	Н	listory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica and B. Singh	NDS 181, 1 (2022)	9-Mar-2022

Parent: ¹⁴⁷Ce: E=0.0; $J^{\pi}=(5/2^{-})$; $T_{1/2}=56.4$ s 10; $Q(\beta^{-})=3430$ 16; $\%\beta^{-}$ decay=100.0

¹⁴⁷Ce-E, J^{π} , $T_{1/2}$: From ¹⁴⁷Ce Adopted Levels.

¹⁴⁷Ce-Q(β^{-}): From 2021Wa16.

1997Gr09, 1996Gr20: ²⁵²Cf SF, measured β^- -decay intensity distribution by total absorption γ -ray spectrometer (TAGS).

1993Ma39: n_{th}-induced ²³⁵U fission products analyzed with Tristan ISOL isotope separator at BNL with thermoionization source

and moving tape collector. Used two Ge(Li), two Ge and Si(Li). Measured γ , $\gamma\gamma$, α (K)exp. Supersede 1988MaZI, 1987MaZO. 1987ScZG, 1981ScZM: fission products analyzed with ISOL systems Lohengrin and Ostis (ILL Grenoble), and Josef (K.F.A

Julich). Measured γ , $\gamma\gamma$, $\gamma\gamma(t)$, $\beta\gamma(t)$. Measured conversion electrons and mixing ratios (K/L ratio).

1984So18: measured ratio of count rates of a γ ray relative to a reference γ ray (with known %I γ relative to the β^- decay of the parent) using mass separators (HELIOS, OSTIS) and Ge(Li) detectors at radioactive equilibrium.

1979Bo26: precision E γ with curved-crystal spectrometer; used the 411.8044 keV γ transition in ¹⁹⁸Au β^- decay as

energy-calibration standard (so called gold standard) to obtain 98.4345 keV for the uranium KL3 x-ray. 2000He14 recommend 411.80205 keV *17* for the gold standard (data reported here are not adjusted).

147 Pr Levels

Others: 1995Ik03, 1986Gr11 (β, βγ, β end point, Q(β⁻)), 1993Sh33, 1975Pi03, 1964Ho03 (see ¹⁴⁷Pr β⁻, used for Iγ normalization), 1982To16 (γ, γγ), 1981Ya06 (γ, γγ, βγ, T_{1/2}, Q(β⁻)), 1977Bj02 (γ, γγ), 1977Re11 (γ, T_{1/2}), 1975Do15 (γ, γγ, T_{1/2}).

Level scheme is from 1993Ma39 and might be incomplete.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	E(level) [†]	$\mathrm{J}^{\pi \ddagger}$
0.0	$(3/2^+)$	13.44 [‡] min <i>10</i>	961.06 17	$(5/2^+, 7/2)$
2.67 11	$(5/2^+)$		978.07 17	$(7/2^{-})$
27.77 11	$(7/2^+)$		1045.94 <i>13</i>	$(3/2^{-}, 5/2)$
93.29 9	$(5/2^+)$	12 [#] ns	1058.90 24	$(7/2^{-}, 9/2^{+})$
246.52 11	$(9/2^+)$		1068.05 16	$(7/2^+)$
291.82 9	$(5/2^+)$		1159.58 24	$(3/2, 5/2, 7/2^{-})$
362.03 10	$(7/2^{-})$		1170.20 16	$(7/2^+)$
384.76 15	$(11/2^{-})$		1172.88 20	$(3/2^{-}, 5/2, 7/2^{-})$
452.32 12	$(3/2^{-}, 5/2^{-})$		1194.43 14	$(5/2^+, 7/2^+)$
467.49 10	$(3/2^{-}, 5/2^{-})$		1267.30 18	$(5/2^+, 7/2)$
470.69 15	$(9/2^+)$		1285.79 20	$(3/2^{-}, 5/2, 7/2^{-})$
545.91 <i>14</i>	$(9/2^+)$		1724.93 14	$(5/2^+, 7/2^+)$
608.01 14	$(7/2^{-})$		1845.92 <i>15</i>	$(5/2,7/2^{-})$
638.00 20	$(3/2, 5/2, 7/2^{-})$		1856.34 20	$(3/2^{-}, 5/2, 7/2)$
701.32 14	$(5/2^{-})$		1864.94 15	$(3/2^{-}, 5/2^{-}, 7/2^{-})$
748.88 15	$(5/2^+, 7/2)$		1943.85 <i>13</i>	$(7/2^{-})$
783.6 4			2060.58 18	(5/2,7/2)
802.84 13	$(5/2^+)$		2135.32 18	$(7/2^{-})$
931.57 17	$(3/2, 5/2, 7/2^+)$		2182.85 16	$(7/2^{-})$
951.63 14	$(5/2^+, 7/2^+)$		2249.64 18	$(7/2^{-})$

[†] From least-squares fit to $E\gamma$'s; as $E\gamma$'s were reported with no uncertainties, $\Delta E\gamma$ =0.30 keV assumed for least-squares fitting.

