## <sup>148</sup>Ho $\varepsilon$ decay (9.59 s) 1988To03,1989Ta11,1996Ga24

|                 |         | History           |                        |
|-----------------|---------|-------------------|------------------------|
| Туре            | Author  | Citation          | Literature Cutoff Date |
| Full Evaluation | N. Nica | NDS 117, 1 (2014) | 1-Oct-2013             |

Parent: <sup>148</sup>Ho: E=0.0+x;  $J^{\pi}=(5^{-})$ ;  $T_{1/2}=9.59$  s 15;  $Q(\varepsilon)=9860\ 80$ ;  $\%\varepsilon+\%\beta^+$  decay=100.0 Others: 1981GaZS, 1979To01.

Measured:  $\gamma$ ,  $\gamma\gamma$ , K x ray, delayed protons (1988To03),  $\gamma$ ,  $\gamma\gamma$ , X $\gamma$  (1989Ta11), ce (1996Ga24).

<sup>148</sup>Dy Levels

Delayed proton emission probability=0.08% 1 (1988To03).

| E(level) <sup>†</sup> | J <sup>π‡</sup>       | Comments                                                                        |
|-----------------------|-----------------------|---------------------------------------------------------------------------------|
| 0.0                   | $0^{+}$               |                                                                                 |
| 1677.81 <i>17</i>     | 2+                    |                                                                                 |
| 1688.31 <i>17</i>     | 3-                    |                                                                                 |
| 2349.65 21            | 5-                    | $J^{\pi}$ : E2 to 3 <sup>-</sup> and log <i>ft</i> =5.8 from (5) <sup>-</sup> . |
| 2427.82 19            | 4+                    |                                                                                 |
| 2732.25 23            | 6+                    |                                                                                 |
| 2739.30 25            | 7-                    |                                                                                 |
| 2833.7 3              | 8+                    |                                                                                 |
| 2853.97 25            | (5,6)                 | $J'': \log ft = 5.5$ and M1 to 5.                                               |
| 2969.56 22            | $(5,6,7)^{-#}$        |                                                                                 |
| 2995.27 22            | (4)                   |                                                                                 |
| 3115.6 3              | (6,7)                 | $J^*: \log ft = 6.2, M1 \text{ to } / .$                                        |
| 3171.7 <i>3</i>       | (5,6,7)-#             |                                                                                 |
| 3188.57 24            | $(5,6,7)^{-\#}$       |                                                                                 |
| 3279.7 <i>3</i>       | (6)-                  |                                                                                 |
| 3323.2 3              | $(6)^{-}$             |                                                                                 |
| 3327.7 5              | $(5)^{-}$             |                                                                                 |
| 3405.1 5              | (8)-                  |                                                                                 |
| 3755.6 <i>3</i>       | $(5,6,7)^{-#}$        |                                                                                 |
| 4289.47 23            | $(5,6,7)^{-#}$        |                                                                                 |
| 4392.8 <i>3</i>       | (5,6,7) <sup>-#</sup> |                                                                                 |
| 4459.9 <i>5</i>       | $(5,6,7)^{-#}$        |                                                                                 |
| 4634.3 5              | (5,6,7) <sup>-#</sup> |                                                                                 |
| 4762.0 4              | (5,6,7) <sup>-#</sup> |                                                                                 |
| 5054.7 5              | (5,6,7) <sup>-#</sup> |                                                                                 |
| 5261.0 5              | (5,6,7) <sup>-#</sup> |                                                                                 |

<sup>†</sup> From a least-squares fit to  $E\gamma$  data. <sup>‡</sup> Adopted values, supported by log *ft* values and  $\gamma$  branchings.

<sup>#</sup> From log *ft* values for  $\varepsilon$  decay from (5)<sup>-</sup>.

## <sup>148</sup>Ho ε decay (9.59 s) **1988**To03,1989Ta11,1996Ga24 (continued)

## $\varepsilon, \beta^+$ radiations

 $\varepsilon$  feeding was determined on the assumption of no  $\varepsilon$  decay to <sup>148</sup>Dy ground state. log *ft* values calculated by setting parent level energy=0.0.

