			Tvi	be	Author	History Citation	Literature Cutoff Date	
Full Evaluation N.				luation	N. Nica	NDS 117, 1 (2014)	1-Oct-2013	
$Q(\beta^{-}) = -12714$ $Q(\epsilon p) = 5428$ 14 1982No08: iden	<i>14</i> ; S(n , S(2n)= ntificatio)=12940 <i>4</i> 23300 <i>12</i> , n and proc	0; S(p)=3 S(2p)=35 luction of	011 <i>11</i> ; 0 502 <i>12</i> (2 1 ⁴⁸ Er iso	$Q(\alpha) = 2666$ 012Wa38) ptope.	5 <i>13</i> 2012Wa38		
						¹⁴⁸ Er Levels		
In the table be the known s $h_{11/2}$, $s_{1/2}$, c expected ab	elow, ob states in l _{3/2} , g _{7/2} ove 7 M	N=80 isot 2-neutron IeV, but 20	els in ¹⁴⁸ 1 ones and holes; 2- 01Ro15 o	Er are cla other nei 4 proton did not id	assified in t ghboring r orbitals (n entify spec	terms of spherical shell nuclides (146 Dy, 144 Gd, 1 nainly h _{11/2}) outside th cific levels for these co	l-model configurations while comparing with ¹⁴⁸ Dy and ¹⁵⁰ Er). The valence orbitals are: the ¹⁴⁶ Gd core. Six-qp configurations are onfigurations due to high level density.	1
					Cross	Reference (XREF) Fla	ags	
					A B C	¹⁴⁸ Tm ε decay (0.7 s) ¹⁴⁹ Yb ε p decay (0.7 s) ⁹² Mo(⁵⁸ Ni,2p γ))	
				 • 1/				
Possible c	Classi onfigu	fication ration	of stat	es in ^r	*°Er (L	2001Ro15) evels		
2-quasineu 2-quasipro $\pi h_{11/2}^2$	tron ton +				6 2	46,2 ⁺ ; 1523,4 ⁺ 253,5 ⁻ ; 2704,7 ⁻		
$\pi h_{11/2}^2$						2782,8+		
$\pi h_{11/2}^2$						2913,10+		
$vh_{11/2}^{-1} \otimes vd_{3/2}^{-1}$	1-1 >						2535,	,7 ⁻
$\pi n_{11/2}^2 \otimes \nu(s_{1/2})^2$ $\pi h^2 \otimes \nu(d^{-1})^2$	d^{-1}						3528,11°; 372: 4523 13 ⁺ • 470/	3,12 [°] A 1A ⁺
$\pi h_{11/2}^2 \otimes 7 (a_{3/2}^2)$ $\pi h_{11/2}^2 \otimes 3^-$	2, a _{5/2} ,					$4609,12^{-}$		1,11
$\pi h_{11/2}^{2} \otimes \nu (d_{3/2}^{-1})$	$h_{11/2}^{-1}$						5097,14 ⁻ ; 5137	7,14-;
$(d_{3/2} \text{ or } \pi h_{11/2}^3 \otimes \pi(s_{1/2})$	bital 2)	could be	s _{1/2}	also)	6	187,17 ⁻ ; 6218,17 ⁻ 4678,13 ⁻	5248,15 ⁻ ; 5715,16 ⁻	;
$\pi h_{11/2}^3 \otimes \pi (d_{3/2})$	2)					4983,15	-	
$\pi h_{11/2}^4$						5304,16+	5040	1.0+.
$\pi n_{11/2}^{-} \otimes \nu (n_{11/2}^{-})$ 6394.17 ⁺	/2						5940),10°;
					6 6 	636,18 ⁺ ; 6709,18 ⁺ 921,19 ⁺ ; 7354,20 ⁺		
E(level) [†]	J ^{π‡}	$T_{1/2}$	XREF				Comments	
0.0	0+	4.6 s 2	ABC	$\%\varepsilon + \%\varepsilon$ Delayed (1988	$3^{+}=100; \%$ d proton er 3To03).	$ep \approx 0.15$ (1988ToO3) nission probability ≈ 0.18	15% (if I(141γ+244γ+315γ)≈25%) 1 ≤ 2 (1988To03) 4 5 ≤ 4 (1982No08)	
645.89 [#] 10	2+		ABC	$J^{\pi}: \Delta J =$	2, quadrur	bole (E2) γ to 0 ⁺ .	5 2 (17001003), 4.3 5 4 (1702110008).	
1522.68 [#] 15 2252.48 18	(4 ⁺) (5 ⁻)		A C A C	J^{π} : $\Delta J =$	2, quadrup	pole (E2) γ to 0^+ .		