[‡] From Adopted Levels.

[#] From 1981ScZM.

¹⁴⁷Ce β⁻ decay **1993Ma39,1997Gr09** (continued)

β^{-} radiations

 $Q(\beta^-) \approx 3.4$ MeV and the highest level at ≈ 2.2 MeV indicate that the level scheme might be incomplete. However based on the existing data, $\Sigma I \beta = 102$ *17*, which indicates that the level scheme is rather complete. This contradiction suggests that these data should be used rather cautiously; new studies are needed for ¹⁴⁷Ce β^- decay.

Although 1993Ma39 and 1997Gr09 are in general agreement, there is an excess of I β for states <1300 keV and a deficient of I β for states >1300 keV of 1993Ma39 compared to 1997Gr09 (1997Gr09 used 1993Ma39 level scheme for TAGS simulated spectrum). Based on substantial agreement between measured and simulated shapes of TAGS spectra, 1997Gr09 suggest that 1993Ma39 failed to identify all the level deexcitation modes (rather than undetected levels).

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	$\log ft^{\dagger}$	Comments
(1180 16)	2249.64	1.5	5.5	av $E\beta$ =416.0 67
(1247-16)	2182.85	13	5.6	B : 4.97 (1997)(0109).
(12+7,10)	2102.05	1.5	5.0	$I\beta^{-1}: 2.22 (1997 \text{Gr09}).$
(1295 16)	2135.32	1.1	5.7	av E β =463.9 68
. ,				$I\beta^{-1}$: 1.83 (1997Gr09).
(1369 16)	2060.58	0.96	5.9	av E β =495.5 69
				$I\beta^{-}$: 4.41 (1997Gr09).
(1486 16)	1943.85	4.4	5.4	av $E\beta = 545.469$
(15(5.10)	1064.04	1.0	5.0	$1\beta^{-1}$: 9.65 (199/Gr09).
(1565-10)	1864.94	1.9	5.8	av $E\beta=3/9.5/0$
(1574.16)	1856 34	0.7	63	$\mu = 0.20 (19970009).$
(1374 10)	1650.54	0.7	0.5	$I\beta^{-} \cdot 2.48 (1997 Gr(10))$
(1584-16)	1845 92	18	59	$_{\rm av} E_{\rm R} = 587.8.70$
(1501 10)	1010.02	1.0	5.7	$I\beta^{-1}$: 5.70 (1997Gr09).
(1705 16)	1724.93	1.5	6.1	av E β =640.6 71
				$I\beta^{-}$: 4.82 (1997Gr09).
(2144 16)	1285.79	1.1	6.6	av E β =835.6 72
				$I\beta^{-}$: 0.69 (1997Gr09).
(2163 16)	1267.30	1.3	6.5	av E β =843.9 72
(2224 10	1104.40	2.0	6.0	$1\beta^{-1}$: 0.84 (1997Gr09).
(2236-16)	1194.43	3.0	6.2	av $E\beta = 8/6.8/73$
(2257 16)	1172 00	17	6.5	$\mu = 2.03 (199/Gr09).$
(2237,10)	11/2.00	1./	0.5	$I_{P} = 0.0.575$ $I_{P} = 0.120$ (1007G+00)
(2260-16)	1170.20	0.52	7.0	av $E\beta = 887.7$ 73
(2200 10)	11/0120	0.02		$IB^{-1}: 0.35 (1997 \text{Gr09}).$
(2270 16)	1159.58	0.61	7.0	av E β =892.5 73
				$I\beta^{-1}$: 0.40 (1997Gr09).
(2362 16)	1068.05	1.6	6.6	av E β =933.9 73
				$I\beta^{-}: 0.59 \ (1997Gr09).$
(2371 16)	1058.90	0.23	7.5	av $E\beta = 938.0 73$
(2284 10)	1045.04	1.0		$1\beta^{-1}: 0.085 (199/Gr09).$
(2384-10)	1045.94	1.9	0.0	av $E\beta = 943.9 / 3$ Le=, 0.65 (1007C=00)
(2452-16)	078 07	0.14	77	$\frac{10}{20} = \frac{1000}{1000} = \frac{1000}{1000}$
(2432 10)	970.07	0.14	1.1	$I\beta^{-1} \cdot 0 0 (1997Gr09)$
(2469-16)	961.06	0.95	6.9	av $E\beta = 982.4$ 73
(210) 10)	201100	0170	0.7	$I\beta^{-}: 0.21 (1997 \text{Gr09}).$
(2478 16)	951.63	2.0	6.6	av E β =986.7 73
				$I\beta^{-1}: 0.48 \ (1997Gr09).$
(2498 16)	931.57	0.99	6.9	av E β =995.8 73
				$I\beta^{-}: 0.27 \ (1997Gr09).$
(2627 16)	802.84	2.3	6.6	av $E\beta = 1054.5 73$
				$I\beta^{-}$: 0.69 (1997Gr09).

