¹⁴⁹Er εp decay (8.9 s) **1989Fi01**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 117, 1 (2014)	1-Oct-2013

Parent: ¹⁴⁹Er: E=741.8 4; J^{π} =(11/2⁻); $T_{1/2}$ =8.9 s 2; Q(ε p)=6823 29; % ε p decay=0.18 7 ¹⁴⁹Er-Q(ε p): From 2012Wa38.

Measured p, γ , x, β^+ in singles and coin. FWHM for protons ≈ 35 keV.

¹⁴⁸Dy Levels

E(level)	$J^{\pi \dagger}$
0.0	0^{+}
1677.9	2^{+}
1688.4	3-
2349.4	5-
2427.6	4^{+}
2732.3	6+
2739.3	7-

[†] From Adopted Levels.

$\gamma(^{148}\text{Dy})$

Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.‡	α^{\dagger}	$I_{(\gamma+ce)}^{\#}$	Comments
10.5	0.2	1688.4	3-	1677.9 2+	[E1]	26.1	5	$ce(L)/(\gamma+ce)=0.747 7;ce(M)/(\gamma+ce)=0.176 3;ce(N+)/(\gamma+ce)=0.0405 8ce(N)/(\gamma+ce)=0.0370 7;ce(O)/(\gamma+ce)=0.00348 7;ce(P)((\gamma+ce)=6.89\times10^{-5} 14)$
304.6	2	2732.3	6+	2427.6 4+	E2	0.0616		$\alpha(K)=0.0463 7; \alpha(L)=0.01187 17; \alpha(M)=0.00273 4; \alpha(N+)=0.000705 10 \alpha(N)=0.000621 9; \alpha(O)=8.17\times10^{-5} 12; \alpha(P)=2.42\times10^{-6} 4$
382.9	3	2732.3	6+	2349.4 5-	E1	0.00950		$\alpha(K)=0.00806 \ 12; \ \alpha(L)=0.001124 \ 16; \\ \alpha(M)=0.000245 \ 4; \ \alpha(N+)=6.48\times10^{-5} \ 9 \\ \alpha(N)=5.63\times10^{-5} \ 8; \ \alpha(O)=8.09\times10^{-6} \ 12; \\ \alpha(P)=4 \ 33\times10^{-7} \ 6 $
389.9	3	2739.3	7-	2349.4 5-	E2	0.0298		$\begin{array}{l} \alpha(\mathbf{K}) = 0.0233 \ 4; \ \alpha(\mathbf{L}) = 0.00504 \ 7; \\ \alpha(\mathbf{M}) = 0.001147 \ 16; \ \alpha(\mathbf{N}+) = 0.000298 \ 5 \\ \alpha(\mathbf{N}) = 0.000262 \ 4; \ \alpha(\mathbf{O}) = 3.53 \times 10^{-5} \ 5; \\ \alpha(\mathbf{P}) = 1.267 \times 10^{-6} \ 18 \end{array}$
661.0	14	2349.4	5-	1688.4 3-	E2	0.00759		$\alpha(K) = 0.00625 \ 9; \ \alpha(L) = 0.001046 \ 15; \alpha(M) = 0.000233 \ 4; \ \alpha(N+) = 6.14 \times 10^{-5} \ 9 \alpha(N) = 5.35 \times 10^{-5} \ 8; \ \alpha(O) = 7.53 \times 10^{-6} \ 11; \alpha(P) = 3.56 \times 10^{-7} \ 5$
739.2 749.7	6 4	2427.6 2427.6	4+ 4+	1688.4 3 ⁻ 1677.9 2 ⁺	E2	0.00567		$\alpha(K) = 0.00471 \ 7; \ \alpha(L) = 0.000755 \ 11;$ $\alpha(M) = 0.0001674 \ 24; \ \alpha(N+) = 4.42 \times 10^{-5}$ 7
1677.9	13	1677.9	2+	0.0 0+	E2	1.24×10^{-3}		$\alpha(N)=3.85\times10^{-5} 6; \ \alpha(O)=5.46\times10^{-6} 8; \alpha(P)=2.70\times10^{-7} 4 \alpha(K)=0.000938 \ 14; \ \alpha(L)=0.0001290 \ 18;$

Continued on next page (footnotes at end of table)

					¹⁴⁹ Er εp decay (8.9 s) 1989Fi01 (continued)		
γ ⁽¹⁴⁸ Dy) (continued)							
Eγ	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [‡]	α^{\dagger}	Comments
1688.4	24	1688.4	3-	0.0 0+	E3	0.00212	$\begin{aligned} &\alpha(\mathbf{M}) = 2.81 \times 10^{-5} \ 4; \ \alpha(\mathbf{N}+) = 0.0001475 \ 21 \\ &\alpha(\mathbf{N}) = 6.49 \times 10^{-6} \ 9; \ \alpha(\mathbf{O}) = 9.49 \times 10^{-7} \ 14; \ \alpha(\mathbf{P}) = 5.42 \times 10^{-8} \ 8; \\ &\alpha(\mathbf{IPF}) = 0.0001400 \ 20 \\ &\alpha(\mathbf{K}) = 0.001724 \ 25; \ \alpha(\mathbf{L}) = 0.000257 \ 4; \ \alpha(\mathbf{M}) = 5.67 \times 10^{-5} \ 8; \\ &\alpha(\mathbf{N}+) = 8.62 \times 10^{-5} \ 12 \\ &\alpha(\mathbf{N}) = 1.308 \times 10^{-5} \ 19; \ \alpha(\mathbf{O}) = 1.90 \times 10^{-6} \ 3; \ \alpha(\mathbf{P}) = 1.034 \times 10^{-7} \ 15; \\ &\alpha(\mathbf{IPF}) = 7.11 \times 10^{-5} \ 10 \end{aligned}$

[†] Additional information 1.
[‡] From adopted gammas.
[#] For absolute intensity per 100 decays, multiply by 0.0014 5.

Delayed Protons (¹⁴⁸Dy)

Particle normalization: $\%\varepsilon + \%\beta^+ = 96.5$ 7; $\%\varepsilon p = 0.18$ 7 (1989Fi01).

E(¹⁴⁸ Dy)	I(p) [†]
0.0	72
1677.9	3
1688.4	7
2349.4	5
2427.6	6
2732.3	4
2739.3	3

 † For absolute intensity per 100 decays, multiply by 0.0018 7.

¹⁴⁹Er εp decay (8.9 s) 1989Fi01

Decay Scheme

 $^{148}_{\ 66}Dy_{82}$