| E(decay)                          | E(level) | $I\beta^+$ <sup>†</sup> | $\mathrm{I}\varepsilon^{\dagger}$ | Log ft        | $\mathrm{I}(\varepsilon + \beta^+)^\dagger$ | Comments                                                                                                                                                                                               |
|-----------------------------------|----------|-------------------------|-----------------------------------|---------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(4.60 \times 10^3 8)$            | 5261.0   | 1.13 10                 | 0.60 6                            | 5.54 6        | 1.73 15                                     | av Eβ=1628 39; εK=0.291 14; εL=0.0433 20;<br>εM+=0.0127 6                                                                                                                                              |
| (4.81×10 <sup>3</sup> 8)          | 5054.7   | 0.85 10                 | 0.38 5                            | 5.78 6        | 1.23 14                                     | av Eβ=1724 39; εK=0.260 12; εL=0.0388 18;<br>εM+=0.0114 6                                                                                                                                              |
| $(5.10 \times 10^3 8)$            | 4762.0   | 1.81 14                 | 0.65 6                            | 5.59 5        | 2.46 19                                     | av Eβ=1861 40; εK=0.223 10; εL=0.0332 15;<br>εM+=0.0097 5                                                                                                                                              |
| (5.23×10 <sup>3</sup> 8)          | 4634.3   | 1.37 13                 | 0.46 5                            | 5.77 6        | 1.83 17                                     | av Eβ=1920 40; εK=0.209 10; εL=0.0310 14;<br>εM+=0.0091 4                                                                                                                                              |
| (5.40×10 <sup>3</sup> 8)          | 4459.9   | 0.87 10                 | 0.25 3                            | 6.05 6        | 1.12 13                                     | av Eβ=2002 40; εK=0.191 9; εL=0.0283 13;<br>εM+=0.0083 4                                                                                                                                               |
| (5.47×10 <sup>3</sup> 8)          | 4392.8   | 2.15 20                 | 0.61 6                            | 5.69 6        | 2.76 25                                     | av Eβ=2033 40; εK=0.184 8; εL=0.0274 12;<br>εM+=0.0080 4                                                                                                                                               |
| (5.57×10 <sup>3</sup> 8)          | 4289.47  | 9.5 3                   | 2.50 14                           | 5.09 4        | 12.0 4                                      | av E $\beta$ =2082 40; $\varepsilon$ K=0.175 8; $\varepsilon$ L=0.0260 12;<br>$\varepsilon$ M+=0.0076 4                                                                                                |
| (6.10×10 <sup>3</sup> 8)          | 3755.6   | 3.0 3                   | 0.58 5                            | 5.81 5        | 3.6 3                                       | av $E\beta$ =2333 40; $\varepsilon K$ =0.135 6; $\varepsilon L$ =0.0200 9;<br>$\varepsilon M$ +=0.00586 25                                                                                             |
| $(6.45 \times 10^3 8)$            | 3405.1   | 0.92 14                 | 0.144 23                          | 6.46 8        | 1.06 16                                     | av $E\beta = 2499 \ 40; \ \varepsilon K = 0.114 \ 5; \ \varepsilon L = 0.0170 \ 7; \ \varepsilon M + = 0.00497 \ 20$                                                                                   |
| $(6.53 \times 10^3 8)$            | 3327.7   | 1.88 11                 | 0.284 21                          | 6.17 4        | 2.16 13                                     | av $E\beta$ =2536 40; $\varepsilon K$ =0.110 5; $\varepsilon L$ =0.0164 7;<br>$\varepsilon M$ +=0.00480 19                                                                                             |
| $(6.54 \times 10^3 8)$            | 3323.2   | 2.28 13                 | 0.344 24                          | 6.09 4        | 2.62 15                                     | av $E\beta = 2538$ 40; $\varepsilon K = 0.110$ 5; $\varepsilon L = 0.0163$ 7;<br>$\varepsilon M + = 0.00479$ 19                                                                                        |