Continued on next page (footnotes at end of table)

$^{147}\mathrm{Ce}\,\beta^-$ decay 1993Ma39,1997Gr09 (continued)

E(decay)	E(level)	Ι <i>β</i> -†‡	$\log ft^{\dagger}$	Comments
(2646 16)	783.6	0.29	7.6	av Eβ=1063.3 74
				$I\beta^{-}: 0.0 \ (1997Gr09).$
(2681 16)	748.88	1.6	6.8	av $E\beta = 1079.174$
(0700 10	701.00	2.0	6.5	$I\beta^{-1}: 0.35 (199/Gr09).$
(2729-16)	/01.32	3.8	6.5	av $E\beta = 1100.9 / 4$
(2702.16)	628.00	0.24	77	$\mu = 1.24 (19970009).$
(2792-10)	058.00	0.24	1.1	av = Ep = 1129.9 74 $IR^{-1} = 0.0 (1007G_{-0}0)$
(2822-16)	608.01	83	62	FF = 11/3.6.74
(2022 10)	000.01	0.5	0.2	$I\beta^{-1} \cdot 2 \cap O(1997 \operatorname{Gr} 09)$
(2884 16)	545.91	0.58	7.4	av $E\beta = 1172.174$
(200110)	0.0001	0.00		$I\beta^{-1}: 0.83 (1997Gr09).$
(2963 16)	467.49	5.9	6.4	av $E\beta = 1208.2$ 74
· /				$I\beta^{-1}$: 2.09 (1997Gr09).
(2978 16)	452.32	2.6	6.8	av $E\beta = 1215.174$
				$I\beta^{-}$: 0.93 (1997Gr09).
(3068 16)	362.03	5.2	6.6	av E β =1256.7 74
				$I\beta^{-}$: 1.31 (1997Gr09).
(3138 16)	291.82	1.2	7.2	av $E\beta = 1289.174$
(3183 16)	246.52	0.34	7.8	av $E\beta = 1310.074$
(3337 16)	93.29	6	6.7	av $E\beta = 1380.874$
(3402 16)	27.77			$I\beta^{-}$: included in g.s. $I\beta$.
(3427 16)	2.67	22	6.0	$I\beta$: included in g.s. $I\beta$.
(3430 10)	0.0	32	6.0	av $B\beta = 1423.9 / 4$ B^{-1} sum of B for a simple first two societed states (obtained from Ly imbalance at
				1β : sum of 1β for g.s. plus first two excited states (obtained from 1γ imbalance at each level); compare to 12.8 (1002Ma20) and 70.3 (1002De28); also compare the
				sum of 18 for ground state plus first three excited states obtained here 38.8 with
				14.0.20 (1996Gr20, 1997Gr09, TAGS, same group) The differences are due to
				different ly normalizations (see ¹⁴⁷ Pr <i>β</i> ⁻ decay dataset)
				amerent i normanzations (see i i p deeuy dataset).

 β^- radiations (continued)

 † The uncertainties are underestimated because measured I γ values have no reported uncertainties, which makes these values tentative. [‡] Absolute intensity per 100 decays.

¹⁴⁷Ce $β^-$ decay **1993Ma39,1997Gr09** (continued)

 $\gamma(^{147}{\rm Pr})$

Iγ normalization: 0.092 *12* based on the average ratio, 0.0635 *52*, of γ-ray counting rates (at radioactive equilibrium) of five γ rays in this decay (269γ, 374γ, 467γ, 452γ, and 219γ) to that of 315γ (¹⁴⁷ Pr β⁻ decay), all measured by 1984So18, with %Iγ(315γ)=12.6 (1975Pi03) used by 1984So18 replaced by evaluator with %Iγ(315γ)=18.2 *18* (see discussion on Iγ normalization in ¹⁴⁷ Pr β⁻ decay in ¹⁴⁷ Nd datasets). Alternatively if one uses %Iβ=14.0 *20* from 1997Gr09 (for the β feeding of g.s., 2.7, 28, and 93 levels) one gets 0.121 5 for Iγ normalization.

