¹⁴⁷Sm(n,n'γ) **1983Av07,1984Ba62**

	Н	listory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica and B. Singh	NDS 181, 1 (2022)	9-Mar-2022

1983Av07,1984Ba62: E=fast neutrons (reactor), 99.5% enriched targets, Ge(Li) detector; measured E γ , I γ (1983Av07); measured E γ , I γ , $\gamma(\theta)$, deduced δ (1984Ba62).

¹⁴⁷Sm Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	7/2-	
121.18 7	5/2-	
197.47 11	3/2-	
716.26 14	$11/2^{-}$	
798.55 10	3/2-	
809.16 8	9/2-	
922.91 19	$(1/2^{-})$	J^{π} : L(p,d)=(1) gives J=(1/2^-,3/2^-); (1/2^-) is suggested by 1983Av07 in (n,n' γ) in analogy to ¹⁴⁵ Nd.
931.54 17	11/2+	
1030.34 20	$13/2^{+}$	
1054.23 21	3/2+	J^{π} : E1, $\Delta J=0 \gamma$ to $3/2^{-}$, 197.
1063.61 12	5/2+	J^{π} : E1, $\Delta J=0 \gamma$ to $5/2^{-}$, 121.
1069.05? 10	9/2-	J^{π} : E2, $\Delta J=2 \gamma$ to $5/2^{-}$, 121; M1+E2, $\Delta J=1 \gamma$ to $7/2^{-}$, g.s.
1077.02 9	5/2-	J^{π} : M1+E2, $\Delta J=0 \gamma$ to 5/2 ⁻ , 121.
1107.30 20	(3/2 ⁻ to 9/2 ⁻)	
1173.01 20	(-)	
1180.39 <i>13</i>	5/2+	
1318.20 13	3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻	E(level), J^{π} : assigned by 1983Av07 who considered the 1120 γ , 1197 γ and 1318 γ originating from this level. However due to the ε decay dataset in which the γ 's originate from different levels, this level appears as split in the Adopted Levels.
1449.22 17	7/2-	
1453.52 19	3/2-	J^{π} : 1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻ from M1+E2 γ to 3/2 ⁻ , 197; 3/2 ⁻ from M1+E2, $\Delta J=1 \gamma$ to 5/2 ⁻ , 121.
1457.80 21	15/2-	
1471.62 23	3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻	E(level), J^{π} : assigned by 1983Av07 who considered the 1274 γ , 1350 γ and 1472 γ originating from this level. However due to the ε decay dataset in which the γ 's originate from different levels, this level appears as split in the Adopted Levels.
1717.4 <i>4</i> 1748.8 <i>4</i> 1762.70, 10	9/2-	J^{π} : 9/2 ⁻ ,11/2 ⁻ from M1+E2, $\Delta J=1 \gamma$ to 7/2 ⁻ , g.s.; 9/2 ⁻ from γ to 5/2 ⁻ , 121.
1/02.70 19	5/2-	W_{1} 5/2-0/2- from M1+E2 AI-1 et to 7/2- es : 0/2- evoluted from et to 2/2-107
1043.90 24	5/2	$J = 3/2$, $3/2$ from with $E2$, $\Delta J = 1$ y to $1/2$, g.s., $3/2$ excluded from y to $3/2$, 197 .
2064.9.6	(3/2 + 5/2 +)	
2004.90	(3/2, 3/2)	\overline{R} , α' s to $3/2^{-1}$ 107 and $11/2^{-7}$ 716 respectively.
2009.03 17	(1/2)	$J : \gamma = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, $
2109.04	17/2-	
2202.97 15	$(3/2^{-}, 5/2, 7/2)$	J^{π} : γ' s to 5/2 ⁺ , 1064, 5/2 ⁻ , 121, and 7/2 ⁻ , g.s., respectively.

[†] From least-squares fit to $E\gamma's$; normalized $\chi^2=2.0$ is greater than critical $\chi^2=1.7$.

[‡] From Adopted Levels, unless noted otherwise.