| $(6.58 \times 10^{-5} 8)$         | 3279.7   | 2.05 14                 | 0.303 24                          | 6.15 5        | 2.35 10                                     | av $E\beta = 2559.40$ ; $\varepsilon K = 0.108.5$ ; $\varepsilon L = 0.0160.7$ ;<br>$\varepsilon M + = 0.00470.19$<br>av $E\beta = 2602.40$ ; $\varepsilon K = 0.104.4$ ; $\varepsilon L = 0.0154.6$ ; |
| $(0.0/\times10^{-8})$             | 2171.7   | 2.25 17                 | 0.31.3                            | 6.13.3        | 2.54 19                                     | av $E\beta = 2602 \ 40; \ \epsilon K = 0.104 \ 4; \ \epsilon L = 0.0154 \ 6;$<br>$\epsilon M + = 0.00451 \ 18$<br>av $E\beta = 2610 \ 40; \ \epsilon K = 0.102 \ 4; \ \epsilon L = 0.0152 \ 6;$        |
| $(0.09 \times 10^{-8} \text{ s})$ | 2115.6   | 2.28 15                 | 0.319 24                          | 0.14 <i>4</i> | 2.00 17                                     | av $Ep=2010 40$ ; $eK=0.103 4$ ; $eL=0.0133 0$ ;<br>eM+=0.00447 18<br>av $Ep=2627 40$ ; $eK=0.100 4$ ; $eL=0.0140 6$ ;                                                                                 |
| $(0.74\times10^{-8})$             | 2005.27  | 0.82.20                 | 0.303 23                          | 6 65 11       | 0.03.23                                     | eV = 205740, $eK = 0.1004$ , $eL = 0.01416$ ;<br>eV = 20043617<br>eV = 20043617                                                                                                                        |
| $(6.80 \times 10^3 \ 8)$          | 2995.27  | 67.8                    | 0.85 11                           | 5 74 6        | 760                                         | av $E\beta = 209440$ ; $\epsilon K = 0.0954$ ; $\epsilon L = 0.01410$ ;<br>$\epsilon M + = 0.0041416$<br>av $E\beta = 270640$ ; $\epsilon K = 0.0944$ ; $\epsilon L = 0.01406$ ;                       |
| $(7.01 \times 10^3 \ 8)$          | 2909.50  | 13 5 3                  | 1.61.7                            | 5 48 3        | 15.1.3                                      | av $E\beta = 276040; \ \epsilon K = 0.0944; \ \epsilon L = 0.01400;$<br>$\epsilon M + = 0.0040916$<br>av $E\beta = 276140; \ \epsilon K = 0.0904; \ \epsilon L = 0.01335;$                             |
| $(7.03 \times 10^3 \ 8)$          | 2833.7   | 0.71.21                 | 0.084 25                          | 6.77 13       | 0.79.23                                     | $\epsilon M$ +=0.00389 15<br>av E $\beta$ =2771 40; $\epsilon K$ =0.089 4; $\epsilon L$ =0.0132 5;                                                                                                     |
| $(7.12 \times 10^3 \ 8)$          | 2739.30  | 2.34 22                 | 0.26.3                            | 6.28.5        | 2.60 24                                     | $\varepsilon M$ +=0.00386 15<br>av E $\beta$ =2816 40; $\varepsilon K$ =0.085 3; $\varepsilon L$ =0.0126 5;                                                                                            |
| $(7.13 \times 10^3 \ 8)$          | 2732.25  | 3.1.3                   | 0.34 3                            | 6.16.5        | 3.4.3                                       | $\epsilon M$ +=0.00371 14<br>av E $\beta$ =2819 40; $\epsilon K$ =0.085 3; $\epsilon L$ =0.0126 5;                                                                                                     |
| $(7.43 \times 10^3 8)$            | 2427.82  | 3.6 3                   | 0.36 3                            | 6.19 5        | 4.0 3                                       | $\varepsilon M$ +=0.00370 14<br>av E $\beta$ =2965 41; $\varepsilon K$ =0.075 3; $\varepsilon L$ =0.0111 4;                                                                                            |
| $(7.51 \times 10^3 \ 8)$          | 2349.65  | 9.2.9                   | 0.87.9                            | 5.81.5        | 10.1 10                                     | $\varepsilon M$ +=0.00326 12<br>av E $\beta$ =3002 41: $\varepsilon K$ =0.073 3: $\varepsilon L$ =0.0108 4:                                                                                            |
| (                                 | _0.0.00  | ·· <b>-</b> /           | 5.57 2                            | 0.010         | 10.1 10                                     | $\varepsilon M += 0.00315 11$                                                                                                                                                                          |