E_{γ}^{\dagger}	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.@	α^{c}	Comments
(2.7 10)		2.67	$(5/2^+)$	0.0	$(3/2^+)$			
23 ^e	≈ 2	384.76	$(11/2^{-})$	362.03	$(7/2^{-})$	[E2]	1067	
25.3		27.77	$(7/2^+)$	2.67	$(5/2^+)$	[M1,E2]	3.4×10 ² 33	
^x 48.4 ^{&}	3 &							%Iy=0.28
65.21	10.3	93.29	$(5/2^+)$	27.77	$(7/2^+)$	[M1,E2]	7.3 29	$\%$ I γ =0.95
69.89	2	362.03	$(7/2^{-})$	291.82	$(5/2^+)$	[E1]	0.667	$\%I\gamma = 0.18$
^x 77.2 ^{&}	3.5 <mark>&</mark>							%Iy=0.32
90.44	15	93.29	$(5/2^+)$	2.67	$(5/2^+)$	[M1,E2]	2.39 66	$\%$ I γ =1.4
93.17	73	93.29	$(5/2^+)$	0.0	$(3/2^+)$	M1	1.586	$\%$ I γ =6.7
								$\alpha(K)=1.350 \ 19; \ \alpha(L)=0.186 \ 3; \ \alpha(M)=0.0393 \ 6$
								α (N)=0.00879 13; α (O)=0.001414 20; α (P)=0.0001037 15
105.59	0.7	467.49	$(3/2^{-}, 5/2^{-})$	362.03	$(7/2^{-})$	[M1,E2]	1.4 4	%Iy=0.064
108.9	0.5	470.69	$(9/2^+)$	362.03	$(7/2^{-})$	[E1]	0.199	$\%$ I γ =0.046
115.5	0.36	362.03	$(7/2^{-})$	246.52	$(9/2^+)$	[E1]	0.1691	%Iy=0.033
138.37	7.4	384.76	$(11/2^{-})$	246.52	$(9/2^{+})$	[E1]	0.1029	$\%1\gamma = 0.68$
161.56	4.1	545.91	$(9/2^+)$	384.76	(11/2)	[EI]	0.0674	$\%1\gamma = 0.38$
1/5.37	6.7	467.49	(3/2,5/2)	291.82	$(5/2^{+})$	(EI)	0.0539	$\%1\gamma = 0.02$
								$a(\mathbf{K}) = 0.0400 \ 7; \ a(\mathbf{L}) = 0.00022 \ 9; \ a(\mathbf{M}) = 0.001505 \ 19$
								$\alpha(N)=0.0002884; \alpha(O)=4.55\times10^{\circ} /; \alpha(P)=2.95\times10^{\circ} 5$
								with calculated values E1 is least discrepant
178 72	45	470 69	$(9/2^+)$	291.82	$(5/2^+)$	(F2)	0.278	with calculated values, E1 is least discrepant. $\%I_{\nu}=0.41$
170.72	1.5	170.02	()/2)	271.02	(3/2)	$(\mathbf{L}\mathbf{Z})$	0.270	$\alpha(K) = 0.203 \ 3: \ \alpha(L) = 0.0586 \ 9: \ \alpha(M) = 0.01296 \ 19$
								$\alpha(N) = 0.00282.4; \ \alpha(\Omega) = 0.000409.6; \ \alpha(P) = 1.201 \times 10^{-5}.17$
								Mult.: from α (K)exp=0.317 <i>13</i> (1993Ma39).
183.8	0.2	545.91	$(9/2^+)$	362.03	$(7/2^{-})$	[E1]	0.0474	$\%$ I γ =0.018
185.7	3.2	638.00	$(3/2, 5/2, 7/2^{-})$	452.32	$(3/2^{-}, 5/2^{-})$		0.15 ^a 10	$\%$ I γ =0.29
198.534 [#] 12	33.6	291.82	$(5/2^+)$	93.29	$(5/2^+)$	M1	0.190	%[y=3.1
			(-1-)		(-1-)			$\alpha(K)=0.1621\ 23;\ \alpha(L)=0.0221\ 3;\ \alpha(M)=0.00465\ 7$
								$\alpha(N)=0.001040$ 15; $\alpha(O)=0.0001675$ 24; $\alpha(P)=1.239\times10^{-5}$ 18
								E _γ : 198.214 (1993Ma39).
								Mult.: from α (K)exp=0.175 5 (1993Ma39).
202.87	1.5	748.88	$(5/2^+, 7/2)$	545.91	$(9/2^+)$		0.11 ^{<i>a</i>} 7	%Iy=0.14

