## <sup>147</sup>Eu ε decay (24.1 d) 1989Ad09,1989Ad10

|                 | H                    | listory           |                        |
|-----------------|----------------------|-------------------|------------------------|
| Туре            | Author               | Citation          | Literature Cutoff Date |
| Full Evaluation | N. Nica and B. Singh | NDS 181, 1 (2022) | 9-Mar-2022             |

Parent: <sup>147</sup>Eu: E=0.0;  $J^{\pi}=5/2^+$ ;  $T_{1/2}=24.1$  d 6;  $Q(\varepsilon)=1721.4$  23;  $\%\varepsilon+\%\beta^+$  decay=99.9978 6

<sup>147</sup>Eu-E,J<sup> $\pi$ </sup>,T<sub>1/2</sub>: From <sup>147</sup>Eu Adopted Levels.

<sup>147</sup>Eu-Q(ε): From 2021Wa16.

<sup>147</sup>Eu-%ε+%β<sup>+</sup> decay: %α decay=0.0022 6 (<sup>147</sup>Eu Adopted Levels, 1962Si14).

1989Ad09, 1989Ad10: <sup>147</sup>Eu source produced from deep Erbium fission induced by protons, E=680 MeV at JINR Dubna, and mass separation. Used Ge(Li)-NaI(Tl) anti-Compton spectrometer. Measured E $\gamma$ , I $\gamma$ , T<sub>1/2</sub>,  $\delta$ . Data from other references are extensively combined in the reported data.

Others: 1962A119, 1962Be40, 1962Sc09, 1964Mc17, 1964Pr07, 1965Ad05, 1966Av02, 1966Go26, 1967Ad03, 1968Bo47, 1970Be67, 1970Ko38, 1970Va38, 1971Be53, 1974GrYX, 1974HeYW, 1977Kr13, 1978VyZV, 1989Ad10, 1987Ad03, 1987AdZX, 1996Vy01, 1998Om01, 2001MiZT, 2004Mi17.

## <sup>147</sup>Sm Levels

| E(level) <sup>†</sup> | $J^{\pi \ddagger \#}$           | T <sub>1/2</sub>                   | Comments                                                                                                                                                                                                                                    |
|-----------------------|---------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | 7/2-                            | 1.073×10 <sup>11</sup> y <i>10</i> | $\%\alpha = 100$                                                                                                                                                                                                                            |
| 121.212 5             | 5/2-                            | 0.798 ns 17                        | $T_{1/2}$ : from Adopted Levels.<br>$T_{1/2}$ : weighted av: 0.80 ns 4 (1968Bo47), 0.78 ns 3 (1970Ko38), 0.77 ns 4<br>(1971Be53), 0.83 ns 3 (1978VyZV) via $\gamma\gamma$ (t); other: 0.62 ns 18<br>(1989Ad10).                             |
| 197.284 5             | 3/2-                            | 1.25 ns 4                          | T <sub>1/2</sub> : weighted av. (ext. unc.) of 1.30 ns 5 (1978VyZV), 1.26 ns 4 (1971Be53), 1.10 ns 5 (1970Ko30), 1.35 ns 10 (1968Bo47), 1.2 ns 1 (1964Pr07), 1.31 ns 5 (1962Be40).<br>g-factor=-0.19 7 (1968Bo47) γγ(θ,H). Other: 1970Be67. |
| 716.62 4              | $11/2^{-}$                      | 2.35 ps 5                          | T <sub>1/2</sub> : from Adopted Levels.                                                                                                                                                                                                     |
| 798.731 4             | 3/2-                            | 1.00 ps 21                         | $T_{1/2}$ : from Adopted Levels; other: <0.2 ns (1971Be53) (K x ray)(678 $\gamma$ )(t).                                                                                                                                                     |
| 809.355 13            | 9/2-                            | 3.1 ps 5                           | $T_{1/2}$ : from Adopted Levels.                                                                                                                                                                                                            |
| 1043.528 9            | $1/2^{-}, 3/2^{-}$              | 1                                  | -/                                                                                                                                                                                                                                          |
| 1054.218 6            | 3/2+                            |                                    |                                                                                                                                                                                                                                             |
| 1063.390 6            | 5/2+                            |                                    |                                                                                                                                                                                                                                             |
| 1077.049 5            | 5/2-                            |                                    |                                                                                                                                                                                                                                             |
| 1106.861 17           | $(3/2^{-} \text{ to } 9/2^{-})$ |                                    |                                                                                                                                                                                                                                             |
| 1172.66 5             | (_)                             |                                    |                                                                                                                                                                                                                                             |
| 1180.253 7            | 5/2+                            |                                    |                                                                                                                                                                                                                                             |
| 1219.797 11           | 1/2+                            |                                    |                                                                                                                                                                                                                                             |
| 1317.677 10           | 1/2-,3/2-,5/2-                  |                                    |                                                                                                                                                                                                                                             |
| 1317.859 <i>13</i>    | 5/2-,7/2-,9/2-                  |                                    |                                                                                                                                                                                                                                             |
| 1318.076 12           | 3/2-,5/2-                       |                                    |                                                                                                                                                                                                                                             |
| 1349.650 16           | $(3/2^{-}, 5/2^{-})$            |                                    |                                                                                                                                                                                                                                             |
| 1449.113 11           | 7/2-                            |                                    |                                                                                                                                                                                                                                             |
| 1453.220 8            | 3/2-                            |                                    |                                                                                                                                                                                                                                             |
| 1471.417 15           | 3/2-,5/2-,7/2-                  |                                    |                                                                                                                                                                                                                                             |
| 14/1.885 14           |                                 |                                    |                                                                                                                                                                                                                                             |
| 1548.634 7            | $3/2^+, 5/2^+$                  |                                    |                                                                                                                                                                                                                                             |
| 1600.937 21           | $3/2^{(-)}, 5/2^{(+)}$          |                                    |                                                                                                                                                                                                                                             |
| 1641.95 7             |                                 |                                    |                                                                                                                                                                                                                                             |

<sup>†</sup> From least-squares fit to E $\gamma$ 's; normalized  $\chi^2$ =1.8 is greater than critical  $\chi^2$ =1.5.

<sup>‡</sup> From Adopted Levels.

<sup>#</sup>  $\gamma\gamma(\theta)$  correlations reported in 1978VyZV establish J for several low-lying levels. Given  $\delta(76\gamma) = \pm 0.65 5$ ,  $\delta(121\gamma) = \pm 0.33 3$ ,  $\delta(678\gamma) = \pm 0.47 4$ ,  $\delta(857\gamma) =$  pure E1 and  $\delta(197\gamma) =$  pure E2, all from ce data, the correlations  $(76\gamma)(121\gamma)(\theta)$ ,

## <sup>147</sup>Eu ε decay (24.1 d) 1989Ad09,1989Ad10 (continued)

# <sup>147</sup>Sm Levels (continued)

 $(857\gamma)(197\gamma)(\theta)$ , and  $(678\gamma)(121\gamma)(\theta)$  establish J(121)=5/2, J(197)=3/2, J(799)=3/2 or 5/2, with  $\delta(76\gamma)=+$ ,  $\delta(121\gamma)=-$ , and  $\delta(678\gamma)=-$ . The correlations  $(601\gamma)(197\gamma)(\theta)$  and  $(601\gamma)(76\gamma)(\theta)$ , given the above J and  $\delta$  results, establish J(799)=3/2, with  $\delta(601\gamma)=0.00 \ 4 \ \text{or} \ -4.0 \ 7$ . The large  $\delta$  solution is ruled out by  $\gamma(\theta)$  in in-beam work. Correlation data are summarized in 1977Kr13.

