Adopted Levels, Gammas

		T		History Citation Citation Cataff Data							
		Ty	/pe	Author Citation Literature Cutoff Date							
Full Evaluation				N. Nica NDS 117, 1 (2014) 1-Oct-2013							
$Q(\beta^{-})=2137 \ 13$; $S(n)=6456 \ 14$; $S(p)=11009 \ 15$; $Q(\alpha)=-1056 \ 13 \ 2012Wa38$											
				¹⁴⁸ Ce Levels							
				Cross Reference (XREF) Flags							
				A ¹⁴⁸ La β^- decay							
				B 149 La β^{-} n decay (1.05 s)							
				C ²⁵² Cf SF decay							
				D 235 U(n,F) E=thermal							
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments							
$0.0^{\&}$	0+ #	56.8 s <i>3</i>	A CD	$\%\beta^{-}=100$							
				$T_{1/2}$: weighted average of: 56 s <i>l</i> (1983Ar15) and 56.9 s <i>l</i> (2004Ko05). Others:							
				48 \$ I (19/4Ar25), 45.1 \$ 5 (1980BuZV).							
				fm 35 (2004An14).							
158.467 ^{&} 5	2+ #	1.01 ns 6	A CD	μ =0.74 <i>12</i> (2005St24,1986Gi05,1999Sm05)							
g=0.38 5											
				μ : from $\gamma\gamma(\theta, H)$ in ¹⁴⁸ La β^- decay (1986Gi05), and time-integral perturbed							
				angular correlation method in 252 Cf SF decay (1999Sm05).							
				g: weighted average of 0.57 0 (1999Sm05) and 0.59 8 (2009C009) inCI SF decay							
				J^{π} : $\Delta J=2$, E2 γ to 0 ⁺ , g.s $T_{1/2}$: weighted average of 0.95 ns 8 (1980ChZM, from ²⁵⁴ Cf SF decay, not included In ¹⁴⁸ Ce evaluation) and 1.06 ns 8 (1974JaZN, ²⁵² Cf SF decay							
				dataset). Others (from 252 Cf SF decay dataset): 1.3 ns 2 (1970Wa05), 0.9 ns 3							
152 15 5	4+ #	(1.2		(2006HW01). The initial of the second secon							
455.45	4	<1.2 ns	A CD	$\Gamma_{1/2}$: 0.2 ns +10-2 from Γ^{-2} CI SF decay (2004L100) was adopted As a limit by evaluator.							
760.32 4	(1 ⁻)		A	J^{π} : γ 's to 0 ⁺ , and 2 ⁺ ; strong β^- from (2 ⁻) parent; systematics of 1 ⁻ levels in α =140-152 region.							
770.43 6	0^{+}		Α	J^{π} : from $\gamma\gamma(\theta)$ In ¹⁴⁸ La β^- decay.							
839.52 ^{&} 16	6+ #		CD								
841.39 5	(3 ⁻)		Α	J^{π} : γ to 2 ⁺ , and 4 ⁺ ; no γ to 0 ⁺ ; systematics of 3 ⁻ levels.							
935.59 5	(2+)		A	J ^{π} : strong γ 's to 2 ⁺ , and 4 ⁺ and weak γ to 0 ⁺ g.s. is typical for J=2 ⁺ member of β -vibrational band, $\Delta E(2^+$ to 0 ⁺)(β -vibr)=165 keV is comparable with $\Delta E(2^+$ to 0 ⁺)(q s)=158 keV							
989.90 4	(2^+)		Α	J^{π} : γ 's to 0 ⁺ and 4 ⁺ .							
1116.63 ^b 5	(3 ⁺)		A C	J^{π} : γ 's to 2 ⁺ and 4 ⁺ respectively; band member In ²⁵² Cf decay dataset In							
1223 08 11	(4^{+})		۵	accordance with systematics for γ -vibrational bands in α =144-152 nuclei.							
1223.90 11 1290 32 ^{&} 20	(+) 8+ #		ⁿ C	y , y to $+$, systematics for p -violational bands in $a = 1 + 1.52$ fuciel.							
1351.40^a 23	(7^{-})		c								
1368.89 5	× /		Α								
1415.61 7			Α								
1423.04 ^b 14	(5 ⁺)		C								
1456.88? 25	(A^{-})		A								
1400.33* 21	(2^{+})										
1477.077	(2,1)		л								