<sup>†</sup> Absolute intensity per 100 decays.

 $\gamma(^{148}\mathrm{Dy})$ 

I $\gamma$  normalization:  $\Sigma$  Ti(g.s.)=100.

 $\boldsymbol{\omega}$ 

| E <sub>γ</sub> ‡   | $I_{\gamma}^{@b}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f \qquad J_f^{\pi}$                          | Mult. <sup>&amp;</sup>                | $\alpha^{\dagger}$ | $I_{(\gamma+ce)}^{b}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------|-------------------|------------------------|----------------------|-------------------------------------------------|---------------------------------------|--------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (10.5)             | 0.51 4            | 1688.31                | 3-                   | 1677.81 2+                                      | [E1]                                  | 26.1               | 13.8 11               | ce(L)/( $\gamma$ +ce)=0.747 7; ce(M)/( $\gamma$ +ce)=0.176 3;<br>ce(N+)/( $\gamma$ +ce)=0.0405 8<br>ce(N)/( $\gamma$ +ce)=0.0370 7; ce(O)/( $\gamma$ +ce)=0.00348 7;<br>ce(P)/( $\gamma$ +ce)=6.89×10 <sup>-5</sup> 14<br>E <sub><math>\gamma</math></sub> .I <sub><math>\gamma</math></sub> : from balance of Ti(10.5 $\gamma$ )/Ti(1688 $\gamma$ )=0.167 13, measured<br>by 1989Ta11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 94.5 2             | 0.44 5            | 2833.7                 | 8+                   | 2739.30 7-                                      | E1                                    | 0.359 6            |                       | $\alpha(K)=0.299 5; \ \alpha(L)=0.0468 8; \ \alpha(M)=0.01027 \ 16; \\ \alpha(N+)=0.00266 4 \\ \alpha(N)=0.00233 \ 4; \ \alpha(O)=0.000316 \ 5; \ \alpha(P)=1.369\times10^{-5} \ 21 \\ \alpha(N)=0.00233 \ 4; \ \alpha(O)=0.000316 \ 5; \ \alpha(P)=1.369\times10^{-5} \ 21 \\ \alpha(N)=0.00233 \ 4; \ \alpha(O)=0.000316 \ 5; \ \alpha(P)=1.369\times10^{-5} \ 21 \\ \alpha(N)=0.00233 \ 4; \ \alpha(O)=0.000316 \ 5; \ \alpha(P)=1.369\times10^{-5} \ 21 \\ \alpha(N)=0.00233 \ 4; \ \alpha(O)=0.000316 \ 5; \ \alpha(P)=1.369\times10^{-5} \ 21 \\ \alpha(N)=0.00233 \ 4; \ \alpha(O)=0.000316 \ 5; \ \alpha(P)=1.369\times10^{-5} \ 21 \\ \alpha(N)=0.00233 \ 4; \ \alpha(O)=0.000316 \ 5; \ \alpha(P)=1.369\times10^{-5} \ 21 \\ \alpha(N)=0.00233 \ 4; \ \alpha(O)=0.000316 \ 5; \ \alpha(P)=0.00233 \ 4; \ \alpha(O)=0.000316 \ 5; \ \alpha(P)=0.0023 \ 4; \ \alpha(O)=0.0023 \ 4$ |
| 101.5 3            | 0.11 6            | 2833.7                 | 8+                   | 2732.25 6+                                      | E2                                    | 2.57 5             |                       | E <sub>y</sub> : from 1988To03.<br>$\alpha(K)=1.081 \ 18; \ \alpha(L)=1.142 \ 23; \ \alpha(M)=0.273 \ 6; \ \alpha(N+)=0.0687 \ 14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 115.6 3            | 1.30 5            | 2969.56                | (5,6,7)-             | 2853.97 (5,6)-                                  | M1 <sup><i>a</i></sup>                | 1.58 3             |                       | $ \begin{array}{c} \alpha(\mathrm{N}) = 0.0613 \ 12; \ \alpha(\mathrm{O}) = 0.00737 \ 15; \ \alpha(\mathrm{P}) = 4.49 \times 10^{-5} \ 7 \\ \alpha(\mathrm{K}) = 1.332 \ 22; \ \alpha(\mathrm{L}) = 0.196 \ 4; \ \alpha(\mathrm{M}) = 0.0430 \ 7; \ \alpha(\mathrm{N}+) = 0.01148 \\ 19 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 164.1 <i>3</i>     | 0.37 5            | 3279.7                 | (6)-                 | 3115.6 (6,7)-                                   | M1 <sup><i>a</i></sup>                | 0.588              |                       | $\alpha(N)=0.00994 \ 16; \ \alpha(O)=0.001454 \ 23; \ \alpha(P)=8.30\times10^{-5} \ 14 \\ \alpha(K)\exp=1.3 \ 3 \ (1996Ga24). \\ \alpha(K)=0.495 \ 8; \ \alpha(L)=0.0724 \ 11; \ \alpha(M)=0.01589 \ 24; \\ \alpha(N+)=0.00425 \ 7 \\ \alpha(N)=0.00368 \ 6; \ \alpha(O)=0.000538 \ 8; \ \alpha(P)=3.08\times10^{-5} \ 5 \\ \alpha(K)\exp=4.2\times10^{-1} \ 12 \ (1006Ga24). \\ \alpha(K)=0.495 \ 10^{-1} \ 12 \ (1006Ga24). \\ \alpha(K)=0.00368 \ 6; \ \alpha(Q)=0.000538 \ 8; \ \alpha(Q)=3.08\times10^{-5} \ 5 \\ \alpha(K)\exp=4.2\times10^{-1} \ 12 \ (1006Ga24). \\ \alpha(K)=0.00368 \ 6; \ \alpha(Q)=0.000538 \ 8; \ \alpha(Q)=3.08\times10^{-5} \ 5 \\ \alpha(K)\exp=4.2\times10^{-1} \ 12 \ (1006Ga24). \\ \alpha(K)=0.00368 \ 6; \ \alpha(Q)=0.000538 \ 8; \ \alpha(Q)=3.08\times10^{-5} \ 5 \\ \alpha(K)\exp=4.2\times10^{-1} \ 12 \ (1006Ga24). \\ \alpha(K)=0.00368 \ 6; \ \alpha(Q)=0.000538 \ 8; \ \alpha(Q)=3.08\times10^{-5} \ 5 \\ \alpha(K)\exp=4.2\times10^{-1} \ 12 \ (1006Ga24). \\ \alpha(K)=0.00368 \ 6; \ \alpha(Q)=0.000538 \ 8; \ \alpha(Q)=3.08\times10^{-5} \ 5 \\ \alpha(K)\exp=4.2\times10^{-1} \ 12 \ (1006Ga24). \\ \alpha(K)=0.00368 \ 6; \ \alpha(Q)=0.000538 \ 8; \ \alpha(Q)=3.08\times10^{-5} \ 5 \\ \alpha(K)\exp=4.2\times10^{-1} \ 12 \ (1006Ga24). \\ \alpha(K)=0.00368 \ 6; \ \alpha(Q)=0.000538 \ 8; \ \alpha(Q)=3.08\times10^{-5} \ 5 \\ \alpha(K)\exp=4.2\times10^{-1} \ 12 \ (1006Ga24). \\ \alpha(K)=0.00368 \ 6; \ \alpha(Q)=0.000538 \ 8; \ \alpha(Q)=3.08\times10^{-5} \ 5 \\ \alpha(K)=0.00368 \ 6; \ \alpha(Q)=0.000538 \ 8; \ \alpha(Q)=3.08\times10^{-5} \ 5 \\ \alpha(K)=0.00368 \ 6; \ \alpha(Q)=0.000538 \ 8; \ \alpha(Q)=3.08\times10^{-5} \ 5 \\ \alpha(K)=0.00368 \ 6; \ \alpha(Q)=0.000538 \ 8; \ \alpha(Q)=3.08\times10^{-5} \ 5 \\ \alpha(K)=0.00368 \ 6; \ \alpha(Q)=0.000538 \ 8; \ \alpha(Q)=3.08\times10^{-5} \ 5 \\ \alpha(K)=0.00368 \ 6; \ \alpha(Q)=0.000538 \ 8; \ \alpha(Q)=3.08\times10^{-5} \ 5 \\ \alpha(K)=0.00368 \ 6; \ \alpha(Q)=0.000538 \ 8; \ \alpha(Q)=3.08\times10^{-5} \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 261.5 5            | 0.27 7            | 3115.6                 | $(6,7)^{-}$          | 2853.97 (5,6)                                   |                                       |                    |                       | $u(\mathbf{K}) = 4.2 \times 10  12  (19900 a 24).