#### $\varepsilon, \beta^+$ radiations

Iβ/I(ce(K) 197γ)=0.07 1 (1967Ad03), 0.10 2 (1965Dz09), 0.022 4 (1964Mc17).

| E(decay)    | E(level) | $I\beta^+$ <sup>†</sup> | $\mathrm{I}\varepsilon^{\dagger}$ | Log ft           | $\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$ | Comments                                                                   |
|-------------|----------|-------------------------|-----------------------------------|------------------|-----------------------------------------------|----------------------------------------------------------------------------|
| (79.5 23)   | 1641.95  |                         | 0.00159 11                        | 9.32 6           | 0.00159 11                                    | εK=0.524 21; εL=0.356 15; εM+=0.120 6                                      |
| (120.5 23)  | 1600.937 |                         | 0.036 5                           | 8.55 7           | 0.036 5                                       | εK=0.697 5; εL=0.230 4; εM+=0.0731 13                                      |
| (172.8 23)  | 1548.634 |                         | 0.624 11                          | 7.739 22         | 0.624 11                                      | εK=0.7598 17; εL=0.1837 13; εM+=0.0566 5                                   |
| (249.5 23)  | 1471.885 |                         | 0.0475 15                         | 9.252 21         | 0.0475 15                                     | εK=0.7933 7; εL=0.1589 5; εM+=0.04785 17                                   |
| (250.0 23)  | 1471.417 |                         | 0.126 4                           | 8.831 22         | 0.126 4                                       | εK=0.7934 7; εL=0.1588 5; εM+=0.04781 17                                   |
| (268.2 23)  | 1453.220 |                         | 1.16 3                            | 7.939 20         | 1.16 3                                        | εK=0.7979 6; εL=0.1555 4; εM+=0.04666 14                                   |
| (272.3 23)  | 1449.113 |                         | 0.289 9                           | 8.558 21         | 0.289 9                                       | εK=0.7988 5; εL=0.1548 4; εM+=0.04642 13                                   |
| (371.8 23)  | 1349.650 |                         | 0.0228 7                          | 9.970 20         | 0.0228 7                                      | εK=0.8137 3; εL=0.14374 18; εM+=0.04259 7                                  |
| (403.3 23)  | 1318.076 |                         | 0.237 8                           | 9.032 21         | 0.237 8                                       | εK=0.8166 2; εL=0.14153 15; εM+=0.04182 5                                  |
| (403.5 23)  | 1317.859 |                         | 0.130 5                           | 9.294 22         | 0.130 5                                       | εK=0.8167 2; εL=0.14152 15; εM+=0.04182 5                                  |
| (403.7 23)  | 1317.677 |                         | 0.184 6                           | 9.143 20         | 0.184 6                                       | εK=0.8167 2; εL=0.14150 15; εM+=0.04181 5                                  |
| (541.1 23)  | 1180.253 |                         | 0.155 7                           | 9.496 24         | 0.155 7                                       | εK=0.8251 1; εL=0.13522 8; εM+=0.03965 3                                   |
| (548.7 23)  | 1172.66  |                         | 0.0006 6                          | 11.9 5           | 0.0006 6                                      | εK=0.8255 1; εL=0.13498 8; εM+=0.03957 3                                   |
| (614.5 23)  | 1106.861 |                         | 0.0321 11                         | $10.405^{1u} 21$ | 0.0321 11                                     | εK=0.7990 3; εL=0.15451 18; εM+=0.04649 7                                  |
| (644.4 23)  | 1077.049 |                         | 10.0 4                            | 7.849 22         | 10.0 4                                        | εK=0.8289; εL=0.13242 6; εM+=0.03869 2                                     |
| (658.0 23)  | 1063.390 |                         | 0.298 8                           | 9.394 18         | 0.298 8                                       | εK=0.8293; εL=0.13212 5; εM+=0.03859 2                                     |
| (667.2 23)  | 1054.218 |                         | 5.55 13                           | 8.137 17         | 5.55 13                                       | εK=0.8296; εL=0.13193 5; εM+=0.03852 2                                     |
| (677.9 23)  | 1043.528 |                         | ≤0.006                            | ≥11.1            | ≤0.006                                        | εK=0.8298; εL=0.13171 5; εM+=0.03845 2                                     |
| (912.0 23)  | 809.355  |                         | 0.0273 19                         | $11.20^{1u} 4$   | 0.0273 19                                     | εK=0.81781 9; εL=0.14061 7; εM+=0.04158 3                                  |
| (922.7 23)  | 798.731  |                         | 19.9 6                            | 7.879 19         | 19.9 6                                        | εK=0.8346; εL=0.12818 3; εM+=0.037237 9                                    |
| (1524.1 23) | 197.284  | 0.086 4                 | 24.1 10                           | 8.247 22         | 24.2 10                                       | av Eβ=237.9 11; εK=0.8366; εL=0.12405 2;                                   |
|             |          |                         |                                   |                  |                                               | €M+=0.035852 6                                                             |
| (1600.2 23) | 121.212  | 0.117 6                 | 19.1 9                            | 8.393 24         | 19.2 9                                        | av E $\beta$ =271.3 10; $\varepsilon$ K=0.8347; $\varepsilon$ L=0.12346 2; |
|             |          |                         |                                   |                  |                                               | εM+=0.035670 6                                                             |
| (1721.4 23) | 0.0      | 0.224 17                | 17.7 13                           | 8.49 4           | 17.9 <i>13</i>                                | av Eβ=324.5 10; εK=0.8299 2; εL=0.12231 3;                                 |
|             |          |                         |                                   |                  |                                               | εM+=0.035317 8                                                             |

 $^\dagger$  For absolute intensity per 100 decays, multiply by 0.999978 6.

# $\gamma(^{147}\text{Sm})$

I $\gamma$  normalization: 24.08 *19*, weighted average of %I(197 $\gamma$ )=24.4 *4* (1989Ad10) and %I(197 $\gamma$ )=23.98 *22* (2004Mi17) (%I( $\gamma$ ) is per 100 ( $\varepsilon$ + $\beta$ <sup>+</sup>) decays of <sup>147</sup>Eu parent).

I(K x ray)=470 (1964Mc17), 850 (1962Sc09).