					¹⁴⁷ Sm(n,n' γ)	1983Av07	, <mark>1984Ba62</mark> ((continued)
$\gamma(^{147}\text{Sm})$								
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult. [‡]	δ#	Comments
121.14 10	148 46	121.18	5/2-	0.0	7/2-	M1+E2		
197.4 2	47 10	197.47	$3/2^{-}$	0.0	7/2-	E2		
215.23 10	19 2	931.54	$11/2^{+}$	716.26	11/2-	E1		
x222.3 3	0.61 24							
^x 277.6 3	1.0 4							
314.10 15	16 2	1030.34	13/2+	716.26	11/2-	E1		
371.2 3	0.52 17	1180.39	5/2+	809.16	9/2-			
x 390.5 2	1.1.3							$\Delta I\gamma$: 26 in 1983Av07, presumably a typographical error.
*420.83 15	1.2.3	1457 90	15/2-	1020.24	12/2+			$\Delta 1\gamma$: 30 in 1983 Av07, presumably a typographical error.
427.3 2	0.90 20	1437.80	13/2	1030.34	$\frac{13}{2}^{-}$ $\frac{3}{2}^{-}$ $\frac{5}{2}^{-}$ $\frac{7}{2}^{-}$			
x456.0.3	0.4521	1/40.0		1316.20	5/2 ,5/2 ,7/2			
534.00.15	255	1983-18		1449 22	7/2-			
x575.1.3	0.55.21	1705.10		1117.22	1/2			
x585.6 3	1.9 5							
601.13 15	5.4 11	798.55	$3/2^{-}$	197.47	$3/2^{-}$	M1(+E2)	0.005 8	δ : adopted value.
651.2 <i>3</i>	0.34 16	2109.0	$17/2^{-}$	1457.80	15/2-			
^x 657.4 3	0.79 26							
^x 659.8 4	0.32 14							
663.5 <i>3</i>	0.89 25	1843.90	$5/2^{-}$	1180.39	5/2+			
677.28 15	8.1 8	798.55	3/2-	121.18	5/2-	M1+E2	-3.9 <i>39</i>	Mult.: M1+E2, $\Delta J=1$ from A ₂ (exp)=-0.02 3.
								δ : adopted value is -0.47 4.
684.6 5	1.2 5	1762.70	0/2-	1077.02	5/2-	52		
687.91 15	12.3	809.16	9/2	121.18	5/2	E2		Mult.: E2, $\Delta J=2$ from A ₂ (exp)=0.08 2 compared to
716 15 15	100	716.26	11/2-	0.0	7/2-	E2		$A_2(E2,IIICOI)=0.07$. Mult : from $A_2(exp)=0.15$ 3 compared to $A_2(E2 \text{ theor})=0.16$
725 44 15	576	922.91	$(1/2^{-})$	197 47	3/2-	12		Mult. from $A_2(exp)=0.15$ 5 compared to $A_2(E2, \text{theor})=0.10$.
741 5 2	889	1457.80	$(1/2^{-})$ 15/2 ⁻	716.26	$\frac{3}{2}$ 11/2 ⁻	E2		Mult : from $A_2(exp)=0.23.2$ compared to $A_2(E2 \text{ theor})=0.24$
^x 746.6 2	5.4 11	1107.00	10/2	/10.20	11/2	22		$\frac{1}{12} \frac{1}{12} \frac$
^x 778.6 3	1.20 25							
798.58 15	3.9 8	798.55	$3/2^{-}$	0.0	7/2-	(E2)		Mult.: from $A_2(exp) = -0.08 \ 8$ compared to $A_2(E2, theor) = -0.008$.
809.21 10	40 6	809.16	9/2-	0.0	7/2-	M1+E2		Mult.: M1+E2, $\Delta J=1$ from A ₂ (exp)=0.10 2. δ : δ =0.66 11 or 2.5 6.
^x 814.4 4	0.23 10							
x830.7 2	4.6 11		a (a ±		2 /2	-		
856.8 2	2.5 4	1054.23	3/2+	197.47	3/2-	E1		Mult.: E1, $\Delta J=0$ from A ₂ (exp)=-0.027 22 compared to A ₂ (E1,theor)=0.
932.8 5	0.38 [@] 16	931.54	$11/2^{+}$	0.0	7/2-	[M2]		
932.8 5	3.4 [@]	1054.23	3/2+	121.18	5/2-	E1		
^x 938.5 4	1.0 3							
942.18 15	8.3 18	1063.61	5/2+	121.18	5/2-	E1		Mult.: E1, $\Delta J=0$ from A ₂ (exp)=0.008 6 compared to A ₂ (E1,theor)=0.012.