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 282.2 5<br>304.5 2 | 0.20 3<br>1.50 7  | 3115.6<br>2732.25      | (6,7)<br>$6^+$       | 2833.7 8 <sup>+</sup><br>2427.82 4 <sup>+</sup> | E2                                    | 0.0616             |                       | $\alpha$ (K)=0.0463 7; $\alpha$ (L)=0.01189 17; $\alpha$ (M)=0.00274 4; $\alpha$ (N+)=0.000706 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 353.6 4            | 0.54 8            | 3323.2                 | (6) <sup>-</sup>     | 2969.56 (5,6,7                                  | ) <sup>-</sup> M1 <sup><i>a</i></sup> | 0.0730             |                       | $\alpha(N)=0.000621 \; 9; \; \alpha(O)=8.18\times10^{-5} \; 12; \; \alpha(P)=2.42\times10^{-6} \; 4$<br>$\alpha(K)=0.0617 \; 9; \; \alpha(L)=0.00884 \; 13; \; \alpha(M)=0.00194 \; 3;$<br>$\alpha(N+)=0.000518 \; 8$<br>$\alpha(N)=0.000448 \; 7; \; \alpha(O)=6\; 58\times10^{-5} \; 10; \; \alpha(P)=3\; 80\times10^{-6} \; 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 376.1 <i>5</i>     | 0.57 8            | 3115.6                 | (6,7) <sup>-</sup>   | 2739.30 7-                                      | M1 <sup><i>a</i></sup>                | 0.0621             |                       | $\alpha(K) = 0.0001647, \alpha(C) = 0.0001647, \alpha(K) = 0.0001644, 24; \alpha(K) = 0.000164, 24; \alpha(K) = 0.000164, 24; \alpha(K) = 0.000164, 24; \alpha(K) = 0.$                                                                                   |
| 382.6 2            | 2.76 13           | 2732.25                | 6+                   | 2349.65 5-                                      | E1                                    | 0.00951 14         |                       | $\begin{aligned} \alpha(\mathbf{N}) &= 0.000380 \ 6; \ \alpha(\mathbf{O}) &= 5.58 \times 10^{-5} \ 8; \ \alpha(\mathbf{P}) &= 3.23 \times 10^{-5} \ 5 \\ \alpha(\mathbf{K}) &= 5.5 \times 10^{-2} \ 26 \ (1996 \text{Ga}24). \\ \alpha &= 0.00951 \ 14; \ \alpha(\mathbf{K}) &= 0.00808 \ 12; \ \alpha(\mathbf{L}) &= 0.001126 \ 16; \\ \alpha(\mathbf{M}) &= 0.000246 \ 4; \ \alpha(\mathbf{N}+) &= 6.50 \times 10^{-5} \ 10 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 389.6 2            | 5.11 9            | 2739.30                | 7-                   | 2349.65 5-                                      | E2 <sup><i>a</i></sup>                | 0.0299             |                       | $\begin{aligned} \alpha(N) &= 5.64 \times 10^{-5} \ 8; \ \alpha(O) &= 8.10 \times 10^{-6} \ 12; \ \alpha(P) &= 4.34 \times 10^{-7} \ 6 \\ \alpha(K) &= 0.0234 \ 4; \ \alpha(L) &= 0.00505 \ 8; \ \alpha(M) &= 0.001150 \ 17; \\ \alpha(N+) &= 0.000299 \ 5 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|                          |                   |               |                      | <sup>148</sup> Ho | $\varepsilon$ decay ( | 9.59 s)                | 1988To03,1989              | Ta11,1996Ga24 (continued)                                                                                   |
|--------------------------|-------------------|---------------|----------------------|-------------------|-----------------------|------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------|
|                          |                   |               |                      |                   |                       | <u>γ(</u>              | <sup>148</sup> Dy) (contin | ued)                                                                                                        |
| $E_{\gamma}^{\ddagger}$  | $I_{\gamma}^{@b}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$             | $\mathrm{J}_f^\pi$    | Mult. <sup>&amp;</sup> | $\alpha^{\dagger}$         | Comments                                                                                                    |
|                          |                   |               |                      |                   |                       |                        |                            | $\alpha$ (N)=0.000262 4; $\alpha$ (O)=3.54×10 <sup>-5</sup> 5; $\alpha$ (P)=1.270×10 <sup>-6</sup> 18       |
| 12571                    | 0 42 8            | 2270 7        | $(6)^{-}$            | 2852.07           | $(5.6)^{-}$           |                        |                            | $\alpha$ (K)exp=1.9×10 <sup>-2</sup> 5 (1996Ga24).                                                          |
| $x_{135} \Lambda^{\#} 6$ | 0.42.0            | 3219.1        | (0)                  | 2033.91           | (3,0)                 |                        |                            |                                                                                                             |