ω

| $E_{\gamma}^{\ddagger}$                                                                                              | $I_{\gamma}$ <sup>‡&amp;</sup>                                          | $E_i$ (level)                                            | $\mathbf{J}_i^{\pi}$                                                                                                                 | $E_f$                                                          | $\mathbf{J}_f^{\pi}$                                                                             | Mult. <sup>@</sup> | $\delta^{\dagger @}$ | $\alpha^{a}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------|----------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 76.073 10                                                                                                            | 3.44 11                                                                 | 197.284                                                  | 3/2-                                                                                                                                 | 121.212 5                                                      | 5/2-                                                                                             | M1+E2              | +0.655 34            | 4.53 9       | %Iγ=0.828 27<br>$\alpha(K)=2.915; \alpha(L)=1.267; \alpha(M)=0.288$ 15<br>$\alpha(N)=0.0644; \alpha(O)=0.00834; \alpha(P)=0.0001704$<br>E <sub>γ</sub> : others: 76.21 (1971Be53), 76.42 (1974HeYW).<br>$\alpha(K)$ exp=1.8220 (1989Ad10).<br>δ: from 1989Ad10; +0.655 from L1/L3=0.7510, K/L=2.3<br>$3$ (1966Av02); sign from $\gamma\gamma(\theta)$ .<br>L1:L2:L3=8212:9114:100 (1962Sc09), 7510:10715:100<br>(1966Av02).<br>$\alpha(K)$ exp=245                                                                                                                                                                                        |
| 121.220 17                                                                                                           | 86 <i>1</i>                                                             | 121.212                                                  | 5/2-                                                                                                                                 | 0.0 7                                                          | 7/2-                                                                                             | M1+E2              | -0.33 3              | 0.996 15     | $%I_{\gamma}=20.71 29$<br>$\alpha(K)=0.814 12; \alpha(L)=0.143 5; \alpha(M)=0.0312 12$<br>$\alpha(N)=0.00702 25; \alpha(O)=0.00101 3; \alpha(P)=5.06\times10^{-5} 8$<br>$I_{\gamma}:$ weighted average of 87 3 (1989Ad09) and 85.9 11<br>(2014Mi17).<br>$\alpha(K)\exp=0.76 4.$<br>$\delta: -0.33 3$ from L1:L2:L3=63 9:15 2:10 (1962Sc09), sign<br>from $\gamma\gamma(\theta); -0.278 20$ (1989Ad10), see also comments<br>in Adopted Gammas and Coulomb excitation. For other<br>$\delta$ from $\gamma\gamma(\theta)$ , see 1977Kr13.<br>K:L1+L2:L3=450 40:73 7:10 1 (1966Av02).<br>$\alpha(K)\exp=1.05 6$ (1962Sc09), 0.70 (1987Ad03). |
| 165.558 28<br>197.299 <i>12</i>                                                                                      | 0.0418 26<br>100 <i>3</i>                                               | 1219.797<br>197.284                                      | 1/2 <sup>+</sup><br>3/2 <sup>-</sup>                                                                                                 | 1054.218 3<br>0.0 7                                            | 3/2 <sup>+</sup><br>7/2 <sup>-</sup>                                                             | E2                 |                      | 0.218        | % Iy=0.0101 6<br>% Iy=24.08 19<br>$\alpha$ (K)=0.1565 22; $\alpha$ (L)=0.0482 7; $\alpha$ (M)=0.01092 16<br>$\alpha$ (N)=0.00241 4; $\alpha$ (O)=0.000320 5; $\alpha$ (P)=7.73×10 <sup>-6</sup> 11<br>E <sub>y</sub> : others: 197.25 15 (1974HeYW).<br>$\alpha$ (K)exp=0.139 8.<br>L1:L2:L3=125 19:113 19:100 (1962Sc09), K/L=3.0 5<br>(1966Av02).                                                                                                                                                                                                                                                                                       |
| x212.40 <i>15</i><br>244.832 <i>17</i><br>254.09 <i>3</i><br>255.64 <i>15</i><br>263.95 <i>15</i><br>267.74 <i>3</i> | 0.0052 9<br>0.090 4<br>0.0360 22<br>0.0076 12<br>0.0038 10<br>0.0435 22 | 1043.528<br>1063.390<br>1054.218<br>1318.076<br>1077.049 | 1/2 <sup>-</sup> ,3/2 <sup>-</sup><br>5/2 <sup>+</sup><br>3/2 <sup>+</sup><br>3/2 <sup>-</sup> ,5/2 <sup>-</sup><br>5/2 <sup>-</sup> | 798.731 3<br>809.355 9<br>798.731 3<br>1054.218 3<br>809.355 9 | 3/2 <sup>-</sup><br>9/2 <sup>-</sup><br>3/2 <sup>-</sup><br>3/2 <sup>+</sup><br>9/2 <sup>-</sup> | (E2)               |                      | 0.0804       | $\%$ [ $\gamma$ =0.00125 22<br>$\%$ [ $\gamma$ =0.0217 10<br>$\%$ [ $\gamma$ =0.0087 5<br>$\%$ [ $\gamma$ =0.00183 29<br>$\%$ [ $\gamma$ =0.00092 24<br>$\%$ [ $\gamma$ =0.0105 5                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|                                                              |                                                                                               |                                                          |                                                                                                                      | $^{147}\mathrm{Eu}arepsilon\mathrm{d}$                  | lecay (24.1 d                                                                                    | l) <b>1989</b> A   | .d09,1989A         | 110 (contin  | ued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                              | $\gamma(^{147}\text{Sm})$ (continued)                                                         |                                                          |                                                                                                                      |                                                         |                                                                                                  |                    |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| ${\rm E_{\gamma}}^{\ddagger}$                                | $I_{\gamma}$ <sup>‡&amp;</sup>                                                                | E <sub>i</sub> (level)                                   | ${f J}^\pi_i$                                                                                                        | $\mathrm{E}_{f}$                                        | $\mathbf{J}_f^{\pi}$                                                                             | Mult. <sup>@</sup> | $\delta^{\dagger}$ | $\alpha^{a}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 273.14 <i>16</i><br>278.352 <i>14</i>                        | 0.0082 <i>16</i><br>0.195 <i>6</i>                                                            | 1453.220<br>1077.049                                     | 3/2-<br>5/2-                                                                                                         | 1180.253<br>798.731                                     | 5/2+<br>3/2 <sup>-</sup>                                                                         | M1+E2              | 0.086 48           | 0.0985       | $\begin{aligned} &\alpha(\mathrm{N})=0.000733 \ 11; \ \alpha(\mathrm{O})=9.99\times10^{-5} \ 14; \\ &\alpha(\mathrm{P})=3.24\times10^{-6} \ 5 \\ &\alpha(\mathrm{K})\exp=0.14 \ 8 \ (1989\mathrm{Ad}09). \\ &\%\mathrm{I}\gamma=0.0020 \ 4 \\ &\%\mathrm{I}\gamma=0.0470 \ 15 \\ &\alpha(\mathrm{K})=0.0837 \ 12; \ \alpha(\mathrm{L})=0.01165 \ 17; \ \alpha(\mathrm{M})=0.00250 \ 4 \\ &\alpha(\mathrm{N})=0.000567 \ 8; \ \alpha(\mathrm{O})=8.50\times10^{-5} \ 12; \\ &\alpha(\mathrm{P})=5.29\times10^{-6} \ 8 \end{aligned}$ |  |  |  |
| 286.282 20<br>295.40 6<br>328.828 13                         | 0.0504 <i>19</i><br>0.0123 <i>15</i><br>0.139 <i>4</i>                                        | 1349.650<br>1349.650<br>1548.634                         | (3/2 <sup>-</sup> ,5/2 <sup>-</sup> )<br>(3/2 <sup>-</sup> ,5/2 <sup>-</sup> )<br>3/2 <sup>+</sup> ,5/2 <sup>+</sup> | 1063.390<br>1054.218<br>1219.797                        | 5/2 <sup>+</sup><br>3/2 <sup>+</sup><br>1/2 <sup>+</sup>                                         | M1                 |                    | 0.0635       | $\alpha$ (K)exp=0.074 7 (1989Ad09).<br>$\delta$ : from 1989Ad10.<br>$\%$ I $\gamma$ =0.0121 5<br>$\%$ I $\gamma$ =0.0030 4<br>$\%$ I $\gamma$ =0.0335 10<br>$\alpha$ (K)=0.0540 8; $\alpha$ (L)=0.00746 11; $\alpha$ (M)=0.001598 23<br>$\alpha$ (N)=0.000362 5; $\alpha$ (O)=5.44×10 <sup>-5</sup> 8; $\alpha$ (P)=3.41×10 <sup>-6</sup>                                                                                                                                                                                           |  |  |  |
| 368.360 12                                                   | 0.285 9                                                                                       | 1548.634                                                 | 3/2+,5/2+                                                                                                            | 1180.253                                                | 5/2+                                                                                             | M1                 |                    | 0.0472       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 380.83 25<br>385.69 10<br>389.90 8<br>420.69 4<br>421.064 17 | 0.034 <i>10</i><br>0.0094 <i>22</i><br>0.0150 <i>16</i><br>0.045 <i>14</i><br>0.083 <i>14</i> | 1600.937<br>1449.113<br>1453.220<br>1600.937<br>1219.797 | $3/2^{(-)}, 5/2^{(+)}$<br>$7/2^{-}$<br>$3/2^{-}$<br>$3/2^{(-)}, 5/2^{(+)}$<br>$1/2^{+}$                              | 1219.797<br>1063.390<br>1063.390<br>1180.253<br>798.731 | 1/2 <sup>+</sup><br>5/2 <sup>+</sup><br>5/2 <sup>+</sup><br>5/2 <sup>+</sup><br>3/2 <sup>-</sup> |                    |                    |              | $\alpha$ (K)exp=0.044 4 (1989Ad09).<br>%I $\gamma$ =0.0082 24<br>%I $\gamma$ =0.0023 5<br>%I $\gamma$ =0.0036 4<br>%I $\gamma$ =0.0108 34<br>%I $\gamma$ =0.0200 34                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 428.24 7<br>471.600 <i>12</i>                                | 0.0127 20<br>0.212 7                                                                          | 1600.937<br>1548.634                                     | 3/2 <sup>(-)</sup> ,5/2 <sup>+</sup><br>3/2 <sup>+</sup> ,5/2 <sup>+</sup>                                           | 1172.66<br>1077.049                                     | ( <sup>-</sup> )<br>5/2 <sup>-</sup>                                                             | E1                 |                    | 0.00493      | %1 $\gamma$ =0.0031 5<br>%1 $\gamma$ =0.0510 17<br>$\alpha$ (K)=0.00422 6; $\alpha$ (L)=0.000560 8; $\alpha$ (M)=0.0001194 17<br>$\alpha$ (N)=2.69×10 <sup>-5</sup> 4; $\alpha$ (O)=3.99×10 <sup>-6</sup> 6;<br>$\alpha$ (P)=2.39×10 <sup>-7</sup> 4<br>$\alpha$ (K)exp=0.0059 13 (1989Ad09).                                                                                                                                                                                                                                       |  |  |  |
| <sup>x</sup> 490.87 20<br>494.419 16                         | 0.012 <i>3</i><br>0.150 <i>5</i>                                                              | 1548.634                                                 | 3/2+,5/2+                                                                                                            | 1054.218                                                | 3/2+                                                                                             | M1                 |                    | 0.0221       | %I $\gamma$ =0.0029 7<br>%I $\gamma$ =0.0361 12<br>$\alpha$ (K)=0.0189 3; $\alpha$ (L)=0.00257 4; $\alpha$ (M)=0.000550 8<br>$\alpha$ (N)=0.0001248 18; $\alpha$ (O)=1.88×10 <sup>-5</sup> 3;<br>$\alpha$ (P)=1.183×10 <sup>-6</sup> 17                                                                                                                                                                                                                                                                                             |  |  |  |
| 505.121 11                                                   | 0.351 11                                                                                      | 1548.634                                                 | 3/2+,5/2+                                                                                                            | 1043.528                                                | 1/2-,3/2-                                                                                        | E1                 |                    | 0.00422      | $\alpha$ (K)exp=0.030 6 (1989Ad09).<br>%I $\gamma$ =0.0845 27<br>$\alpha$ (K)=0.00361 5; $\alpha$ (L)=0.000478 7; $\alpha$ (M)=0.0001018 15<br>$\alpha$ (N)=2.30 $\times$ 10 <sup>-5</sup> 4; $\alpha$ (O)=3.41 $\times$ 10 <sup>-6</sup> 5;                                                                                                                                                                                                                                                                                        |  |  |  |