			¹⁴⁸ Ce Levels (continued)						
E(level) [†]	J ^{π‡}	XREF	E(level) [†]	J ^{π‡}	XREF	E(level) [†]	Jπ‡	XREF	
1554.76 9		Α	1927.69? 21		Α	2673.5 <mark>b</mark> 3	(11^{+})	С	
1558.51? <i>16</i>		Α	1954.09 ^c 22	(8 ⁻)	С	2751.1 ^c 5	(12 ⁻)	С	
1584.11? 17		Α	2095.20 ^d 23	(9)	С	2751.7 ^a 3	(13 ⁻)	С	
1589.91 6	$(2^+,1)^{@}$	Α	2144.48 15		Α	2887.9 ^{&} 4	14+ [#]	С	
1622.78? 12		Α	2153.67 14	$(2^+,1)^{@}$	Α	2969.2 ^d 3	(13)	С	
1625.98? 10		Α	2192.37? 24		Α	3287.3 [°] 5	(14 ⁻)	С	
1682.00 ^C 19	(6 ⁻)	С	2198.76 ^b 24	(9 ⁺)	С	3326.4 ^{<i>a</i>} 4	(15 ⁻)	С	
1728.39 11		Α	2224.7 ^a 3	(11^{-})	С	3464.1 ^{&} 4	16+ #	С	
1753.58 ^{<i>a</i>} 23	(9 ⁻)	С	2252.22 14		Α	3898.7 ⁰ 6	(16 ⁻)	С	
1786.67 <mark>6</mark> 18	(7^{+})	С	2306.9 ^c 4	(10 ⁻)	С	3944.2 ^{<i>a</i>} 4	(17-)	С	
1788.66 ^d 23	(7)	С	2327.8 ^{&} 3	12 ^{+#}	С	4065.8 ^{&} 4	18+ [#]	С	
1790.7 ^{&} 3	10 ^{+#}	С	2486.8 ^d 3	(11)	С	4685.4 <mark>&</mark> 5	20+ [#]	С	
1891.20 8	$(2^+,1)^{@}$	Α	2550.36 21	$(2^+,1)^{@}$	Α	5311.2 ^{&} 5	22+ [#]	С	

 † From a least-squares fit to Ey data.

[‡] From 2006Ch24 based on presumed rotational-band structure and systematics, unless noted otherwise.

[#] E2 γ to 0⁺ band member and regular band sequence.

^(a) Gammas to 0^+ and 2^+ . ^(b) Band(A): $K^{\pi}=0^+$ band, $\alpha=+1$.

^{*a*} Band(B): $K^{\pi}=7^{-}$ band, $\alpha=+1$.

^{*b*} Band(C): $K^{\pi}=3^+$ band, $\alpha=-1$.

^{*c*} Band(D): $K^{\pi}=4^{-}$ band, $\alpha=-1$.

^d Band(E): Band based on 7.

$\gamma(^{148}\text{Ce})$

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
158.467	2+	158.468 <i>5</i>	100	0.0	0+	E2	0.407	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.293 \ 5; \ \alpha(\mathrm{L}) = 0.0896 \ 13; \ \alpha(\mathrm{M}) = 0.0197 \ 3; \\ \alpha(\mathrm{N}+) = 0.00489 \ 7 \\ \alpha(\mathrm{N}) = 0.00425 \ 6; \ \alpha(\mathrm{O}) = 0.000618 \ 9; \ \alpha(\mathrm{P}) = 1.713 \times 10^{-5} \\ 24 \end{array} $
152 15	4 +	205.07.0	100	159 167	2+	[[2]]	0.0512	B(E2)(W.u.)=86 6 Mult.: from K/L in 252 Cf SF decay and RUL. $\alpha(K)=0.0412$ 6: $\alpha(L)=0.00802$ /2: $\alpha(M)=0.001726$
433.43	4	293.07 9	100	138.407	2	[E2]	0.0515	$\begin{aligned} \alpha(\mathbf{N}) = 0.0412 \ 0, \ \alpha(\mathbf{L}) = 0.00802 \ 12; \ \alpha(\mathbf{M}) = 0.001720 \\ 25; \ \alpha(\mathbf{N}+) = 0.000436 \ 7 \\ \alpha(\mathbf{N}) = 0.000376 \ 6; \ \alpha(\mathbf{O}) = 5.71 \times 10^{-5} \ 8; \\ \alpha(\mathbf{P}) = 2.71 \times 10^{-6} \ 4 \\ \mathbf{B}(\mathbf{E}2)(\mathbf{W} _{\mathbf{L}}) > 4 \ 3 \end{aligned}$
760.32	(1 ⁻)	601.88 <i>6</i> 760.30 <i>6</i>	89 <i>1</i> 100 5	158.467 0.0	2^+ 0^+			
770.43	0+	611.81 7	100	158.467	2+	E2	0.00634 9	α =0.00634 9; α (K)=0.00534 8; α (L)=0.000790 11; α (M)=0.0001665 24; α (N+)=4.29×10 ⁻⁵ 6 α (N)=3.67×10 ⁻⁵ 6; α (O)=5.80×10 ⁻⁶ 9; α (P)=3.81×10 ⁻⁷ 6 Mult.: from $\gamma\gamma(\theta)$ and syst for β -vibrational levels in $A\approx$ 150 deformed nuclei (¹⁴⁸ La β^- decay)
839.52	6+	386.15 20	100	453.45	4+			