| 504.3 2                  | 18.62 <i>11</i>   | 2853.97       | (5,6)-               | 2349.65           | 5-                    | M1 <sup><i>a</i></sup> | 0.0291                     | $\alpha(K)=0.0246\ 4;\ \alpha(L)=0.00348\ 5;\ \alpha(M)=0.000762\ 11;\ \alpha(N+)=0.000204$                 |
|                          |                   |               |                      |                   |                       |                        |                            | $\alpha(N)=0.0001764\ 25;\ \alpha(O)=2.59\times10^{-5}\ 4;\ \alpha(P)=1.504\times10^{-6}\ 22$               |
| x540 5 5                 | 0 46 11           |               |                      |                   |                       |                        |                            | $\alpha(K)\exp=2.3\times10^{-2}$ 5 (1996Ga24).                                                              |
| 542.0.5                  | 0.4011<br>0.6711  | 2969 56       | $(567)^{-}$          | 2427 82           | <b>4</b> +            |                        |                            |                                                                                                             |
| 567.3.2                  | 1.16.8            | 2995.27       | (3,0,7)<br>$(4)^{-}$ | 2427.82           | 4+                    |                        |                            |                                                                                                             |
| 583 7 <sup>#</sup> 3     | $0.4^{\#}$ 1      | 3323.2        | $(6)^{-}$            | 2739.30           | 7-                    |                        |                            |                                                                                                             |
| 620.1                    | 2 79 80           | 2969 56       | $(5, 6, 7)^{-}$      | 2739.50           | 5-                    |                        |                            |                                                                                                             |
| 661.3 2                  | 58.94 16          | 2349.65       | 5-                   | 1688.31           | 3-                    | E2 <sup>a</sup>        | 0.00758 11                 | $\alpha = 0.00758$ 11; $\alpha(K) = 0.00624$ 9; $\alpha(L) = 0.001045$ 15; $\alpha(M) = 0.000233$ 4;        |
| 00110 =                  | 0000110           | 20 19100      | U                    | 1000.01           | 6                     |                        | 0100700 11                 | $\alpha(N+)=6.13\times10^{-5}$ 9                                                                            |
|                          |                   |               |                      |                   |                       |                        |                            | $\alpha(N)=5.34\times10^{-5}$ 8; $\alpha(O)=7.52\times10^{-6}$ 11; $\alpha(P)=3.56\times10^{-7}$ 5          |
|                          |                   |               |                      |                   |                       |                        |                            | $\alpha(K) \exp = 5.9 \times 10^{-3} I3$ (1996Ga24).                                                        |
| 665.8 4                  | 1.06 16           | 3405.1        | $(8)^{-}$            | 2739.30           | 7-                    |                        |                            |                                                                                                             |
| 739.5 2                  | 5.73 10           | 2427.82       | 4+                   | 1688.31           | 3-                    | E1                     | 0.00224 4                  | $\alpha$ =0.00224 4; $\alpha$ (K)=0.00191 3; $\alpha$ (L)=0.000257 4; $\alpha$ (M)=5.59×10 <sup>-5</sup> 8; |
|                          |                   |               |                      |                   |                       |                        |                            | $\alpha$ (N+)=1.486×10 <sup>-5</sup> 21                                                                     |
|                          |                   |               |                      |                   |                       |                        |                            | $\alpha(N)=1.288\times10^{-5}$ 18; $\alpha(O)=1.87\times10^{-6}$ 3; $\alpha(P)=1.059\times10^{-7}$ 15       |
| 750.0 2                  | 3.62 9            | 2427.82       | 4+                   | 1677.81           | 2+                    | E2                     | 0.00567 8                  | $\alpha$ =0.00567 8; $\alpha$ (K)=0.00470 7; $\alpha$ (L)=0.000754 11; $\alpha$ (M)=0.0001673 24;           |
|                          |                   |               |                      |                   |                       |                        |                            | $\alpha$ (N+)=4.42×10 <sup>-5</sup> 7                                                                       |