4

|                                                |                                                     |                        |                                                            | $^{147}$ Eu $\varepsilon$ dec | eay (24                              | .1 d) <b>198</b> 9           | Ad09,1989A           | d10 (continue     | <u>d)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------|-----------------------------------------------------|------------------------|------------------------------------------------------------|-------------------------------|--------------------------------------|------------------------------|----------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                |                                                     |                        |                                                            |                               |                                      | $\gamma(^{147}\text{Sm})$ (c | continued)           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $E_{\gamma}^{\ddagger}$                        | $I_{\gamma}$ ‡&                                     | E <sub>i</sub> (level) | ${ m J}^{\pi}_i$                                           | $E_f$                         | $\mathbf{J}_f^{\pi}$                 | Mult. <sup>@</sup>           | $\delta^{\dagger @}$ | $\alpha^{a}$      | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 518.96 <i>3</i>                                | 0.068 4                                             | 1317.677               | 1/2 <sup>-</sup> ,3/2 <sup>-</sup> ,5/2 <sup>-</sup>       | 798.731                       | 3/2-                                 | M1                           |                      | 0.0196            | $\alpha(P)=2.05\times10^{-7} 3$ $\alpha(K)\exp=0.0028 4 (1989Ad09).$ $\%1\gamma=0.0164 10$ $\alpha(K)=0.01671 24; \ \alpha(L)=0.00227 4; \ \alpha(M)=0.000486 7$ $\alpha(N)=0.0001103 16; \ \alpha(O)=1.658\times10^{-5} 24;$ $\alpha(P)=1.046\times10^{-6} 15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <sup>x</sup> 531.6 4<br>537.22 16<br>601.450 4 | 0.0041 <i>17</i><br>0.009 <i>3</i><br>24.2 <i>9</i> | 1600.937<br>798.731    | 3/2 <sup>(-)</sup> ,5/2 <sup>(+)</sup><br>3/2 <sup>-</sup> | 1063.390<br>197.284           | 5/2 <sup>+</sup><br>3/2 <sup>-</sup> | M1(+E2)                      | 0.005 8              | 0.01354           | $\alpha(\mathbf{K}) = 0.0184 (1989 \text{Ad}09).$ $\% 1\gamma = 0.00104$ $\% 1\gamma = 0.00227$ $\% 1\gamma = 5.8322$ $\alpha(\mathbf{K}) = 0.01156\ 17;\ \alpha(\mathbf{L}) = 0.001563\ 22;\ \alpha(\mathbf{M}) = 0.000334$ $5$ $\alpha(\mathbf{N}) = 7.58 \times 10^{-5}\ 11;\ \alpha(\mathbf{O}) = 1.141 \times 10^{-5}\ 16;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 654.55 <i>11</i><br>677.516 7                  | 0.0161 <i>24</i><br>40.7 <i>20</i>                  | 1453.220<br>798.731    | 3/2 <sup></sup><br>3/2 <sup></sup>                         | 798.731<br>121.212            | 3/2 <sup>-</sup><br>5/2 <sup>-</sup> | M1+E2                        | -0.48 2              | 0.00931 <i>14</i> | $\alpha(P)=7.21\times10^{-7} \ 10$ $I_{\gamma}: \text{ weighted average of } 22.2 \ 7 \ (1989Ad09) \text{ and } 24.6$ $3 \ (2014Mi17).$ $\alpha(K)\exp=0.0123 \ 7 \ (1989Ad09).$ $\delta: \text{ from } 1989Ad10; \ 0.00 \ 4 \ \text{from } A_2=+0.056 \ 9$ $(1970Va38) \ (601\gamma)(197\gamma)(\theta) \ \text{Others: } -0.08 \ 6 \ \text{from } A_2=+0.075 \ 11 \ (1970Be67), \ -0.03 \ 9 \ \text{from } A_2=+0.064$ $I9 \ (1966Go26).$ $\% I_{\gamma}=0.0039 \ 6$ $\% I_{\gamma}=9.8 \ 5$ $\alpha(K)=0.00793 \ 12; \ \alpha(L)=0.001087 \ 16; \ \alpha(M)=0.000233$ $4$ $\alpha(N)=5.27\times10^{-5} \ 8; \ \alpha(O)=7.90\times10^{-6} \ 12;$ $\alpha(P)=4.91\times10^{-7} \ 8$ $I_{\gamma}: \text{ weighted average of } 36.9 \ 11 \ (1989Ad09) \text{ and } 41.8$ $6 \ (2014Mi17).$ $\alpha(K)\exp=0.0094 \ 5 \ (1989Ad09).$ |
| 688.15 <i>4</i><br>716.45 <sup>#</sup> 5       | 0.039 <i>3</i><br>0.0289 <i>22</i>                  | 809.355<br>716.62      | 9/2-<br>11/2-                                              | 0.0                           | 5/2-<br>7/2-                         | E2                           |                      | 0.00574           | α(K)exp=0.0094 5 (1969A09).<br>δ: from 1989Ad10; -0.47 4 from A <sub>2</sub> =+0.126 4<br>(1970Va38), -0.47 5 from A <sub>2</sub> =+0.128 11<br>(1966Go26), -0.48 5 from A <sub>2</sub> =+0.130 8 (1970Be67)<br>via (678γ)(121γ)(θ); see also 1962Al19, 1962Sc09,<br>1964Mc17.<br>α(K)exp=0.0087 10.<br>%Iγ=0.0094 7<br>α(K)=0.00480 7; α(L)=0.000737 11; α(M)=0.0001595<br>23<br>α(N)=3.59×10 <sup>-5</sup> 5; α(O)=5.24×10 <sup>-6</sup> 8;<br>α(P)=2.82×10 <sup>-7</sup> 4<br>Mult.: from Adopted Gammas.<br>%Iγ=0.0070 5                                                                                                                                                                                                                                                                                                         |

