$^{147}\mathbf{Pm}\,\beta^-$ decay (2.6234 y)

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	N. Nica and B. Singh	NDS 181, 1 (2022)	9-Mar-2022					

Parent: ¹⁴⁷Pm: E=0.0; $J^{\pi}=7/2^+$; $T_{1/2}=2.6234$ y 4; $Q(\beta^-)=224.06$ 29; $\%\beta^-$ decay=100.0

¹⁴⁷Pm-E,J^{π},T_{1/2}: From ¹⁴⁷Pm Adopted Levels.

¹⁴⁷Pm-Q(β^{-}): From 2021Wa16.

Measured internal ionization in K-shell per 100 β's: 0.0087 7 (1977Sc04), 0.0081 9 (1974Ha12), 0.0098 8 (1972Ca27), 0.0076 11 (1971Is05), 0.0093 14 (1967St36).

147Sm Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	7/2 ⁻	1.073×10 ¹¹ y 10	%α=100
121.223 <i>12</i>	5/2 ⁻	0.798 ns 17	
197.298 <i>11</i>	3/2 ⁻	1.25 ns 4	

[†] From least-squares fit to $E\gamma's$.

[‡] From Adopted Levels.

β^- radiations

 β longitudinal pol studied: 1962Ku07, 1966Va06.

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(26.8 <i>3</i>) (102.8 <i>3</i>)	197.298 121.223	4.8×10 ⁻⁷ 8 0.00569 23	12.01 ¹ <i>u</i> 8 10.599 <i>1</i> 8	av $E\beta$ =6.939 82 av $E\beta$ =26.934 80 $I\beta^{-1}$: from 1977Sc04 via $\beta(121\gamma)$ -coin. $I\gamma(121\gamma)$ =0.00284 35 is deduced from
224.5 4	0.0	99.99	7.4	^(β) branch=0.0057 / in agreement with absolute 1γ(121γ). av Eβ=61.777 88 av Eβ=60.51 12 (1965Wh04) calorimeter. Others: 1962H007, 1965P002. E(decay): 224.5 4 (1966Hs01), 224.3 13 (1958Ha32), 223.2 5 (1950La04) spectrometer. Other Eβ endpoint: 227.5 10 (1977Sc04) shape factor plotted. See also 1949Li23, 1950Ag01, 1956Na21, 1958Mi88, 1963La15, 1964Ho27. Additional information 2.

[†] Absolute intensity per 100 decays.

 $\gamma(^{147}\text{Sm})$

I γ normalization: From I γ (121 γ per 100 β^- decays)=0.0000285 11, weighted av of 0.0000273 18 (1970Mo02) and 0.0000293 14 (1971Mc09).

All γ -ray properties other than I γ are taken from adopted gammas.

L x-ray intensity=0.039 4/100 β's (1972Ca27).

Internal bremsstrahlung intensity=0.015 3 photons/100 β 's (1973HaXY).

Internal bremsstrahlung shape measured: 1971Si02, 1974Ba96.

Continued on next page (footnotes at end of table)

$^{147} \mathbf{Pm}\,\beta^-$ decay (2.6234 y) (continued)

$\gamma(^{147}\text{Sm})$ (continued)

${\rm E_{\gamma}}^{\#}$	Ι _γ @	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\ddagger \#}$	α^{\dagger}	Comments
(76.073 10)	4.1×10 ⁻⁴ 7	197.298	3/2-	121.223	5/2-	M1+E2	+0.655 34	4.53 9	%Iγ=1.17×10 ⁻⁸ 20 α (K)=2.91 5; α (L)=1.26 7; α (M)=0.288 15 α (N)=0.064 4; α (O)=0.0083 4; α (P)=0.000170 4 I _γ : from Iγ(197)=1.2×10 ⁻² and Iγ(76γ)/Iγ(197γ)=0.0344 11 in ¹⁴⁷ Eu ε decay.
121.220 17	100	121.223	5/2-	0.0	7/2-	M1+E2	-0.33 3	0.996 15	%I _γ =0.00285 11 α (K)=0.814 12; α (L)=0.143 5; α (M)=0.0312 12 α (N)=0.00702 25; α (O)=0.00101 3; α (P)=5.06×10 ⁻⁵ 8 I _γ /100 β's (semi)=0.00273 18 (1970Mo02), 0.00293 14 (1971Mc09), 0.0030 3 (1973HaXY). Others: 1956La17, 1957St05, 1966Pr11.
197.299 <i>12</i>	1.2×10 ⁻² 2	197.298	3/2-	0.0	7/2-	E2		0.218 3	$\% I\gamma = 3.4 \times 10^{-7} 6$ $\alpha(K) = 0.1565 22; \ \alpha(L) = 0.0482 7;$ $\alpha(M) = 0.01092 16$ $\alpha(N) = 0.00241 4; \ \alpha(O) = 0.000320$ $5; \ \alpha(P) = 7.73 \times 10^{-6} 11$ $I_{\gamma}: \text{ from } I\gamma(197\gamma)/I\gamma(121\gamma) =$ 0.00012 2 (1969Ba33) semi.

[†] Additional information 3.
[‡] Additional information 4.
[#] From Adopted Gammas.
[@] For absolute intensity per 100 decays, multiply by 0.0000285 11.

¹⁴⁷Pm β^- decay (2.6234 y)