|                          |                   |               |                      |                   |                       |                        |                            | $\alpha(N)=3.84\times10^{-5}$ 6; $\alpha(O)=5.46\times10^{-6}$ 8; $\alpha(P)=2.70\times10^{-7}$ 4           |
| <sup>x</sup> 760.4 3     | 0.47 7            |               |                      |                   |                       |                        |                            |                                                                                                             |
| 765.9 2                  | 2.06 10           | 3115.6        | $(6,7)^{-}$          | 2349.65           | 5-                    |                        |                            |                                                                                                             |
| ^917.3 4                 | 0.32 11           | 2270.7        | $(\mathbf{C})^{-}$   | 2240 65           | <b>-</b>              |                        |                            |                                                                                                             |
| 930.0 5                  | 1.54 10           | 5219.1        | (0)                  | 2349.03           | 5                     |                        |                            |                                                                                                             |
| <sup>*</sup> 961.2" 3    | 0.8" 1            | 2222.2        | $(\epsilon)^{-}$     | 2240 65           | 5-                    |                        |                            |                                                                                                             |
| <sup>x</sup> 006.0.4     | 1.04 J            | 3323.2        | (0)                  | 2549.05           | 5                     |                        |                            |                                                                                                             |
| 1101 0 3                 | 2 92 13           | 4289 47       | $(567)^{-}$          | 3188 57           | $(567)^{-}$           |                        |                            |                                                                                                             |
| x1176 1 <sup>#</sup> 6   | 1.1 # 2           | 1209.17       | (3,0,7)              | 5100.57           | (3,0,7)               |                        |                            |                                                                                                             |
| $x_{1202,2,4}$           | 0.49.12           |               |                      |                   |                       |                        |                            |                                                                                                             |
| 1281.3 2                 | 5.66 17           | 2969.56       | $(5.6.7)^{-}$        | 1688.31           | 3-                    |                        |                            | L <sub>x</sub> : derived from coincidence data.                                                             |
| 1307.0 2                 | 1.44 13           | 2995.27       | $(4)^{-}$            | 1688.31           | 3-                    |                        |                            |                                                                                                             |
| 1320.0 2                 | 2.54 16           | 4289.47       | (5,6,7)-             | 2969.56           | $(5,6,7)^{-}$         |                        |                            |                                                                                                             |
| 1328.3 5                 | 0.79 17           | 3755.6        | (5,6,7)-             | 2427.82           | 4+                    |                        |                            |                                                                                                             |
| <sup>x</sup> 1391.8 4    | 0.71 14           |               |                      |                   |                       |                        |                            |                                                                                                             |
| 1397.3 <i>3</i>          | 1.67 17           | 4392.8        | $(5,6,7)^{-}$        | 2995.27           | (4)-                  |                        |                            |                                                                                                             |
| 1405.9 2                 | 2.82 18           | 3755.6        | (5,6,7)              | 2349.65           | 5-                    |                        |                            |                                                                                                             |
| 1483.4 2                 | 2.60 16           | 3171.7        | $(5,6,7)^{-}$        | 1688.31           | 3-                    |                        |                            |                                                                                                             |