4

					147 Ce β^- dec	ay 1993	3Ma39, 1	1997Gr09 (co	ntinued)
$\gamma(^{147}\text{Pr})$ (continued)									
${\rm E_{\gamma}}^{\dagger}$	I_{γ} [‡] <i>b</i>	E_i (level)	J_i^{π}	E_f	J_f^{π}	Mult. [@]	δ	α^{c}	Comments
218.751 [#] 10	25.5	246.52	(9/2+)	27.77	(7/2+)	M1+E2	0.57	0.1446	% I γ =2.4 $\alpha(K)$ =0.1203 17; $\alpha(L)$ =0.0192 3; $\alpha(M)$ =0.00410 6 $\alpha(N)$ =0.000910 13; $\alpha(O)$ =0.0001423 20; $\alpha(P)$ =8.80×10 ⁻⁶ 13 E $_{\gamma}$: 218.384 (1993Ma39). Mult: from $\alpha(K)$ are -0.175 4 (1993Ma39); M1 in 1993Ma39
233.95 243.693	1.5 8.6	701.32 246.52	(5/2 ⁻) (9/2 ⁺)	467.49 2.67	(3/2 ⁻ ,5/2 ⁻) (5/2 ⁺)	E2		0.07 ^{<i>a</i>} 5 0.0985	Whith from $\alpha(\mathbf{K}) \exp[-0.173] + (1995) \operatorname{Ma39}$, with in 1995) Ma39. % Iy=0.14 % Iy=0.79 $\alpha(\mathbf{K}) = 0.0908 \ 13; \ \alpha(\mathbf{L}) = 0.01326 \ 19; \ \alpha(\mathbf{M}) = 0.00281 \ 4$ $\alpha(\mathbf{N}) = 0.000626 \ 9; \ \alpha(\mathbf{O}) = 9.95 \times 10^{-5} \ 14; \ \alpha(\mathbf{P}) = 6.78 \times 10^{-6} \ 10$
248.5 254.09	3.4 11.6	701.32 545.91	(5/2 ⁻) (9/2 ⁺)	452.32 291.82	(3/2 ⁻ ,5/2 ⁻) (5/2 ⁺)	E2		0.06 ^{<i>a</i>} 4 0.0859 12	Mult.: from α (K)exp=0.077 4 (1993Ma39); E2 in 1993Ma39. %I γ =0.31 %I γ =1.1 α (K)=0.075 9; α (L)=0.0130 18; α (M)=0.0028 5 α (N)=0.00062 9; α (O)=9.5×10 ⁻⁵ 10; α (P)=5.3×10 ⁻⁶ 11 Mult.: from α (K)exp=0.078 3 (1002Ma30)
263.70	1.2	291.82	$(5/2^+)$	27.77	$(7/2^+)$			0.05 ^a 4	%Iy=0.11
268.80 [#] 6	100	362.03	(7/2 ⁻)	93.29	(5/2 ⁺)	E1		0.01725	%Iγ=9.2 α (K)=0.01478 21; α (L)=0.00196 3; α (M)=0.000410 6 α (N)=9.10×10 ⁻⁵ 13; α (O)=1.441×10 ⁻⁵ 21; α (P)=9.82×10 ⁻⁷ 14 E _γ : 268.913 (1993Ma39). Mult.: from α (K)exp=0.0140 4 (1993Ma39); M1+E2 (1981ScZM).
289.345	21.4	291.82	(5/2+)	2.67	(5/2+)	M1		0.0690	% 1γ =2.0 α (K)=0.0590 9; α (L)=0.00795 12; α (M)=0.001672 24 α (N)=0.000374 6; α (O)=6.03×10 ⁻⁵ 9; α (P)=4.49×10 ⁻⁶ 7 Mult.: from α (K)exp=0.074 2 (1993Ma39).
292.036	6.9	291.82	(5/2+)	0.0	(3/2 ⁺)	M1+E2		0.061 7	%Iy=0.64 α (K)=0.051 7; α (L)=0.0083 6; α (M)=0.00178 15 α (N)=0.00039 3; α (O)=6.1×10 ⁻⁵ 3; α (P)=3.6×10 ⁻⁶ 8 Mult : from α (K)exp=0.0522 4 (1993Ma39).
297.37 299.63 316.4 335.2 344.25 350.4	2.4 1.1 5 4 2.2 1.5	1045.94 545.91 608.01 802.84 1045.94 802.84	$(3/2^-,5/2)$ $(9/2^+)$ $(7/2^-)$ $(5/2^+)$ $(3/2^-,5/2)$ $(5/2^+)$	748.88 246.52 291.82 467.49 701.32 452.32	$(5/2^+,7/2) (9/2^+) (5/2^+) (3/2^-,5/2^-) (5/2^-) (3/2^-,5/2^-)$			$\begin{array}{c} 0.04^{a} \ 3\\ 0.04^{a} \ 3\\ 0.03^{a} \ 2\\ 0.03^{a} \ 2\\ 0.03^{a} \ 2\\ 0.03^{a} \ 2\\ 0.03^{a} \ 2 \end{array}$	%Iy=0.22 %Iy=0.10 %Iy=0.46 %Iy=0.20 %Iy=0.20 %Iy=0.14
358.95 ^d	15.4 ^d	362.03	(7/2 ⁻)	2.67	(5/2 ⁺)	(E1)		0.00828	%Iγ=1.4 α (K)=0.00710 10; α (L)=0.000929 13; α (M)=0.000194 3 α (N)=4.33×10 ⁻⁵ 6; α (O)=6.89×10 ⁻⁶ 10; α (P)=4.82×10 ⁻⁷ 7 Mult.: from α (K)exp=0.0077 11 for unresolved 359γ+359γ+361γ multiplet (1993Ma39).
358.96 ^d	8.4 d	452.32	$(3/2^{-}, 5/2^{-})$	93.29	$(5/2^+)$	(E1)		0.00828	%Iv=0.77

