693.28 3357.7	8+				1991CoZY show this γ depopulating the 4409 level. However, such a placement does not lead to a final level observed by them. The evaluator has assumed that the $E\gamma$ is correct and the final level is 3358 keV as shown by 1991CoZY , leading to an initial level of 4312.5 keV.		
971.7 <mark>6</mark> 3	1.9 <mark>b</mark>	2782.54		1810.89	6+						
971.7 ^b 3	0.6 ^b	3666.3	10-	2694.63	9-	M1		0.00490	$\alpha(K)=0.00418 \ 6; \ \alpha(L)=0.000567 \ 8; \alpha(M)=0.0001224 \ 18 \alpha(N)=2.82\times10^{-5} \ 4; \alpha(O)=4.39\times10^{-6} \ 7; \alpha(P)=3.02\times10^{-7} \ 5$		
1057.7 3	1.4	2868.67	(5)+	1810.89	6+	M1,E2		0.0032 8	$\alpha(K) = 0.0027 \ 7; \ \alpha(L) = 0.00038 \ 9;$ $\alpha(M) = 8.2 \times 10^{-5} \ 18$ $\alpha(N) = 1.9 \times 10^{-5} \ 4; \ \alpha(O) = 2.9 \times 10^{-6}$ $7; \ \alpha(P) = 1.9 \times 10^{-7} \ 6$		
1063.7 3	0.6	3758.3	10+	2694.63	9-	E1+M2	≤0.18	0.00115 14	$\alpha(K) = 0.00098 \ I2; \ \alpha(L) = 0.000130$ $I7; \ \alpha(M) = 2.8 \times 10^{-5} \ 4$ $\alpha(N) = 6.4 \times 10^{-6} \ 9; \ \alpha(O) = 1.00 \times 10^{-6}$ $I4; \ \alpha(P) = 6.7 \times 10^{-8} \ 9$		
1089.7 <i>3</i>	1.5	4119.18	$(8,9)^+$	3029.49	8-						
1113.7 <i>3</i>	0.7	3808.27	(8 ⁺)	2694.63	9-						
1115.0 3	0.9	3808.27	(8^+)	2693.28	8+	E1.10	-0.14	0.00000.0			
1125.2 3	3.7	2936.1		1810.89	6'	E1+M2	≤0.14	0.00099 8	$\alpha(K)=0.00084 /; \alpha(L)=0.000111 9; \alpha(M)=2.38\times10^{-5} 20 \alpha(N)=5.5\times10^{-6} 5; \alpha(O)=8.5\times10^{-7} 7; \alpha(P)=5.7\times10^{-8} 5; \alpha(IPF)=4.27\times10^{-6} 9$		
1174.0 3	2.5	3868.61		2694.63	9-						
11/5.4 3	0.7	3868.61	(9, 0, 10)+	2693.28	8⊤						
1208.2 3	2.0	3045.6	(8,9,10)	1810.89	6+						
1250.5 3	1.0	4119.18	(8,9)+	2868.67	(5) ⁺				1991CoZY show this γ depopulating the 3991 level. However, such a placement does not lead to a final level observed by them. The evaluator has assumed that $E\gamma$ is correct, and the final level is 2869 keV as shown by 1991CoZY leading to an initial level of 4119.5 keV.		
1282.3 3	2.1	4311.95	$(8,9,10)^+$	3029.49	8-						
1295.5 <i>3</i> 1297.2 <i>3</i>	0.4 2.3	3990.45 3990.45	$(8,9,10)^+$ $(8,9,10)^+$	2694.63 2693.28	9 8 ⁺						

Continued on next page (footnotes at end of table)

	¹⁴⁸ Tb ε decay (2.20 min) 1991CoZY (continued)													
		γ ⁽¹⁴⁸ Gd) (continued)												
E_{γ}^{\dagger}	$I_{\gamma}^{\#a}$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	E_{γ}^{\dagger}	I_{γ} # <i>a</i>	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$					
1317.8 3	0.8	3128.7		1810.89 6+	1606.4 3	0.5	4170.22	(8,9 ⁻)	2563.83 7-	_				
1336.6 <i>3</i>	1.5	4119.18	$(8,9)^+$	2782.54	1618.7 <i>3</i>	9.0	4311.95	$(8,9,10)^+$	2693.28 8+					
1346.0 <i>3</i>	1.3	3156.9		1810.89 6+	1667.0 <i>3</i>	6.0	3477.9	(8,9)	1810.89 6+					
1366.4 <i>3</i>	2.8	2782.54		1416.34 4+	1714.3 <i>3</i>	1.6	4408.86	$(8)^{+}$	2694.63 9-					
1424.6 3	2.5	4119.18	$(8,9)^+$	2694.63 9-	1715.7 <i>3</i>	5.6	4408.86	$(8)^{+}$	2693.28 8+					
1425.9 <i>3</i>	11.5	4119.18	$(8,9)^+$	2693.28 8+	1748.1 <i>3</i>	4.5	4311.95	$(8,9,10)^+$	2563.83 7-					
1475.6 <i>3</i>	1.5	4170.22	$(8,9^{-})$	2694.63 9-	1834.8 <i>3</i>	4.0	3645.84	(8 ⁺)	1810.89 6+					
1476.9 <i>3</i>	1.2	4170.22	$(8,9^{-})$	2693.28 8+	1845.0 <i>3</i>	2.1	4408.86	$(8)^{+}$	2563.83 7-					
1540.1 <i>3</i>	0.4	4408.86	$(8)^{+}$	$2868.67 (5)^+$	1957.2 <i>3</i>	1.7	3768.28		1810.89 6+					
1546.9 <i>3</i>	3.1	3357.7		1810.89 6+	1997.3 <i>3</i>	1.8	3808.27	(8^{+})	1810.89 6+					
1555.4 <i>3</i>	2.2	4119.18	$(8,9)^+$	2563.83 7-	2308.2 3	2.7	4119.18	$(8,9)^+$	1810.89 6+					
1578.0 <i>3</i>	1.6	4271.3		2693.28 8+										

[†] From 1991CoZY, unless indicated otherwise. The evaluator has assumed a $\Delta E\gamma$ =0.3 keV, since the authors did not give these data.

[‡] From 1973Bo13. [#] Relative intensity.

^(a) From adopted gammas; supported by internal conversion data this decay.
^(b) Additional information 2.
^(a) For absolute intensity per 100 decays, multiply by 0.099536.
^(b) Multiply placed with intensity suitably divided.

¹⁴⁸Tb ε decay (2.20 min) 1991CoZY

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays @ Multiply placed: intensity suitably divided

¹⁴⁸Tb ε decay (2.20 min) 1991CoZY

Decay Scheme (continued)