Continued on next page (footnotes at end of table)

γ ⁽¹⁴⁸Ce) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_{f}^{π}	Mult.	α^{\dagger}	Comments
841.39	(3-)	387.92 <i>10</i> 682.97 <i>6</i>	22 <i>1</i> 100 8	453.45 158.467	$\frac{4^{+}}{2^{+}}$			
935.59	(2 ⁺)	482.19 7 777.16 6	13 <i>1</i> 100 <i>3</i>	453.45 158.467	$4^+ 2^+$			
989.90	(2 ⁺)	(54.24) 536.38 <i>16</i> 831.33 <i>6</i> 989.85 <i>6</i>	5.3 6 55 3 100 3	935.59 453.45 158.467 0.0	(2^+) 4^+ 2^+ 0^+			
1116.63	(3 ⁺)	663.20 7 958.23 6	38 <i>I</i> 100 <i>I</i>	453.45 158.467	4 ⁺ 2 ⁺			
1223.98	(4^+)	770.53 10	100	453.45	4^+			
1290.32	(7^{-})	450.75 20	100	839.52	6 ⁺			
1368.89	(,)	252.45 7 378.93 4 433.32 8	42 3 100 10 28.2 14	1116.63 989.90 935.59	(3^+) (2^+) (2^+)			
1415.61		298.81 <i>14</i> 425.68 8 1257.42 <i>14</i>	72 6 100 6 61 6	1116.63 989.90 158.467	(3^+) (2^+) 2^+			
1423.04	(5 ⁺)	306.3 2 583.5 3 969.65 25	96 5 58 3 100 5	1116.63 839.52 453.45	(3 ⁺) 6 ⁺ 4 ⁺			
1456.88?	(A=)	1298.46 ^w 25	100	158.467	2^+			E . from ²⁵² Cf SE door
1480.33 1497.07	(4^{+}) $(2^{+},1)$	1338.64 8 1496.97 <i>12</i>	$100 \\ 100 \\ 34 \\ 3$	1110.03 158.467 0.0	(3^+) 2^+ 0^+			E_{γ} : from 20-Cl SF decay.
1554.76		713.37 <i>12</i> 794.44 <i>11</i>	69 8 100 8	841.39 760.32	(3 ⁻) (1 ⁻)			
1558.51?		1105.06 15	100	453.45	4+			
1584.11? 1589.91	(2+,1)	1425.58 <i>11</i> 654.53 <i>11</i> 819.28 8 1431.56 <i>10</i> 1589.93 <i>13</i>	100 58 17 100 25 100 4 63 4	158.467 935.59 770.43 158.467 0.0	2^+ (2 ⁺) 0 ⁺ 2^+ 0 ⁺			
1622.78? 1625.98?		1464.36 [@] 11 257.09 9	100 100	158.467 1368.89	2+			
1682.00	(6 ⁻)	195.7 [@] 258.85 20	100	1486.33 1423.04	(4^{-}) (5^{+})			
1728.39		887.12 <i>12</i> 967.4 <i>4</i> 1569 65 25	100 <i>13</i> 88 25 88 25	841.39 760.32 158.467	(3^{-}) (1^{-}) 2^{+}			
1753.58	(9 ⁻)	402.2 <i>2</i> 463.2 <i>2</i>	47 <i>4</i> 100 <i>5</i>	1351.40 1290.32	(7 ⁻) 8 ⁺			
1786.67	(7 ⁺)	104.8 2	67 4	1682.00	(6 ⁻)	E1	0.214 4	$\begin{array}{l} \alpha(\mathrm{K})=0.182 \ 3; \ \alpha(\mathrm{L})=0.0252 \ 4; \\ \alpha(\mathrm{M})=0.00525 \ 8; \ \alpha(\mathrm{N}+)=0.001338 \ 20 \\ \alpha(\mathrm{N})=0.001148 \ 18; \ \alpha(\mathrm{O})=0.000179 \ 3; \\ \alpha(\mathrm{P})=1.103 \times 10^{-5} \ 17 \end{array}$
1788.66 1790.7 1891.20	(7) 10 ⁺ (2 ⁺ ,1)	363.65 20 947.3 2 949.1 2 500.8 5 1130.95 10 1732.67 16 1891.02 17	100 6 81 6 100 100 86 9 55 5 100 5	1423.04 839.52 839.52 1290.32 760.32 158.467 0.0	(5^+) 6^+ 8^+ (1^-) 2^+ 0^+			Mult.: based on $\alpha(\exp)$ (²⁵² Cf SF decay).