S

 $^{147}_{59}\mathrm{Pr}_{88}\text{--}5$

L

					147 Ce β^- de	ecay 19	93Ma39,199	07Gr09 (continued)
						$\gamma(^{147})$	Pr) (continu	ed)
E_{γ}^{\dagger}	Ι _γ ‡ b	E _i (level)	${f J}^\pi_i$	E_f	${ m J}_f^\pi$	Mult. [@]	α^{c}	Comments
								α (K)=0.00710 <i>10</i> ; α (L)=0.000929 <i>13</i> ; α (M)=0.000194 <i>3</i> α (N)=4.33×10 ⁻⁵ <i>6</i> ; α (O)=6.89×10 ⁻⁶ <i>10</i> ; α (P)=4.82×10 ⁻⁷ <i>7</i> Mult.: from α (K)exp=0.0077 <i>11</i> for unresolved 359 γ +359 γ +361 γ multiplet (1993Ma39); assignment made tentative by evaluator.
361.42 ^d	9 d	608.01	$(7/2^{-})$	246.52	$(9/2^+)$			%Iγ=0.83
361.7 <mark>d</mark>	1 <i>d</i>	362.03	$(7/2^{-})$	0.0	$(3/2^+)$			%Iy=0.092
374.23 [#] 6	55.0	467.49	(3/2 ⁻ ,5/2 ⁻)	93.29	$(5/2^+)$	E1	0.00747	%Iy=5.1
								$\alpha(K)=0.00641 \ 9; \ \alpha(L)=0.000838 \ 12; \ \alpha(M)=0.0001752 \ 25 \ \alpha(N)=3.90\times10^{-5} \ 6; \ \alpha(O)=6.21\times10^{-6} \ 9; \ \alpha(P)=4.36\times10^{-7} \ 7 \ E_{\gamma}: \ 374.313 \ (1993Ma39).$
377.59 386.8	4.1 2.1	470.69 748.88	$(9/2^+)$ $(5/2^+,7/2)$ $(5/2^+,7/2)$	93.29 362.03	$(5/2^+)$ $(7/2^-)$			Mult.: from $\alpha(K) \exp[=0.061.6 (1993Ma39)]$. %I γ =0.38 %I γ =0.19
414.8	1.5	961.06	$(5/2^+, 1/2)$ $(5/2^+)$	362.03	$(9/2^+)$ $(7/2^-)$			$\%1\gamma=0.14$
442.55	6.2 4.8	470.69	$(9/2^+)$	27.77	$(7/2^+)$			%Iy=0.44
449.55	10.7	452.32	$(3/2^{-}, 5/2^{-})$	2.67	$(5/2^+)$	(E1)	0.00481	%Iy=0.98
452 222	17.0	450.00	(2)2= 5(2=)	0.0	(2/2+)		0.00474	$\alpha(K)=0.00413 \ 6; \ \alpha(L)=0.000536 \ 8; \ \alpha(M)=0.0001120 \ 16$ $\alpha(N)=2.50\times10^{-5} \ 4; \ \alpha(O)=3.99\times10^{-6} \ 6; \ \alpha(P)=2.84\times10^{-7} \ 4$ Mult.: from $\alpha(K)$ exp=0.0034 5 for unresolved 450 γ +452 γ multiplet (1993Ma39); assignment made tentative by evaluator.
452.222	47.2	452.32	(3/2 ,5/2)	0.0	(3/2*)	(EI)	0.00474	$%1\gamma=4.3$ $\alpha(K)=0.00408$ 6; $\alpha(L)=0.000528$ 8; $\alpha(M)=0.0001105$ 16 $\alpha(N)=2.46\times10^{-5}$ 4; $\alpha(O)=3.93\times10^{-6}$ 6; $\alpha(P)=2.80\times10^{-7}$ 4 Mult.: from $\alpha(K)\exp=0.0034$ 5 for unresolved 450γ+452γ multiplet @ (1993Ma39): assignment made tentative by evaluator
455.3	1.29	701.32	$(5/2^{-})$	246.52	$(9/2^+)$			$\%$ I γ =0.12
456.9	1.4	748.88	$(5/2^+, 7/2)$	291.82	$(5/2^+)$			%Iy=0.13
464.2 ^d	3 ^d	931.57	$(3/2, 5/2, 7/2^+)$	467.49	$(3/2^-, 5/2^-)$			%Iy=0.28
464.713 ^d	18.1 ^d	467.49	(3/2 ⁻ ,5/2 ⁻)	2.67	(5/2 ⁺)	(E1)	0.00445	%Iγ=1.7 α (K)=0.00383 6; α (L)=0.000495 7; α (M)=0.0001035 15 α (N)=2.31×10 ⁻⁵ 4; α (O)=3.69×10 ⁻⁶ 6; α (P)=2.63×10 ⁻⁷ 4 Mult.: from α (K)exp=0.0062 15 (1993Ma39); comparing α (K)exp with calculated values, E1 is least discrepant.
467.33	43	467.49	(3/2 ⁻ ,5/2 ⁻)	0.0	(3/2+)	E1	0.00439	$\%$ I γ =4.0 α (K)=0.00378 6; α (L)=0.000489 7; α (M)=0.0001022 15 α (N)=2.28×10 ⁻⁵ 4; α (O)=3.64×10 ⁻⁶ 5; α (P)=2.60×10 ⁻⁷ 4 Mult : from α (K)exp=0.0047 7 (1993M39)
484.56	4.0	951.63	$(5/2^+, 7/2^+)$	467.49	$(3/2^{-}, 5/2^{-})$			$\% I\gamma = 0.37$
489.99	1.9	961.06	$(5/2^+, 7/2)$	470.69	(9/2+)			%Iy=0.18
493.44	3.1	961.06	$(5/2^+, 7/2)$	467.49	$(3/2^-, 5/2^-)$			%Iy=0.29
502.31	3.3	748.88	$(5/2^+, 7/2)$	246.52	$(9/2^+)$			%1y=0.30