4

 $^{148}_{66}\mathrm{Dy}_{82}\text{-}4$ 

| $\gamma$ <sup>(148</sup> Dy) (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|--|--|--|--|--|
| $E_{\gamma}^{\ddagger}$ $I_{\gamma}^{\textcircled{0}b}$ $E_{i}(\text{level})$ $J_{i}^{\pi}$ $E_{f}$ $J_{f}^{\pi}$ Mult. $\overset{\&}{\sim}$ $\alpha^{\dagger}$ Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |  |  |  |  |  |  |  |  |  |
| 1500.3 2 5.46 13 3188.57 (5,6,7) <sup>-</sup> 1688.31 3 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |  |  |  |  |  |  |  |  |  |
| $x^{1}504.3^{\#}6$ $1.3^{\#}2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |  |  |  |  |  |  |  |  |  |
| $^{x}1600.4^{\#}4$ $0.8^{\#}2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |  |  |  |  |  |  |  |  |  |
| $1639.4 \ 4 \qquad 2.16 \ 12 \qquad 3327.7 \qquad (5)^{-} \qquad 1688.31 \ 3^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |  |  |  |  |  |  |  |  |  |
| 1661.5 8 0.51 12 4392.8 $(5,6,7)^-$ 2732.25 6 <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |  |  |  |  |  |  |  |  |  |
| 1677.8 2 17.4 11 1677.81 2 <sup>+</sup> 0.0 0 <sup>+</sup> E2 0.001243 18 $\alpha$ =0.001243 18; $\alpha$ (K)=0.000939 14; $\alpha$ (L)=0.0001290 18;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |  |  |  |  |  |  |  |  |  |
| $\alpha(M)=2.81\times10^{-3}$ 4; $\alpha(N+)=0.000147$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |  |  |  |  |  |  |
| $\alpha(N)=6.49\times10^{-6}$ 9; $\alpha(O)=9.49\times10^{-7}$ 14; $\alpha(P)=5.42\times10^{-6}$ 8;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |  |  |  |  |  |  |  |  |  |
| $\alpha(\text{IFF})=0.0001400\ 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.10-5  |  |  |  |  |  |  |  |  |  |
| $1088.5 2  82.47  50  1088.51  5 \qquad 0.0  0^{-1}  E5 \qquad 0.00212  5  \alpha = 0.00212  5;  \alpha(\mathbb{K}) = 0.001/24  25;  \alpha(\mathbb{L}) = 0.000257  4;  \alpha(\mathbb{M}) = 5.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5/×10 ° |  |  |  |  |  |  |  |  |  |
| $\begin{array}{c} 0, \ u(1N+)=0.02\times 10^{-1} \ 12\\ \alpha(N)=1.208\times 10^{-5} \ 10. \ \alpha(O)=1.00\times 10^{-6} \ 3. \ \alpha(D)=1.024\times 10^{-7} \ 1.024\times $ | 5.      |  |  |  |  |  |  |  |  |  |
| $a(IV) = 1.308 \times 10^{-5} I$<br>$a(IV) = 1.308 \times 10^{-5} I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ј,      |  |  |  |  |  |  |  |  |  |
| $1861.54$ $1.1814$ $4289.47$ $(5.6.7)^{-}$ $2427.824^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |  |  |  |  |  |  |  |  |  |
| 1939.7 3 $4.62 \ 17 \ 4289.47 \ (5.6.7)^{-} \ 2349.65 \ 5^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |  |  |  |  |  |  |  |  |  |
| 2043.4 4 0.58 13 4392.8 $(5,6,7)^-$ 2349.65 5 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |  |  |  |  |  |  |  |  |  |
| 2110.2 4 1.12 13 4459.9 (5,6,7) <sup>-</sup> 2349.65 5 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |  |  |  |  |  |  |  |  |  |
| 2284.6 4 1.56 13 4634.3 (5,6,7) <sup>-</sup> 2349.65 5 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |  |  |  |  |  |  |  |  |  |
| 2291.4 4 1.73 14 5261.0 (5,6,7) <sup>-</sup> 2969.56 (5,6,7) <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |  |  |  |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |  |  |  |  |  |  |  |  |  |
| $2600.9 4 	 0.75 II 	 4289.47 	 (5,6,7) 	 1688.31 	 3 	 2705 0 	 4 	 1.22 	 14 	 5054.7 	 (5,6,7) 	 2240.65 	 5^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |  |  |  |  |  |  |  |  |  |
| 2703.04 1.25 14 5034.7 (5,0,7) 2549.05 5<br>2045 8 10 0 27 10 4634 3 (5.6.7) <sup>-</sup> 1688 31 3 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |  |  |  |  |  |  |  |  |  |
| 307346 0.5211 47620 (5.67) <sup>-</sup> 1688.31.3 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |  |  |  |  |  |  |  |  |  |
| 5075110 0.5211 1702.0 (0,0,7) 1000.51 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |  |  |  |  |  |  |  |  |  |
| <sup>†</sup> Additional information 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |  |  |  |  |  |  |  |  |  |
| <sup>‡</sup> From 1989Ta11 unless indicated otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |  |  |  |  |  |  |  |  |  |
| <sup>#</sup> Observed only in 1988To03.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |  |  |  |  |  |  |  |  |  |
| <sup>@</sup> Relative intensity (1989Ta11).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |  |  |  |
| <sup>&amp;</sup> From adopted gammas supported by ce data from this data set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |  |  |  |  |  |  |  |  |  |
| a From ce data (1996Ga24).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |  |  |  |  |  |  |  |  |  |
| <sup>b</sup> For absolute intensity per 100 decays, multiply by 1.00 <i>I</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |  |  |  |  |  |  |  |  |  |
| $x \gamma$ ray not placed in level scheme.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |  |  |  |  |  |  |  |  |  |

S

 $^{148}_{66}\mathrm{Dy}_{82}$ -5

L



6

From ENSDF

 $^{148}_{66}\mathrm{Dy}_{82}\text{-}6$