¹⁴⁸Eu IT decay 1981Pi10

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 117, 1 (2014)	1-Oct-2013

Parent: ¹⁴⁸Eu: E=720.4 3; $J^{\pi}=9^+$; $T_{1/2}=162$ ns 8; %IT decay=100.0

Production: $Sm(p,xn\gamma)$ E=17-31 MeV.

Measured: E γ , I γ , $\gamma(\theta)$, $\gamma\gamma$ coin, γ excitation functions, Ice, $\gamma(t)$.

Decay scheme is from 1981Pi10.

¹⁴⁸Eu Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0 232.80 9 312.20 9 518.49 <i>12</i> 708.41 <i>10</i> 720.4 2	5^{-} 6^{-} 7^{-} 7^{+} 0^{+}	162 9	
720.4 5	9	102 118 8	$T_{1/2}$: weighted average of 163 ns <i>10</i> (1981Pi10), 170 ns <i>20</i> (1980Ba67), and 152 ns <i>21</i> (1995Jo04). 1981Pi10 gives a $T_{1/2}$ =235 ns <i>14</i> which is quoted by 1995Jo04 as the mean life and not the half-life. The evaluator has adopted this interpretation as it makes the 1981Pi10 data consistent with other two measurements.

 † From a least-squares fit to the Ey data.

[±] From Adopted Levels; supported by $\gamma(\theta)$, γ excitation functions, and Ice from this data set. [#] T_{1/2}<1.5 ns for excited states other than the isomer.

$\gamma(^{148}\text{Eu})$

I(γ +ce) normalization: Σ I(γ +ce) to g.s.=100.

E_{γ}	Ι _γ ‡@	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	$\alpha^{\#}$	$I_{(\gamma+ce)}^{(a)}$	Comments
(12.0)		720.4	9+	708.41	7+	[E2]	3.96×10 ⁴	144 3	ce(L)/(γ +ce)=0.777 8; ce(M)/(γ +ce)=0.179 4 ce(N)/(γ +ce)=0.0392 8; ce(O)/(γ +ce)=0.00515 11; ce(P)/(γ +ce)=2.95×10 ⁻⁶ 6 α (L)=3.08×10 ⁴ 5; α (M)=7.08×10 ³ 10 α (N)=1554 22; α (O)=204 3; α (P)=0.1169 17 I(γ +ce): from the balance of I(γ +ce) for the 708-keV level
190.0 <i>3</i>	1.0 3	708.41	7+	518.49	7^{-}				
201.9 3	1.0 3	720.4	9+	518.49	7-	M2	1.415		$\alpha(K)=1.133 \ 17; \ \alpha(L)=0.220 \ 4;$ $\alpha(M)=0.0494 \ 8$ $\alpha(N)=0.01133 \ 17; \ \alpha(O)=0.00177 \ 3;$ $\alpha(P)=0.0001599 \ 24$ Mult.: $\alpha(K)\exp=1.3 \ 5$ (normalized to $\alpha(K)\exp(233\gamma)$), compatible with $\alpha(K)\exp: F4$ was ruled out by Tup
206.3 2	0.7 3	518.49	7-	312.20	6-	M1	0.242		$\alpha(K)=0.205 \ 3; \ \alpha(L)=0.0289 \ 5; \ \alpha(M)=0.00624 \ 9$

¹⁴⁸Eu IT decay 1981Pi10 (continued)

$\gamma(^{148}\text{Eu})$ (continued)

Eγ	$I_{\gamma}^{\ddagger @}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	α #	Comments
232.8 1	91 5	232.80	6-	0.0	5-	M1	0.1738	$\begin{array}{l} \alpha(N)=0.001430\ 21;\ \alpha(O)=0.000227\ 4;\ \alpha(P)=2.25\times10^{-5}\ 4\\ \alpha(K)\exp=0.19\ 4.\\ \alpha(K)=0.1473\ 21;\ \alpha(L)=0.0208\ 3;\ \alpha(M)=0.00448\ 7\\ \alpha(N)=0.001026\ 15;\ \alpha(O)=0.0001629\ 23;\\ \alpha(P)=1\ 620\times10^{-5}\ 23 \end{array}$
285.7 1	2.9 6	518.49	7-	232.80	6-	M1	0.1002	$\begin{aligned} \alpha(K) &= 1.020 \times 10^{-125} \\ \alpha(K) &= 0.14 \ l; \ K/L = 6.9 \ 7. \\ \alpha(K) &= 0.0850 \ 12; \ \alpha(L) = 0.01190 \ 17; \ \alpha(M) = 0.00257 \ 4 \\ \alpha(N) &= 0.000588 \ 9; \ \alpha(O) = 9.34 \times 10^{-5} \ 14; \ \alpha(P) = 9.32 \times 10^{-6} \\ 13 \end{aligned}$
312.2 <i>I</i>	38 <i>3</i>	312.20	6-	0.0	5-	M1	0.0791	α (K)exp=0.088 9; K/L=6.7 10. α (K)=0.0672 10; α (L)=0.00938 14; α (M)=0.00202 3 α (N)=0.000463 7; α (O)=7.36×10 ⁻⁵ 11; α (P)=7.36×10 ⁻⁶ 11
396.2 <i>1</i>	43 <i>3</i>	708.41	7+	312.20	6-	E1	0.00774	$\alpha(\mathbf{K}) \exp = 0.063 \ 6; \ \mathbf{K/L} = 6.9 \ 8.$ $\alpha(\mathbf{K}) = 0.00660 \ 10; \ \alpha(\mathbf{L}) = 0.000893 \ 13; \ \alpha(\mathbf{M}) = 0.000191 \ 3$ $\alpha(\mathbf{N}) = 4.36 \times 10^{-5} \ 7; \ \alpha(\mathbf{O}) = 6.82 \times 10^{-6} \ 10; \ \alpha(\mathbf{P}) = 6.39 \times 10^{-7}$
475.6 1	100	708.41	7+	232.80	6-	E1	0.00505	α(K)exp=0.007 2; this value has been corrected for a 2% contribution of the 396 keV M2 transition in ¹⁴⁷ Eu. α(K)=0.00432 6; α(L)=0.000579 9; α(M)=0.0001240 18 $α(N)=2.83\times10^{-5} 4; α(O)=4.44\times10^{-6} 7; α(P)=4.22\times10^{-7}$ 6 α(K)exp=0.005 1.

[†] From conversion electron data; $\alpha(K)$ exp were normalized to that of 347γ in ¹⁴⁹Eu assumed to be M2. [‡] Relative intensity. [#] Additional information 1. [@] For absolute intensity per 100 decays, multiply by 0.68 *3*.

¹⁴⁸₆₃Eu₈₅