From ENSDF

6

 $^{147}_{59}\mathrm{Pr}_{88}$ -6

L

	147 Ce β^- decay 1993Ma39,1997Gr09 (continued)							
	γ ⁽¹⁴⁷ Pr) (continued)							
E_{γ}^{\dagger}	I_{γ} ‡ <i>b</i>	E _i (level)	J_i^{π}	E_f	J_f^π	Mult.@	α ^c	Comments
510.4 ^d	1.1 ^d	978.07	(7/2-)	467.49	(3/2-,5/2-)			%Iy=0.10
510.9 ^d	1.4 ^d	802.84	$(5/2^+)$	291.82	$(5/2^+)$			%Iy=0.13
514.81	6.3	608.01	$(7/2^{-})$	93.29	$(5/2^+)$			%Iy=0.58
530.7	2.5	1724.93	$(5/2^+, 7/2^+)$	1194.43	$(5/2^+, 7/2^+)$			%Iγ=0.23
537.10	3.1	783.6	(2 0 5 0 7 0-)	246.52	$(9/2^+)$			$\%1\gamma = 0.29$
544.89 578 5	3.8 3.4	038.00	(3/2, 5/2, 7/2)	95.29	$(3/2^{+})$ $(3/2^{-} 5/2^{-})$			$\%1\gamma = 0.55$
580.28	63	608.01	$(3/2^{-}, 3/2)$ $(7/2^{-})$	27.77	$(3/2^+, 3/2^-)$ $(7/2^+)$	(E1)	0.00269	$\%$ I γ =0.51
000.20	00	000101	()/=)		()/=)	(21)	0.00207	$\alpha(K)=0.00232$ 4; $\alpha(L)=0.000297$ 5; $\alpha(M)=6.21\times10^{-5}$ 9
								α (N)=1.384×10 ⁻⁵ 20; α (O)=2.22×10 ⁻⁶ 4; α (P)=1.609×10 ⁻⁷ 23 Mult.: from α (K)exp=0.0027 4 for unresolved 579 γ +580 γ multiplet (1993Ma39); assignment made tentative by evaluator.
593.0 ^d	3.2 ^d	1045.94	$(3/2^{-}, 5/2)$	452.32	$(3/2^-, 5/2^-)$			%Iy=0.29
593.29 <mark>d</mark>	5.1 ^d	978.07	$(7/2^{-})$	384.76	$(11/2^{-})$			%Iy=0.47
599.52	2.8	961.06	$(5/2^+, 7/2)$	362.03	$(7/2^{-})$			%Iy=0.26
605.4	22.7	608.01	$(7/2^{-})$	2.67	$(5/2^+)$	(E1)	0.00245	%Iy=2.1
(07 (0	0.2	701.22	(5/2-)	02.20	(5/2+)			α (K)=0.00211 <i>3</i> ; α (L)=0.000270 <i>4</i> ; α (M)=5.65×10 ⁻⁵ <i>8</i> α (N)=1.260×10 ⁻⁵ <i>18</i> ; α (O)=2.02×10 ⁻⁶ <i>3</i> ; α (P)=1.469×10 ⁻⁷ <i>21</i> Mult.: K-conversion peak not observed excludes M1+E2 (1993Ma39).
616.0	9.5	701.32 978.07	(3/2) $(7/2^{-})$	95.29 362.03	$(3/2^{+})$ $(7/2^{-})$			$\%1\gamma=0.80$ $\%1\gamma=0.27$
639.3	1.8	931.57	$(3/2, 5/2, 7/2^+)$	291.82	$(7/2^{+})$			$\%1\gamma = 0.27$ % $1\gamma = 0.17$
649.13	2.5	1194.43	$(5/2^+, 7/2^+)$	545.91	$(9/2^+)$			%Iy=0.23
656.07	3.8	748.88	$(5/2^+, 7/2)$	93.29	$(5/2^+)$			%Iy=0.35
659.15 ^d	4.6 ^d	951.63	$(5/2^+, 7/2^+)$	291.82	$(5/2^+)$			%Iy=0.42
659.6 ^d	0.3 ^d	1267.30	$(5/2^+, 7/2)$	608.01	$(7/2^{-})$			%Iγ=0.028
674.08	1.5	1058.90	$(7/2^{-}, 9/2^{+})$	384.76	$(11/2^{-})$			%Iy=0.14
676.4	2	1845.92	$(5/2,7/2^{-})$	1170.20	$(7/2^+)$			%Iγ=0.18
682.9	1.1	1068.05	$(1/2^{+})$ (2/2 ⁻ 5/2)	384.76	$(11/2^{-})$			$\sqrt[n]{\gamma=0.10}$
084.2 608 50	1.7	701.32	(3/2, 3/2) $(5/2^{-})$	302.03	(1/2)			$\% 1\gamma = 0.10$
701.13	27.9	701.32	$(5/2^{-})$	2.07	$(3/2^+)$	(E1)	0.00180	%Iy=2.6
						()		$\alpha(K)=0.001547\ 22;\ \alpha(L)=0.000197\ 3;\ \alpha(M)=4.11\times10^{-5}\ 6$ $\alpha(N)=9.17\times10^{-6}\ 13;\ \alpha(O)=1.473\times10^{-6}\ 21;\ \alpha(P)=1.081\times10^{-7}\ 16$ Mult.: K-conversion peak not observed excludes M1+E2 (1993Ma39).
705.5 d	9 d	1172.88	$(3/2^-, 5/2, 7/2^-)$	467.49	(3/2 ⁻ ,5/2 ⁻)			%Iy=0.83
705.6 ^d	1^d	951.63	$(5/2^+, 7/2^+)$	246.52	$(9/2^+)$			%Iy=0.092
705.7 <mark>d</mark>	2 d	1068.05	$(7/2^+)$	362.03	$(7/2^{-})$			%Iy=0.18
707.4	3	1159.58	$(3/2, 5/2, 7/2^{-})$	452.32	$(3/2^{-}, 5/2^{-})$			%Iy=0.28
709.4	2	802.84	$(5/2^+)$	93.29	$(5/2^+)$			%Iγ=0.18
714.9	1	961.06	$(5/2^+, 7/2)$	246.52	$(9/2^+)$			%Iy=0.092