2525.05[#] 25 (6⁺) A C

¹⁴⁸Er Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
2535.08 21	(7^{-})		AC	
2703.88 20	(7^{-})		C	
2782.1 [#] 4	(8+)		AC	
$2013.2^{\#}$	(10^{+})	13 118 3	A C	%IT-100
2913.2 4	(10)	15 µs 5	АС	$T_{1/2}$: $\gamma(t)$ (1982No07).
3171.18 22			С	
3354.6? 3	(4.4.4.)		C	
3529.0 4	(11^{+})		C	
3723.3 ^{••} 4	(12^{+})		C	
41/4.1 3	(12^{+})		C	
4352.0 5	(15)		C	
4609.4 5	(12)		C	
40/8.4 4	(15)		C	
4704.5 4	(14^{+})		C	
4983.5° 4	(15)		C	
5097.8° 5	(14^{-})		C	
5127.4 5	(14)		C	
5137.05	$(1 \overline{c} -)$		C	
5248.2° 5 5304 1 ^{<i>a</i>} 4	(15)		C	
5304.1 + 57157b = 5	(10^{-})		c	
5715.7 5	(10)		C	
5/42.0 5	(10^{+})		C	
5946.5° 4	(16')		C	
6088 1 ^C 5	(16^{-})		C	
6103.0.5	(10^{-})		c	
$6187.5^{b}.5$	(17^{-})		c	
6219.0.5	(17^{-})		c	
6287.4 5	()		c	
6290.0 [°] 4	(17 ⁻)		С	
6395.0 [@] 5	(17^{+})		С	
6518.4 ^a 5	(18^{+})		С	
6636.9 5	(18^{+})		С	
6709.8 [@] 5	(18^{+})		С	
6770.4 6			C	
6895.3 ^{&} 6	(18^{+})		С	
6921.7 [@] 5	(19 ⁺)		С	
7027.3 ⁶ 5	(19 ⁻)		С	
7051.6 ^{<i>a</i>} 5	(19+)		С	
7091.8° 5	(19 ⁻)		C	
7294.8 ^{x} 6	(19^{+})		C	
7354.3 [@] 5	(20^{+})		С	
7532.5 ^{<i>a</i>} 5	(20^+)		C	
7585.3 5	(20^{+})		C	
772305	(20^{-})		C	
7	(20^{+})		c	
7739 5 7	(20°)		C	
7832.4 ^{<i>a</i>} 5	(21^{+})		c	
7878 7 & 7	(21^+)		c	
	(21)		~	

¹⁴⁸Er Levels (continued)

E(level) [†]	J ^{π‡}	XREF	E(level) [†]	J ^{π‡}	XREF	E(level) [†]	Jπ‡	XREF
8017.9 <mark>b</mark> 5	(21-)	С	8274.7? <mark>b</mark> 5	(22 ⁻)	С	9018.3 ^a 6	(23+)	С
8119.7 ^C 5	(21 ⁻)	С	8304.0 6		С	9590.7 <mark>b</mark> 6		С
8201.4 6		С	8549.1? ^b 5	(23 ⁻)	С			

[†] From least-squares fit to E γ data. [‡] All assignments are from ⁹²Mo(⁵⁸Ni,2p γ), based on γ -anisotropy data, decay pattern, yrast type of population in heavy-ion studies, γ -sequence assignments. The parentheses are added by the evaluators.

[#] Band(A): yrast cascade based on g.s..

[@] Band(B): γ sequence based on (12⁺).

[&] Band(C): γ sequence based on (16⁺).

^{*a*} Band(D): γ sequence based on (16⁺).

^b Band(E): γ sequence based on (12⁻).

^c Band(F): γ sequence based on (13⁻).

