$^{152}{ m Er}~\alpha~{ m decay}$

Type Author
Full Evaluation N. Nica

History Citation NDS 117, 1 (2014)

Literature Cutoff Date
1-Oct-2013

Parent: 152 Er: E=0.0; $J^{\pi}=0^{+}$; $T_{1/2}=10.3$ s *I*; $Q(\alpha)=4934.4$ *16*; $\%\alpha$ decay=91 *4*

 152 Er-Q(α): From 2012Wa38.

 $T_{1/2}(^{152}\text{Er})=10.3 \text{ s } I$, measured by 1982Bo04 and adopted by 1996Ar09, is used in calculations here.

 $\%\alpha$ =91 4 is used in calculations. This branching is an unweighted average of $\%\alpha$ =93 4 (1979Ho10), $\%\alpha$ =94 4 (1987To02) and $\%\alpha$ =86 4 (1987To02), determined by counting different γ' s and the 4804 α . $\%\alpha$ =90 4 is adopted by 1996Ar09 from the α branchings obtained by 1987To02.

¹⁴⁸Dy Levels

 $\frac{\text{E(level)}}{0.0} \quad \frac{\text{J}^{\pi}}{0^{+}}$

 α radiations

 $\frac{\text{E}\alpha}{4804.3 \ 16}$ $\frac{\text{E(level)}}{0.0}$ $\frac{\text{I}\alpha^{\dagger \#}}{100}$ $\frac{\text{HF}^{\ddagger}}{1.000}$

Comments
measured energies of 480

E α : recommended by 1991Ry01 from the measured energies of 4800 10 (1970To16), 4806 10 (1977Ha48), 4804 2 (1981De22), 4805 3 (1982Bo04), 4809 10 (1983Ml01). The original energies are adjusted for changes in calibration energies, as recommended by 1991Ry01.

I α : only one α group was observed. An upper limit of 6.8×10⁻¹⁰ per 100 α decays is calculated for an unobserved 3171-keV α to the 1677.3-keV, 2⁺ state in ¹⁴⁸Dy by requiring Hf(3171 α)>1.

 $^{^{\}dagger}$ α intensity per 100 α decays.

 $^{^{\}ddagger}$ r₀(¹⁴⁸Dy)=1.567 3 is calculated from Hf(4804 α)=1.0.

[#] For absolute intensity per 100 decays, multiply by 0.91 4.