2

 $^{147}_{62}\mathrm{Sm}_{85}$ -2

L

From ENSDF

 $^{147}_{62}\mathrm{Sm}_{85}$ -2

147 Sm(n,n' γ) 1983Av07,1984Ba62 (continued)									
γ ⁽¹⁴⁷ Sm) (continued)									
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	J_i^{π}	E_f	J_f^π	Mult. [‡]	δ#	Comments	
947.9 ^{<i>a</i>} 1	14 2	1069.05?	9/2-	121.18	5/2-	E2		Mult.: E2, $\Delta J=2$ from A ₂ (exp)=0.05 <i>3</i> compared to A ₂ (E2,theor)=0.07.	
955.78 15 *968.0 *977.3 3 *985.3 3 *989.6 4	4.2 6 2.0 4 0.29 13 2.6 6 0.34 9	1077.02	5/2-	121.18	5/2-	M1+E2	1.1 <i>13</i>	Mult.: M1+E2, Δ J=0 from A ₂ (exp)=-0.06 4.	
1010.7 5 ^x 1034.2 5	0.56 <i>16</i> 1.3 <i>3</i>	2064.9	(3/2 ⁺ ,5/2 ⁺)	1054.23	3/2+				
1059.1 2	<3.8	1180.39	5/2+	121.18	5/2-				
1059.1 2	<3.8	2089.4	5/2+	1030.34	13/2+	F1			
1063.4 2	1.3 18	1063.61	5/2	0.0	1/2	EI		Mult.: E1, $\Delta J=1$ from A ₂ (exp)=0.048 28 compared to A ₂ (E1 theor)=0.02	
1069.05 ^a 10	13 2	1069.05?	9/2-	0.0	7/2-	M1+E2		Mult.: M1+E2, ΔJ =1 from A ₂ (exp)=0.05 4. δ : 0.35 15 or 7.16 +73-389.	
1077.0 <i>1</i>	7.0 14	1077.02	5/2-	0.0	$7/2^{-}$	M1(+E2)	-1.3 15	Mult.: M1+E2, $\Delta J=1$ from A ₂ (exp)=-0.03 2.	
1107.3 2	20 3	1107.30	$(3/2^{-} \text{ to } 9/2^{-})$	0.0	7/2-				
1120.5 2	3.2 8	1318.20	3/2-,5/2-,7/2-	197.47	3/2-	M1+E2		Mult.: M1+E2, $\Delta J=0,1$ from A ₂ (exp)=-0.05 2.	
^x 1127.0 3	0.70 24							δ: 1.5 14 if ΔJ=0; 4.6 41 if ΔJ=1. E _γ : this energy might be incorrect since it is out of order in 1983Av07 (table 2, located between 1160 and 1235).	
1138.7 ^{&} 2 ^x 1147.0 3 ^x 1152.1 2 ^x 1158.4 4 ^x 1160.8 3	1.5 <i>3</i> 1.1 <i>3</i> 1.6 <i>4</i> 0.78 <i>26</i> 1.1 <i>3</i>	2202.97	(3/2 ⁻ ,5/2,7/2)	1063.61	5/2+				
1173.0 2	10 4	1173.01	(_)	0.0	7/2-				
1180.5 2	8.8 17	1180.39	5/2+	0.0	7/2-	E1		Mult.: E1 from Adopted Gammas; M1+E2, ΔJ=1 from A ₂ (exp)=0.11 2 from 1984Ba62 not adopted. δ: δ=0.62 15 12 or 2.8 11 6 if M1+E2.	
1197.2 2	10 3	1318.20	3/2-,5/2-,7/2-	121.18	5/2-	M1+E2	-1.1 8	Mult.: M1+E2, $\Delta J=0,1$ from A ₂ (exp)= -0.02 <i>I</i> ; E2 from ¹⁴⁷ Eu ε decay is adopted (Adopted Gammas).	
^x 1235.6 2	0.80 16								
1252.0 5	2.2 6	1449.22	7/2-	197.47	3/2-	[E2]		Mult.: M1+E2, $\Delta J=0,1$ from A ₂ (exp)=0.04 <i>3</i> ; not adopted because of level scheme arguments.	
1256.1 2	3.2 9	1453.52	3/2-	197.47	3/2-	M1+E2		Mult.: M1+E2, ΔJ =0,1 from A ₂ (exp)=0.07 4. δ : δ =-1.5 6 if ΔJ =0 or -1.6 <i>16</i> if ΔJ =1.	
1260.8 2	1.1 3	2069.85	$(7/2^{-})$	809.16	9/2-				
1274.4 <i>4</i> 1318.2 2	1.4 <i>3</i> 4.0 <i>10</i>	1471.62 1318.20	3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻ 3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻	197.47 0.0	3/2 ⁻ 7/2 ⁻				
^1322.8 5	0.73 30	1440.00	7/2-	101 10	5/2-				
1320.4 7	1.3 5	1449.22 1453.52	3/2-	121.18	$5/2^{-}$	M1+E2	1.7 11	Mult.: M1+E2, $\Delta J=1$ from A ₂ (exp)=0.08 4.	

