¹⁴⁸Ho εp decay (9.59 s) 1988Ni02,2001Xu06

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	N. Nica and B. Singh	NDS 181, 1 (2022)	9-Mar-2022		

Parent: ¹⁴⁸Ho: E=0.0+x; $J^{\pi}=(5)^{-}$; $T_{1/2}=9.59$ s *15*; Q(ε p)=5460 80; % ε p decay=0.08 2 ¹⁴⁸Ho-Q(ε p): From 2020Wa16.

¹⁴⁸Ho-J^{π}: Adopted value (2014Ni05), from shell-model prediction of 2010Ko12 with parity from log *ft*=5.3 to negative parity level at 2348 in ¹⁴⁸Dy daughter. 1988Ni02 used (6⁻) from literature for this isomeric level.

¹⁴⁸Ho-T_{1/2}: Adopted value (2014Ni05), from 1989Ta11.

¹⁴⁸Ho-% ε p decay: From 1988Ni02 who list 0.08 % +1-2, according to whom the positive uncertainty is pure statistical while the negative uncertainty also includes conservative estimates of the contribution from the (1⁺) g.s. of the precursor to the number of protons, as well as the γ -rays intensity corrections due to summing in the close counting geometries.

1988Ni02: ¹⁴⁸Ho precursor produced from ⁹⁴Mo(⁵⁸Ni,3pn), E=257 MeV reaction al Lawrence Berkeley SuperHILAC. Evaporation residues were collected with a tantalum catcher at about 3000°C located inside a surface ionization source. By diffusing out of the catcher and after ionization, product ions were accelerated to 50 keV and mass separated in the on-line isotope separator OASIS. Single isobaric chains thus selected were transported by a mylar tape system to the detection station composed of a ΔE -E Si particle telescope, a HPGe and two n-type Ge detectors, and a ΔE_{β} plastic detector. Proton, γ , x-rays and positron spectra were collected in single and various coincidence modes, including proton decay activity for $T_{1/2}$ analysis. Completed statistical model calculations for ¹⁴⁸Ho.

2001Xu06: identified three gammas in ¹⁴⁷Tb in coincidence with 2.5-6.4 MeV protons from ¹⁴⁸Ho (β -delayed p) precursor and measured their relative intensities.

Data analysis of 1988Ni02 identified the ¹⁴⁸Ho precursor (from x rays) and measured 2-7 MeV unresolved proton spectrum with a sigle component proton half-life of 8.2 s 6 coming mainly from the 9.6 s, $(5)^-$ isomer of ¹⁴⁸Ho, indicationg that this is the main contributor to this proton decay; plus possible contribution from the 2.2 s, (1^+) g.s. of the same precursor; and plus the contribution from the 4.6 s, 0^+ g.s. of ¹⁴⁸Er precursor.

¹⁴⁷Tb Levels

E(level) [†]	$J^{\pi \dagger}$
0.0	$(1/2^+)$
50.6	$(11/2^{-})$
253.2	$(3/2^+)$
354.0	$(5/2^+)$
719.2	$(7/2^+)$

[†] From Adopted Levels.

 $\gamma(^{147}\text{Tb})$

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
100.7	105 30	354.0	$(5/2^+)$	253.2	$(3/2^+)$
253.4	100 15	253.2	$(3/2^+)$	0.0	$(1/2^+)$
365.2	45 15	719.2	$(7/2^+)$	354.0	$(5/2^+)$

[†] From Adopted Gammas.

[‡] Relative intensities measured by 2001Xu06.

¹⁴⁸Ho *ɛ*p decay (9.59 s) 1988Ni02,2001Xu06 (continued)

Delayed Protons (147Tb)

Particle normalization: From 1988Ni02 who list 0.08 % +1-2, according to whom the positive uncertainty is pure statistical while the negative uncertainty also includes conservative estimates of the contribution from the (1^+) g.s. of the precursor to the number of protons, as well as the γ -rays intensity corrections due to summing in the close counting geometries.

E(¹⁴⁷ Tb)	I(p) ^{†‡}	Comments		
0.0				
50.6	89 20	I(p): 1988Ni02 list proton relative intensity for g.s.+50.6, $I_p(g.s.+50.6)=89$ 20, and calculated value $I_p(50.6)=94.5$.		
253.2	≤ 8	I(p): 1988Ni02 list 3 5 and calculated value 0.8.		
354.0	≤ 5	I(p): 1988Ni02 list 1 4 and calculated value 1.7.		
719.2	74	I(p): 1988Ni02 list calculated value 2.3.		

[†] Relative values normalized to 100 for the sum of intensities of all proton decay branches.

[‡] For absolute intensity per 100 decays, multiply by 0.0008 2.

¹⁴⁸Ho *ɛ*p decay (9.59 s) 1988Ni02,2001Xu06

Decay Scheme

Intensities: Relative I_{γ}