Continued on next page (footnotes at end of table)

γ ⁽¹⁴⁸Ce) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
1927.69? 1954.09	(8 ⁻)	1769.27 [@] 21 166.95 20	100 100 <i>5</i>	158.467 1786.67	2+ (7+)	E1	0.0584	α (K)=0.0499 8; α (L)=0.00669 10; α (M)=0.001392 20; α (N+)=0.000357 6 α (N)=0.000306 5; α (O)=4.83×10 ⁻⁵ 7; α (P)=3.21×10 ⁻⁶ 5
								Mult.: based on $\alpha(\exp)$ (²⁵² Cf SF decay).
		271.75 20	49 <i>3</i>	1682.00	(6 ⁻)			
2095.20	(9)	306.5 2	100 8	1788.66	(7)			
		804.9 2	65 5	1290.32	8+			
2144.48		1303.3 3	5 5	841.39	(3^{-})			
2152 67	$(2^{+}1)$	1985.95 17	100 2	158.407	2 · 2+			
2133.07	(2,1)	1995.25 10	22 3	138.407	$^{2}_{0^{+}}$			
2102 279		$2133.30\ 23$	22 3	150 167	0 2+			
2192.57	(0^{+})	2055.95 - 24	100.0	1054.00	(8^{-})			
2196.70	(9)	244.95 25 411 9 2	67.6	1954.09	(0) (7^+)			
2224.7	(11^{-})	434.1.2	100 6	1790.7	10^{+}			
	(11)	471.1 2	42 4	1753.58	(9 ⁻)			
2252.22		1316.69 18	6.4 8	935.59	(2^+)			
		2093.66 21	100 2	158.467	2+			
2306.9	(10 ⁻)	108.0 6	54 <i>3</i>	2198.76	(9+)	E1	0.197 5	$\begin{aligned} &\alpha(\mathbf{K}) = 0.167 \ 4; \ \alpha(\mathbf{L}) = 0.0232 \ 5; \\ &\alpha(\mathbf{M}) = 0.00482 \ 11; \ \alpha(\mathbf{N}+) = 0.00123 \ 3 \\ &\alpha(\mathbf{N}) = 0.001054 \ 23; \ \alpha(\mathbf{O}) = 0.000164 \ 4; \end{aligned}$
								$\alpha(P)=1.020\times10^{-5}\ 21$
								Mult.: based on $\alpha(\exp)$ (²⁵² Cf SF decay).
		352.9 4	100 8	1954.09	(8 ⁻)			
2327.8	12^{+}	103.1 2	4.6 7	2224.7	(11^{-})			
0496.0	(11)	536.95 25	100.6	1790.7	10 ⁺			
2480.8	(11)	591.55 20 606 1 2	100 8	2095.20	(9) 10 ⁺			
2550.36	$(2^{+}1)$	2391 94 22	100 8	1790.7	10 2+			
2550.50	(2,1)	2549.8.6	96	0.0	0^{+}			
2673.5	(11^{+})	474.7 2	100	2198.76	(9^+)			
2751.1	(12-)	444.2 2	100	2306.9	(10^{-})			
2751.7	(13 ⁻)	423.9 2	100 9	2327.8	12^{+}			
		527.0 2	65 9	2224.7	(11^{-})			
2887.9	14+	136.3 2	8.2 11	2751.7	(13 ⁻)			
20(0.2	(10)	559.7 5	100 5	2327.8	12+			
2969.2	(13)	482.5 2	100 12	2486.8	(11) 12 ⁺			
3787 3	(14^{-})	041.4 2 536 2 2	100	2527.0	(12^{-})			
3326.4	(14^{-})	438 4 2	100 14	2751.1	(12) 14^+			
5520.4	(15)	574.7 2	64 7	2751.7	(13^{-})			
3464.1	16^{+}	137.8 2	4.1 13	3326.4	(15^{-})			
	-	576.15 20	100 5	2887.9	14+			
3898.7	(16 ⁻)	611.4 2	100	3287.3	(14 ⁻)			
3944.2	(17^{-})	617.8 2	100	3326.4	(15 ⁻)			
4065.8	18+	601.65 20	100	3464.1	16+			
4685.4	20+	619.6 2	100	4065.8	18+			
5311.2	22+	625.8 2	100	4685.4	20^{+}			

[†] Additional information 1.

$\gamma(^{148}\text{Ce})$ (continued)

[±] From ¹⁴⁸La β^- decay for transitions not related to band structures, while for In-band and inter-band transitions E γ 's are from ²⁵²Cf SF decay; for levels common to both datasets, E γ 's are from ¹⁴⁸La β^- decay.

[#] Relative photon branching from each level.

[@] Placement of transition in the level scheme is uncertain.

¹⁴⁸₅₈Ce₉₀

Adopted Levels, Gammas

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁴⁸₅₈Ce₉₀

¹⁴⁸₅₈Ce₉₀

Adopted Levels, Gammas

¹⁴⁸₅₈Ce₉₀