S

From ENSDF

|                                            |                            |                        |                                                        | <sup>147</sup> Eu $\varepsilon$ decay (24.1 d) |                                       | 1989Ad09,1                  | .989Ad10 (con        | tinued)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------|----------------------------|------------------------|--------------------------------------------------------|------------------------------------------------|---------------------------------------|-----------------------------|----------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            |                            |                        |                                                        |                                                |                                       | $\gamma$ ( <sup>147</sup> S | Sm) (continue        | ed)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $E_{\gamma}^{\ddagger}$                    | Ι <sub>γ</sub> ‡&          | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                                   | $E_f$                                          | $\mathrm{J}_f^\pi$                    | Mult. <sup>@</sup>          | $\delta^{\dagger @}$ | $\alpha^{a}$          | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 732.33 <sup>#</sup> 5<br>749.895 <i>17</i> | 0.0291 22<br>0.98 <i>3</i> | 1449.113<br>1548.634   | 7/2 <sup>-</sup><br>3/2 <sup>+</sup> ,5/2 <sup>+</sup> | 716.62<br>798.731                              | 11/2 <sup>-</sup><br>3/2 <sup>-</sup> | E1                          |                      | 0.00181               | %I $\gamma$ =0.0070 5<br>%I $\gamma$ =0.236 7<br>$\alpha$ (K)=0.001552 22; $\alpha$ (L)=0.000202 3;<br>$\alpha$ (M)=4.29×10 <sup>-5</sup> 6<br>$\alpha$ (N)=9.70×10 <sup>-6</sup> 14; $\alpha$ (O)=1.448×10 <sup>-6</sup> 21;                                                                                                                                                                                                                                                |
| 798.729 5                                  | 18.3 6                     | 798.731                | 3/2-                                                   | 0.0                                            | 7/2-                                  | E2                          |                      | 0.00406               | $\alpha(P)=8.93\times10^{-8} I3$<br>$\alpha(K)\exp=0.0021 4 (1989Ad09).$<br>$\%I\gamma=4.41 I5$<br>$\alpha(K)=0.00342 5; \alpha(L)=0.000505 7;$<br>$\alpha(M)=0.0001089 I6$<br>$\alpha(M)=0.0001089 I6$                                                                                                                                                                                                                                                                      |
| 809.380 16                                 | 0.156 <i>6</i>             | 809.355                | 9/2-                                                   | 0.0                                            | 7/2-                                  | M1+E2                       | 0.46                 | 0.00608               | $\alpha(N)=2.46\times10^{-5} 4; \ \alpha(O)=3.61\times10^{-6} 5; \alpha(P)=2.02\times10^{-7} 3 \alpha(K)\exp=0.00365 19 (1989Ad09). \%I\gamma=0.0376 15 \alpha(K)=0.00519 8; \ \alpha(L)=0.000703 10; \alpha(M)=0.0001503 21                                   $                                                                                                                                                                                                             |
| <sup>x</sup> 829.0 7<br>846.242 11         | 0.261 9                    | 1043.528               | 1/2 <sup>-</sup> ,3/2 <sup>-</sup>                     | 197.284                                        | 3/2-                                  | M1+E2                       | -0.24 6              | 0.00574 11            | $\alpha(N)=3.41\times10^{-5} 5; \ \alpha(O)=5.11\times10^{-6} 8; \alpha(P)=3.21\times10^{-7} 5 \alpha(K)\exp=0.0063 9 (1989Ad09). \delta: from 1989Ad10. ce(K)=0.00033 (1965Ad05) %Iy=0.0628 22 \alpha(K)=0.00491 9; \ \alpha(L)=0.000658 12; \alpha(M)=0.0001406 24 \alpha(N)=3.19\times10^{-5} 6; \ \alpha(O)=4.80\times10^{-6} 9; $                                                                                                                                       |
| 856.929 5                                  | 10.2 3                     | 1054.218               | 3/2+                                                   | 197.284                                        | 3/2-                                  | E1                          |                      | 1.39×10 <sup>-3</sup> | $\alpha(P)=3.04\times10^{-7} 6$ $\alpha(K)\exp=0.0048 \ 6 \ (1989Ad09).$ $\delta: \ from \ 1989Ad10.$ $\% Iy=2.46 \ 7$ $\alpha(K)=0.001191 \ 17; \ \alpha(L)=0.0001540 \ 22;$ $\alpha(M)=3.27\times10^{-5} \ 5$ $\alpha(M)=3.27\times10^{-6} \ M \qquad (2) \ 1.107 \ 10^{-6} \ M$                                                                                                                                                                                           |
| <sup>x</sup> 867.9 7<br>879.761 8          | 0.742 <i>23</i>            | 1077.049               | 5/2-                                                   | 197.284                                        | 3/2-                                  | M1+E2                       | -0.124 7             | 0.00531               | $\alpha(N) = 7.40 \times 10^{-5} 11; \ \alpha(O) = 1.107 \times 10^{-5} 16; \alpha(P) = 6.88 \times 10^{-8} 10 \alpha(K) \exp = 0.00124 \ 8 \ (1989Ad09). ce(K) = 0.00027 \ (1965Ad05) \% Iy = 0.179 \ 6 \alpha(K) = 0.00454 \ 7; \ \alpha(L) = 0.000607 \ 9; \alpha(M) = 0.0001297 \ 19 \alpha(N) = 2.94 \times 10^{-5} \ 5; \ \alpha(O) = 4.43 \times 10^{-6} \ 7; \alpha(P) = 2.82 \times 10^{-7} \ 4 \alpha(K) \exp = 0.00451 \ 27 \ (1989Ad09). \delta: from 1989Ad10.$ |