E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult. [‡]	<i>α</i> ^{<i>a</i>}	Comments
645.89	2+	645.9 1	100	0.0 0+	(E2) [#]		
1522.68	(4^{+})	876.8 <i>1</i>	100	645.89 2+	(E2) [#]		
2252.48	(5-)	729.8 1	100	1522.68 (4+)	D&		
2525.05	(6 ⁺)	1002.4 2	100	1522.68 (4+)	(E2) [#]		
2535.08	(7 ⁻)	282.6 2	100	2252.48 (5 ⁻)	Q [#]		
2703.88	(7-)	168.8 <i>1</i>	100 9	2535.08 (7-)	$D(+Q)^{@}$		
2782.1	(8+)	451.4 <i>1</i> 78 <i>1</i> 247.1 <i>3</i>	67 7 2.2 46	2252.48 (5 ⁻) 2703.88 (7 ⁻) 2535.08 (7 ⁻)	(Q) [#]		
2913.2	(10+)	257.1 2 131.2 2	100 100	2525.05 (6 ⁺) 2782.1 (8 ⁺)	(E2) [#] E2	1.082	$\alpha(K)=0.538; \ \alpha(L)=0.418; \ \alpha(M)=0.1011; \ \alpha(N)=0.0229; \ \alpha(O)=0.00273; \ \alpha(P)=2.30\times10^{-5}$ Mult.: from measured $\alpha(K)$ exp In In-beam γ -ray study
3171.18		467.3 1	100	2703.88 (7-)			study.
3354.6?		650.7 2	100	2703.88 (7-)			
3529.0	(11^{+})	615.7 2	100	2913.2 (10 ⁺)	D(+Q) [@]		
3723.3	(12^{+})	194.4 <i>1</i>	4.9 <i>3</i>	3529.0 (11+)	D(+Q) [@]		
4174.1		810.1 <i>I</i> 819.5 <i>I</i>	100.0 <i>14</i> 100	2913.2 (10 ⁺) 3354.6?	Q [#]		
4532.0	(13^{+})	809.4 4	37 4	3723.3 (12 ⁺)	#		
		1003.1 3	100 3	3529.0 (11 ⁺)	Q [#]		
4609.4	(12^{-})	885.9 2	100 7	3723.3 (12+)	$D(+Q)^{e}$		
		1080.5 4	85 5	3529.0 (11+)	D^{α}		
4678.4	(13 ⁻)	955.0 1	100	3/23.3 (12+)	D ^α		
4704.5	(14^{+})	981.1 <i>1</i>	100	3723.3 (12 ⁺)	Q_{μ}^{π}		
4983.5	(15 ⁻)	305.1 1	100	4678.4 (13 ⁻)	Q#		
5097.8	(14-)	393.0 <i>3</i>	21 4	4704.5 (14+)	(D+Q) [@]		

$\gamma(^{148}{\rm Er})$

Continued on next page (footnotes at end of table)