ω

 $^{147}_{62}\mathrm{Sm}_{85}$ -3

L

From ENSDF

 $^{147}_{62}\mathrm{Sm}_{85}$ -3

	147 Sm(n,n' γ) 1983Av07,1984Ba62 (continued)									
$\gamma(^{147}\text{Sm})$ (continued)										
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	J_i^{π}	E _f	J_f^{π}	Mult. [‡]	<i>δ</i> #	Comments		
1350.0 3	5.3 10	14/1.62	3/2 ,5/2 ,1/2	121.18	5/2	M1+E2		Mult.: M1+E2, $\Delta J=0,1$ from A ₂ (exp)= -0.024 11. δ : δ = -1.0 7 if $\Delta J=1$: $-0.10 + 15-12$ or 2.1 10 6 if $\Delta J=0$.		
1353.6 5 *1364.9 5 *1368.0 5 *1370.8 5 *1395.6 6 *1408.0 5 *1420.6 *1434.7 4 *1434.7 4	$\begin{array}{c} 3.4 \ 10 \\ 0.27 \ 12 \\ 1.6 \ 4 \\ 0.65 \ 22 \\ 0.7 \ 3 \\ 1.5 \ 4 \\ 1.1 \ 3 \\ 0.50 \ 22 \\ 0.53 \ 20 \end{array}$	2069.85	(7/2 ⁻)	716.26	11/2-					
1442.4 3 1449.2 2 1472.4 5 *1522.3 2 *1525.6 3 *1555.9 2 *1576.7 2	0.33 20 5.8 8 0.38 11 1.9 4 0.27 13 0.68 18 0.84 24	1449.22 1471.62	7/2 ⁻ 3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻	0.0 0.0	7/2 ⁻ 7/2 ⁻	M1+E2		Mult.: M1+E2, $\Delta J=0,1$ from A ₂ (exp)=-0.05 4.		
1596.0 4 ^x 1605.7 3 ^x 1622.4	2.5 7 0.70 24 0.64 20	1717.4	9/2-	121.18	5/2-					
1627.4 8 ^x 1635.4 6	0.24 <i>8</i> 0.28 <i>10</i>	1748.8		121.18	5/2-					
1641.8 2 1646.3 4 ^x 1653.6 ^x 1659.8 4 ^x 1664.5 3 ^x 1676 7	3.1 6 0.87 24 0.81 30 0.61 18 0.91 21 1 4 4	1762.70 1843.90	5/2-	121.18 197.47	5/2 ⁻ 3/2 ⁻					
1717.8 5 1749.2 5 1762.0 5	2.0 5 0.74 22 0.46 20 2.6 7	1717.4 1748.8 1762.70	9/2-	$0.0 \\ 0.0 \\ 0.0$	7/2 ⁻ 7/2 ⁻ 7/2 ⁻	M1+E2	1.5 7	Mult.: M1+E2, $\Delta J=1$ from A ₂ (exp)=0.16 <i>3</i> .		
1811.1 1844.2 <i>6</i> 1861.6 <i>5</i>	2.07 1.64 0.7422	1843.90 1983.18	5/2-	0.0 121.18	7/2 ⁻ 5/2 ⁻	M1+E2	1.6 9	Mult.: M1+E2, $\Delta J=1$ from A ₂ (exp)=0.15 4.		
1870.7 8 *1875.7 8 *1881.4 8 *1891.3 4 *1897.3 5 *1921.0 4 *2057 3 4	0.6 3 0.44 20 1.0 4 0.47 18 0.38 15 0.73 22 0.83 27	2069.85	(7/2 ⁻)	197.47	3/2-					
2069.8 3	1.1 3	2069.85	$(7/2^{-})$	0.0	7/2-					
2082.5 ^{&} 2 2202.7 4	1.0 <i>3</i> 0.9 <i>3</i>	2202.97 2202.97	$(3/2^-, 5/2, 7/2)$ $(3/2^-, 5/2, 7/2)$	121.18 0.0	5/2 ⁻ 7/2 ⁻					

4

 $^{147}_{62}\mathrm{Sm}_{85}$ -4

 $^{147}_{62}\mathrm{Sm}_{85}$ -4

From ENSDF

¹⁴⁷Sm(n,n'γ) **1983Av07,1984Ba62** (continued)

 $\gamma(^{147}\text{Sm})$ (continued)

[†] From 1983Av07.

[‡] From adopted values, unless noted in comments, which are from 1984Ba62 based on $\gamma(\theta)$. 1984Ba62 list only A₂ coefficients and mention that the A₄ coefficients are small compared to experimental uncertainties. Mult's for pure transitions are deduced from comparison of experimental and theoretical A₂ values.

[#] From 1984Ba62 based on $\gamma(\theta)$, unless noted otherwise.

^(a) There are two gammas with energies close to 932 keV which are placed as transitions from the 931- and 1054-keV levels. The $(n,n'\gamma)$ reaction feeds both these levels so that it measures the sum of the two intensities (<3.8) while the $({}^{3}\text{He},4n\gamma)$ reaction feeds only the 931-keV level allowing one to determine the ratio I(γ)(932.8)/I(γ)(215)=0.020 8 for the 932.8 contribution from this level. The $(n,n'\gamma)$ data can then be analyzed for the two 932.8 intensities; I(γ) from 931 level=0.38 *16*, from 1054 level=3.4.

[&] Differ by 3σ from calculated value.

^{*a*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{147}_{62}{
m Sm}_{85}$

¹⁴⁷₆₂Sm₈₅