6

From ENSDF

L

|                                                                                         |                                                                                       |                                                          | 1                                                                                                                       | $^{147}$ Eu $\varepsilon$ de                    | cay (24                                                                                          | .1 d) 1989A                   | Ad09,1989A           | d10 (continued        | d)                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------|----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                         |                                                                                       |                                                          |                                                                                                                         |                                                 |                                                                                                  | $\gamma(^{147}\text{Sm})$ (co | ontinued)            |                       |                                                                                                                                                                                                                                                                                   |
| ${\rm E_{\gamma}}^{\ddagger}$                                                           | Ι <sub>γ</sub> ‡ <b>&amp;</b>                                                         | E <sub>i</sub> (level)                                   | $\mathrm{J}_i^\pi$                                                                                                      | $E_f$                                           | $\mathbf{J}_f^{\pi}$                                                                             | Mult.@                        | $\delta^{\dagger @}$ | $\alpha^{a}$          | Comments                                                                                                                                                                                                                                                                          |
| 922.36 <i>12</i><br>933.005 8                                                           | 0.0097 <i>21</i><br>13.0 <i>4</i>                                                     | 1043.528<br>1054.218                                     | 1/2 <sup>-</sup> ,3/2 <sup>-</sup><br>3/2 <sup>+</sup>                                                                  | 121.212<br>121.212                              | 5/2 <sup>-</sup><br>5/2 <sup>-</sup>                                                             | E1                            |                      | 1.18×10 <sup>-3</sup> | % I $\gamma$ =0.0023 5<br>% I $\gamma$ =3.13 10<br>$\alpha$ (K)=0.001011 15; $\alpha$ (L)=0.0001303 19;<br>$\alpha$ (M)=2.77×10 <sup>-5</sup> 4<br>$\alpha$ (N)=6.26×10 <sup>-6</sup> 9; $\alpha$ (O)=9.37×10 <sup>-7</sup> 14;                                                   |
| 942.177 7                                                                               | 0.695 21                                                                              | 1063.390                                                 | 5/2+                                                                                                                    | 121.212                                         | 5/2-                                                                                             | E1                            |                      | 1.15×10 <sup>-3</sup> | $\alpha(P)=5.85\times10^{-8} 9$<br>$\alpha(K)\exp=0.00111 7 (1989Ad09).$<br>$\%I\gamma=0.167 5$<br>$\alpha(K)=0.000992 14; \ \alpha(L)=0.0001278 18;$<br>$\alpha(M)=2.72\times10^{-5} 4$<br>$\alpha(N)=6.14\times10^{-6} 9; \ \alpha(O)=9.19\times10^{-7} 13;$                    |
| 955.832 5                                                                               | 14.5 4                                                                                | 1077.049                                                 | 5/2-                                                                                                                    | 121.212                                         | 5/2-                                                                                             | M1+E2                         | +0.16 4              | 0.00434 7             | $\alpha(P)=5.74\times10^{-8} 8$<br>$\alpha(K)\exp=0.00160 \ 21 \ (1989Ad09).$<br>$\%I\gamma=3.49 \ 10$<br>$\alpha(K)=0.00371 \ 6; \ \alpha(L)=0.000495 \ 8;$<br>$\alpha(M)=0.0001057 \ 16$<br>$\alpha(N)=2.40\times10^{-5} \ 4; \ \alpha(O)=3.61\times10^{-6} \ 6;$               |
| <sup>x</sup> 964.0 8<br>982.97 5<br>985.34 12<br>1022.47 4<br>1054.35 24<br>1059.041 12 | 0.0336 <i>19</i><br>0.0148 <i>13</i><br>0.0344 <i>19</i><br>0.008 <i>5</i><br>0.275 9 | 1180.253<br>1106.861<br>1219.797<br>1054.218<br>1180.253 | 5/2 <sup>+</sup><br>(3/2 <sup>-</sup> to 9/2 <sup>-</sup> )<br>1/2 <sup>+</sup><br>3/2 <sup>+</sup><br>5/2 <sup>+</sup> | 197.284<br>121.212<br>197.284<br>0.0<br>121.212 | 3/2 <sup>-</sup><br>5/2 <sup>-</sup><br>3/2 <sup>-</sup><br>7/2 <sup>-</sup><br>5/2 <sup>-</sup> |                               |                      |                       | $\alpha$ (P)=2.30×10 <sup>-7</sup> 4<br>$\alpha$ (K)exp=0.00363 21 (1989Ad09).<br>Additional information 1.<br>ce(K)=0.00022 (1965Ad05)<br>%I $\gamma$ =0.0081 5<br>%I $\gamma$ =0.00356 31<br>%I $\gamma$ =0.0083 5<br>%I $\gamma$ =0.0019 12<br>%I $\gamma$ =0.0662 22          |
| 1063.380 9                                                                              | 0.591 18                                                                              | 1063.390                                                 | 5/2+                                                                                                                    | 0.0                                             | 7/2-                                                                                             | E1                            |                      | 9.20×10 <sup>-4</sup> | $\% I_{\gamma} = 0.00072 \ 22$<br>$\% I_{\gamma} = 0.142 \ 4$<br>$\alpha(K) = 0.000791 \ 11; \ \alpha(L) = 0.0001015 \ 15;  \alpha(M) = 2.15 \times 10^{-5} \ 3\alpha(N) = 4.88 \times 10^{-6} \ 7; \ \alpha(O) = 7.30 \times 10^{-7} \ 11;  \alpha(P) = 4.59 \times 10^{-8} \ 7$ |
| 1077.043 6                                                                              | 26.1 12                                                                               | 1077.049                                                 | 5/2-                                                                                                                    | 0.0                                             | 7/2-                                                                                             | M1+E2                         | -0.071 5             | 0.00330               | $\alpha(K)\exp=0.00056 \ 10 \ (1989Ad09).$<br>%Iy=6.28 29<br>$\alpha(K)=0.00282 \ 4; \ \alpha(L)=0.000374 \ 6;$<br>$\alpha(M)=7.99\times10^{-5} \ 12$<br>$\alpha(N)=1.81\times10^{-5} \ 3; \ \alpha(O)=2.73\times10^{-6} \ 4;$<br>$\alpha(P)=1.743\times10^{-7} \ 25$             |
| 1106.863 <i>17</i>                                                                      | 0.118 4                                                                               | 1106.861                                                 | (3/2 <sup>-</sup> to 9/2 <sup>-</sup> )                                                                                 | 0.0                                             | 7/2-                                                                                             | (E2(+M1))                     |                      | 0.0026 <i>6</i>       | <ul> <li>I<sub>γ</sub>: weighted average of 23.3 7 (1989Ad09)<br/>and 26.6 3 (2014Mi17).</li> <li>α(K)exp=0.00279 14.</li> <li>δ: from 1989Ad10.</li> <li>%Iγ=0.0284 10</li> </ul>                                                                                                |