$\gamma(^{148}\text{Er})$ (continued) I_{γ}^{\dagger} E_{γ} Mult.[‡] E_i(level) \mathbf{E}_{f} J_{f}^{π} 5097.8 (14^{-}) 488.1 3 4609.4 (12^{-}) D& 565.8 1 100 5 4532.0 (13^{+}) Q[#] (12^{+}) (14^{+}) 1404.3 4 3723.3 5127.4 100 4678.4 5137.6 459.2 2 100 (13^{-}) D& 5248.2 110.5 2 5137.6 (15^{-}) $100 \ 5$ 150.4 3 5097.8 (14^{-}) Q[#] (14^{+}) 5304.1 4704.5 (16^{+}) 599.6 1 100 D(+Q)[@] 5715.7 (16^{-}) 467.4 1 100 5248.2 (15^{-}) Q[#] 1038.1 2 4704.5 (14^{+}) 5742.6 (16^{+}) 100 5946.5 (16^{+}) 203.8 2 5742.6 (16^{+}) 819.2^b 2 (14^{+}) 2.3 2 5127.4 Q[#] 4704.5 1242.0 1 100.0 18 (14^{+}) 6088.1 (16^{-}) 345.5 3 36 4 5742.6 (16^{+}) 1104.5 3 100 3 4983.5 D(+Q)[@] (15^{-}) D(+Q)[@] 6103.0 (17^{+}) 798.9 4 100 5304.1 (16^{+}) D(+Q)[@] 6187.5 (17^{-}) 471.8 2 100 6 5715.7 (16^{-}) 0[#] 1204.3 2 46 4 4983.5 (15^{-}) D(+Q)[@] 6219.0 (17^{-}) 503.3 2 100 7 5715.7 (16^{-}) Q[#] 4983.5 (15⁻) 1235.4 2 69 4 6287.4 1304.1 4 100 4983.5 (15^{-}) D(+Q)[@] 6290.0 (17^{-}) 201.9 1 $100 \ 4$ 6088.1 (16^{-}) (D)[&] 343.5 1 5946.5 (16^{+}) 44 3 6395.0 (17^{+}) 385.6^b 4 17 3 6009.4? D(+Q)[@] 448.5 1 100 3 5946.5 (16^{+}) D(+Q)[@] 6518.4 (18^{+}) 415.4 3 6103.0 (17^{+}) 465Q[#] 1214.3 1 100 3 5304.1 (16^{+}) D(+Q)[@] (18^{+}) 242.0 2 6395.0 (17^{+}) 6636.9 36 3 D& 346.9 1 100 10 6290.0 (17^{-}) D(+Q)[@] 6709.8 314.8 1 100 6395.0 (17^{+}) (18^{+}) 6770.4 1054.7 3 100 5715.7 (16^{-}) (18^{+}) 6895.3 1152.7 3 100 5742.6 (16^{+}) D(+Q)[@] 6921.7 (19^{+}) 211.9 1 100 4 6709.8 (18^{+}) (18⁺) 284.7 2 26 4 6636.9 7027.3 739.9 3 56 5 6287.4 Q[#] (19^{-}) 808.0 2 167 17 6219.0 (17^{-}) 0[#] 839.8 1 100 5 6187.5 (17^{-}) D(+Q)[@] (19^+) 7051.6 533.2 1 100 6518.4 (18^{+}) D& (18⁺) 7091.8 (19^{-}) 381.8 4 85 6 6709.8 D& 454.8 2 50 4 6636.9 (18^{+}) Q[#] 801.9 2 $100 \ 4$ 6290.0 (17^{-}) D(+Q)[@] 7294.8 (19^{+}) 399.5 2 100 6895.3 (18^{+}) D(+Q)[@] 7354.3 (20^{+}) 432.6 1 100 6921.7 (19^{+}) D(+Q)[@] 7532.5 (20^{+}) 480.9 1 100 7051.6 (19^{+}) O[#] 948.4 2 6636.9 (18^{+}) 7585.3 (20^{+}) 100 7670.8 1152.4 2 100 6518.4 (18^{+}) $D(+Q)^{(a)}$ 7723.0 (20^{-}) 631.2 2 100 7091.8 (19⁻) (19⁺) $D(+Q)^{(a)}$ 7733.4 (20^{+}) 438.6 3 100 7294.8

Continued on next page (footnotes at end of table)

						$\gamma(^{148}\text{Er})$ (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	
7739.5		969.1 4	100	6770.4			
7832.4	(21^{+})	299.9 1	100	7532.5	(20^{+})	D(+Q) [@]	
7878.7	(21^{+})	145.3 <mark>b</mark> 3	100	7733.4	(20^{+})	D(+Q) [@]	
8017.9	(21 ⁻)	990.6 1	100	7027.3	(19 ⁻)	Q [#]	
8119.7	(21^{-})	1027.9 2	100	7091.8	(19 ⁻)	Q [#]	
8201.4		616.1 <i>3</i>	100	7585.3	(20^{+})		
8274.7?	(22^{-})	256.8 2	100	8017.9	(21^{-})		
8304.0		1252.4 <i>3</i>	100	7051.6	(19 ⁺)		
8549.1?	(23 ⁻)	274.4 1	100	8274.7?	(22 ⁻)	$D(+Q)^{@}$	
9018.3	(23^{+})	1185.9 <i>3</i>	100	7832.4	(21^{+})	Q #	
9590.7	. ,	1041.6 <i>3</i>	100	8549.1?	(23 ⁻)		

[†] From 92 Mo(58 Ni,2p γ).

[‡] From γ -asymmetry data in ⁹²Mo(⁵⁸Ni,2p γ).

[#] From γ -asymmetry, $\Delta J=2$, quadrupole (most likely E2). Mult=(E2) is assigned to transitions in the yrast sequence from g.s. to (10⁺) isomer, based on definite E2 for (10⁺) to (8⁺) transition and stretched quadrupoles to other four transitions.

[@] From γ -asymmetry, $\Delta J=1$, dipole+quadrupole (most likely M1+E2). In a few cases transition is indicated as $\Delta J=0$.

& From γ -asymmetry, $\Delta J=1$, dipole (most likely E1).

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Placement of transition in the level scheme is uncertain.

 $^{148}_{68}{\rm Er}_{80}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{148}_{68}{\rm Er}_{80}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{148}_{68}{\rm Er}_{80}$