 $\neg$ 

From ENSDF

|                                                    |                                    |                        | 1                                                    | <sup>47</sup> Eu ε dec | ay (24.                              | 1 d) <b>1989</b>   | Ad09,1989Ad          | 110 (continued        | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|----------------------------------------------------|------------------------------------|------------------------|------------------------------------------------------|------------------------|--------------------------------------|--------------------|----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\gamma$ <sup>(147</sup> Sm) (continued)           |                                    |                        |                                                      |                        |                                      |                    |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| ${\rm E_{\gamma}}^{\ddagger}$                      | $I_{\gamma}$ ‡&                    | E <sub>i</sub> (level) | $\mathrm{J}_i^\pi$                                   | $E_f$                  | $\mathbf{J}_f^{\pi}$                 | Mult. <sup>@</sup> | $\delta^{\dagger @}$ | $\alpha^{a}$          | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 1120.387 9                                         | 0.691 <i>21</i>                    | 1317.677               | 1/2 <sup>-</sup> ,3/2 <sup>-</sup> ,5/2 <sup>-</sup> | 197.284                | 3/2-                                 | M1(+E2)            | -0.018 17            | 0.00301               | $\begin{aligned} \alpha(K) = 0.0022 \ 5; \ \alpha(L) = 0.00029 \ 6; \\ \alpha(M) = 6.3 \times 10^{-5} \ 13 \\ \alpha(N) = 1.4 \times 10^{-5} \ 3; \ \alpha(O) = 2.1 \times 10^{-6} \ 5; \\ \alpha(P) = 1.3 \times 10^{-7} \ 4; \ \alpha(IPF) = 4.27 \times 10^{-7} \ 16 \\ \text{Mult.: from Adopted Gammas.} \\ \% I_{\gamma} = 0.166 \ 5 \\ \alpha(K) = 0.00258 \ 4; \ \alpha(L) = 0.000341 \ 5; \\ \alpha(M) = 7.28 \times 10^{-5} \ 11 \\ \alpha(N) = 1.652 \times 10^{-5} \ 24; \ \alpha(O) = 2.49 \times 10^{-6} \ 4; \\ \alpha(P) = 1.591 \times 10^{-7} \ 23; \ \alpha(IPF) = 7.24 \times 10^{-7} \ 11 \\ \alpha(K) = 0.0056 \ 6 \ (100\% \ 4.00) \end{aligned}$ |  |  |
| 1152.330 <i>26</i><br><sup>x</sup> 1158.2 <i>9</i> | 0.0320 <i>15</i><br>0.03 <i>2</i>  | 1349.650               | (3/2 <sup>-</sup> ,5/2 <sup>-</sup> )                | 197.284                | 3/2-                                 |                    |                      |                       | $\delta$ : from 1989Ad10.<br>$\delta$ : from 1989Ad10.<br>$\delta$ I $\gamma$ =0.0077 4<br>$\delta$ I $\gamma$ =0.007 5<br>$\alpha$ (K)exp=0.01<br>$\alpha$ (K)exp=0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 1172.63 <i>6</i><br><sup>x</sup> 1172.81 <i>12</i> | 0.0151 <i>18</i><br>0.015 <i>2</i> | 1172.66                | (_)                                                  | 0.0                    | 7/2-                                 |                    |                      |                       | % Iy=0.0036 4<br>%Iy=0.0036 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 1180.231 10                                        | 0.686 21                           | 1180.253               | 5/2+                                                 | 0.0                    | 7/2-                                 | E1                 |                      | 7.79×10 <sup>-4</sup> | % I <sub>γ</sub> =0.165 5<br>$\alpha$ (K)=0.000655 10; $\alpha$ (L)=8.37×10 <sup>-5</sup> 12;<br>$\alpha$ (M)=1.776×10 <sup>-5</sup> 25<br>$\alpha$ (N)=4.02×10 <sup>-6</sup> 6; $\alpha$ (O)=6.03×10 <sup>-7</sup> 9;<br>$\alpha$ (P)=3.80×10 <sup>-8</sup> 6; $\alpha$ (IPF)=1.83×10 <sup>-5</sup> 3<br>$\alpha$ (K)exp=0.00066 16 (1989Ad09).                                                                                                                                                                                                                                                                                                                         |  |  |
| 1196.858 <i>11</i>                                 | 0.98 3                             | 1318.076               | 3/2 <sup>-</sup> ,5/2 <sup>-</sup>                   | 121.212                | 5/2-                                 | E2                 |                      | 1.72×10 <sup>-3</sup> | %Iγ=0.236 7<br>$\alpha$ (K)=0.001462 21; $\alpha$ (L)=0.000200 3;<br>$\alpha$ (M)=4.29×10 <sup>-5</sup> 6<br>$\alpha$ (N)=9.70×10 <sup>-6</sup> 14; $\alpha$ (O)=1.444×10 <sup>-6</sup> 21;<br>$\alpha$ (P)=8.71×10 <sup>-8</sup> 13; $\alpha$ (IPF)=5.38×10 <sup>-6</sup> 8<br>$\alpha$ (K)exp=0.00100 19 (1989Ad09).                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 1251.841 <i>24</i><br>1255.930 <i>8</i>            | 0.291 <i>10</i><br>3.44 <i>10</i>  | 1449.113<br>1453.220   | 7/2 <sup>-</sup><br>3/2 <sup>-</sup>                 | 197.284<br>197.284     | 3/2 <sup>-</sup><br>3/2 <sup>-</sup> | M1+E2              |                      | 0.0019 4              | %I $\gamma$ =0.0701 25<br>%I $\gamma$ =0.828 25<br>$\alpha$ (K)=0.0017 4; $\alpha$ (L)=0.00022 4;<br>$\alpha$ (M)=4.7×10 <sup>-5</sup> 9<br>$\alpha$ (N)=1.07×10 <sup>-5</sup> 20; $\alpha$ (O)=1.6×10 <sup>-6</sup> 3;<br>$\alpha$ (P)=1.00×10 <sup>-7</sup> 22; $\alpha$ (IPF)=1.36×10 <sup>-5</sup> 5<br>$\alpha$ (K)exp=0.0015 4 (1989Ad09).                                                                                                                                                                                                                                                                                                                         |  |  |
| 1274.592 <i>14</i>                                 | 0.186 6                            | 1471.885               | -                                                    | 197.284                | 3/2-                                 | E2                 |                      | 1.53×10 <sup>-3</sup> | $\% I_{\gamma} = 0.0448 \ 15$<br>$\alpha(K) = 0.001291 \ 18; \ \alpha(L) = 0.0001754 \ 25;$<br>$\alpha(M) = 3.75 \times 10^{-5} \ 6$<br>$\alpha(N) = 8.48 \times 10^{-6} \ 12; \ \alpha(O) = 1.265 \times 10^{-6} \ 18;$<br>$\alpha(P) = 7.69 \times 10^{-8} \ 11; \ \alpha(IPF) = 1.606 \times 10^{-5} \ 23$<br>$\alpha(K) \exp = 0.0012 \ 4 \ (1989Ad09).$                                                                                                                                                                                                                                                                                                             |  |  |

 $\infty$ 

From ENSDF

 $^{147}_{62}\mathrm{Sm}_{85}$ -8

| <sup>147</sup> Eu ε decay (24.1 d) 1989Ad09,1989Ad10 (continued) |                                                   |                        |                                                      |                    |                                      |                    |                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|------------------------------------------------------------------|---------------------------------------------------|------------------------|------------------------------------------------------|--------------------|--------------------------------------|--------------------|--------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                  | $\underline{\gamma}(^{147}\text{Sm})$ (continued) |                        |                                                      |                    |                                      |                    |                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| ${\rm E_{\gamma}}^{\ddagger}$                                    | $I_{\gamma}$ <sup>‡</sup> &                       | E <sub>i</sub> (level) | $\mathrm{J}_i^\pi$                                   | $E_f$              | $\mathbf{J}_f^{\pi}$                 | Mult. <sup>@</sup> | $\delta^{\dagger}$ | $\alpha^{a}$          | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 1317.853 13                                                      | 0.539 17                                          | 1317.859               | 5/2-,7/2-,9/2-                                       | 0.0                | 7/2-                                 | M1                 |                    | 0.00209               | $ \frac{\%}{4} = 0.130 4  α(K) = 0.001766 25; α(L) = 0.000233 4;  α(M) = 4.97 \times 10^{-5} 7  α(N) = 1.126 \times 10^{-5} 16; α(O) = 1.698 \times 10^{-6} 24;  α(P) = 1.088 \times 10^{-7} 16; α(IPF) = 2.57 \times 10^{-5} 4  α(K) exp = 0.0022 5 (1989 A d09). $                                                                                                                                                                                                                                                                                                      |  |  |  |
| 1327.98 <i>5</i><br>1331.997 <i>13</i>                           | 0.050 7<br>1.24 <i>4</i>                          | 1449.113<br>1453.220   | 7/2 <sup>-</sup><br>3/2 <sup>-</sup>                 | 121.212<br>121.212 | 5/2 <sup>-</sup><br>5/2 <sup>-</sup> | M1+E2              | 1.7 11             | 0.0016 <i>3</i>       | %Iγ=0.0120 17<br>%Iγ=0.299 10<br>$\alpha$ (K)=0.0013 3; $\alpha$ (L)=0.00018 4; $\alpha$ (M)=3.8×10 <sup>-5</sup> 7<br>$\alpha$ (N)=8.6×10 <sup>-6</sup> 16; $\alpha$ (O)=1.28×10 <sup>-6</sup> 24;<br>$\alpha$ (P)=8.0×10 <sup>-8</sup> 17; $\alpha$ (IPF)=2.75×10 <sup>-5</sup> 11<br>Mult.,δ: from Adopted Gammas; pure M1 from<br>$\alpha$ (K)exp.                                                                                                                                                                                                                    |  |  |  |
| 1350.198 14                                                      | 0.524 16                                          | 1471.417               | 3/2 <sup>-</sup> ,5/2 <sup>-</sup> ,7/2 <sup>-</sup> | 121.212            | 5/2-                                 | M1+E2              |                    | 0.0017 3              | $ \begin{aligned} & \alpha(\mathbf{K}) \exp(-0.0022) \circ (1769) \operatorname{Au}(0) \right), \\ & & \% \operatorname{I}_{\gamma} = 0.126 \ 4 \\ & \alpha(\mathbf{K}) = 0.0014 \ 3; \ \alpha(\mathbf{L}) = 0.00019 \ 4; \ \alpha(\mathbf{M}) = 4.0 \times 10^{-5} \ 7 \\ & \alpha(\mathbf{N}) = 9.1 \times 10^{-6} \ 16; \ \alpha(\mathbf{O}) = 1.36 \times 10^{-6} \ 25; \\ & \alpha(\mathbf{P}) = 8.6 \times 10^{-8} \ 18; \ \alpha(\mathbf{IPF}) = 3.23 \times 10^{-5} \ 13 \\ & \alpha(\mathbf{K}) \exp(-0.0014 \ 3) \ (1989 \operatorname{Ad}(0)), \end{aligned} $ |  |  |  |
| 1427.408 <i>17</i>                                               | 0.441 <i>14</i>                                   | 1548.634               | 3/2+,5/2+                                            | 121.212            | 5/2-                                 | (E1)               |                    | 7.01×10 <sup>-4</sup> | %Iy=0.1062 35<br>$\alpha(K)=0.000470 7; \alpha(L)=5.96\times10^{-5} 9;$<br>$\alpha(M)=1.264\times10^{-5} 18$<br>$\alpha(N)=2.86\times10^{-6} 4; \alpha(O)=4.30\times10^{-7} 6;$<br>$\alpha(P)=2.73\times10^{-8} 4; \alpha(IPF)=0.0001561 22$<br>$\alpha(K)\exp=0.0014 4$ (1989Ad09).<br>Mult.: from 1989Ad10; they propose M1(E1), but M1<br>is not compatible with the decay scheme.                                                                                                                                                                                     |  |  |  |
| 1449.106 <i>12</i>                                               | 0.82 3                                            | 1449.113               | 7/2-                                                 | 0.0                | 7/2-                                 | M1                 |                    | 1.72×10 <sup>-3</sup> | %I $\gamma$ =0.197 7<br>$\alpha(K)$ =0.001420 20; $\alpha(L)$ =0.000187 3;<br>$\alpha(M)$ =3.98×10 <sup>-5</sup> 6<br>$\alpha(N)$ =9.03×10 <sup>-6</sup> 13; $\alpha(O)$ =1.362×10 <sup>-6</sup> 19;<br>$\alpha(P)$ =8.73×10 <sup>-8</sup> 13; $\alpha(IPF)$ =6.37×10 <sup>-5</sup> 9<br>$\alpha(K)$ =0.016 3 (1989 $\Delta$ 409)                                                                                                                                                                                                                                         |  |  |  |
| 1453.24 <i>4</i>                                                 | 0.096 4                                           | 1453.220               | 3/2-                                                 | 0.0                | 7/2-                                 |                    |                    |                       | $%[\gamma=0.0231\ 10\ c_{2}(k)=0\ 00020\ (19654\ d05))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 1471.90 4                                                        | 0.0110 5                                          | 1471.885               | -<br>2/2(-) = -2(+)                                  | 0.0                | $7/2^{-}$                            |                    |                    |                       | %(Iγ=0.00265 12<br>%Iγ=0.00265 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 14/9./1 3<br><sup>x</sup> 1482 1                                 | 0.0161 6 0.015 4                                  | 1600.937               | 3/2('),5/2(')                                        | 121.212            | 5/2                                  |                    |                    |                       | %1γ=0.00388 15<br>%Iγ=0.0036 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 1520.58 <i>13</i><br><sup>x</sup> 1542.0 <i>12</i>               | 0.0016 3                                          | 1641.95                |                                                      | 121.212            | 5/2-                                 |                    |                    |                       | $\%$ I $\gamma$ =0.00039 7<br>ce(K)=0.00008 (1965Ad05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 1548.50 16                                                       | 0.0017 3                                          | 1548.634               | 3/2+,5/2+                                            | 0.0                | $7/2^{-}$                            |                    |                    |                       | %Iγ=0.00041 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |

9

 $^{147}_{62}\mathrm{Sm}_{85}$ -9

L

From ENSDF



<sup>†</sup> Additional information 2.

0.0050 3

 $I_{\nu}$ 

0.0308 12

 $E_{\gamma}^{\ddagger}$ 

1601.00 5

1641.98 7

<sup>‡</sup> From 1989Ad09, except if noted.

<sup>#</sup> Differ by  $3\sigma$  from calculated value.

<sup>@</sup> From Adopted Gammas. Most values were deduced in this dataset from  $\alpha(K)\exp$  normalized to  $\alpha(K)(197\gamma)=0.157$  (E2 theory) (1989Ad09), unless otherwise noted.

<sup>&</sup> For absolute intensity per 100 decays, multiply by 0.2408 19.

E<sub>i</sub>(level)

1600.937

1641.95

<sup>*a*</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>147</sup>Eu  $\varepsilon$  decay (24.1 d)

%Iγ=0.00742 29

 $\%I\gamma = 0.001207$ 

 $\mathbf{E}_f \quad \mathbf{J}_f^{\pi}$ 

 $0.0 \ 7/2^{-}$ 

0.0 7/2-

 $3/2^{(-)}, 5/2^{(+)}$ 

 $x \gamma$  ray not placed in level scheme.

# <sup>147</sup>Eu ε decay (24.1 d) 1989Ad09,1989Ad10