7

 $^{147}_{59}\mathrm{Pr}_{88}$ -7

				14	47 Ce β^- decay	7 1993Ma	139,1997Gr09	(continued)
						γ ⁽¹⁴⁷ Pr) (c	ontinued)	
E_{γ}^{\dagger}	I_{γ} ‡ b	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.@	α ^c	Comments
721.0	5.9	1172.88	(3/2 ⁻ ,5/2,7/2 ⁻)	452.32	(3/2 ⁻ ,5/2 ⁻)			%Iy=0.54
727.01	6.1	1194.43	$(5/2^+, 7/2^+)$	467.49	$(3/2^{-}, 5/2^{-})$			%Iγ=0.56
746.36	7.3	748.88	$(5/2^+, 7/2)$	2.67	$(5/2^+)$			$\%1\gamma=0.67$
754.66	1.4	1045.94	(3/2, 5/2)	291.82	$(5/2^+)$			$\%1\gamma = 0.13$
115.55	0.9	1/24.95	$(3/2^+, 1/2^+)$	951.05	$(5/2^+, 1/2^+)$			$\%1\gamma = 0.04$
785.67	7.4	1170.20	(7/2) $(7/2^+)$	384.76	(3/2) $(11/2^{-})$			$\frac{701}{2} = 0.08$
796.8	2.5 4.6	1267.30	(7/2) (5/2+7/2)	470.69	$(9/2^+)$			% Jy=0.21 % Jy=0.42
700.0	1.0	1207.50	(5/2, 7/2)	1045.04	$(2/2^{-})$			$\frac{1}{2}$
799.1	1.0 od	1045.92	(3/2, 7/2)	1045.94	(3/2, 3/2)			<i>%</i> 1γ=0.092
/99.81°°	$\approx 3^{\circ\circ}$	1267.30	$(5/2^+, 1/2)$	467.49	(3/2, 5/2)	(M1 + E2)	0.0044.10	0/ Io-1 1
002.00	11.5	002.04	(3/2)	0.0	(3/2)	$(\mathbf{W}\mathbf{I}1+\mathbf{E}2)$	0.0044 10	$\gamma(T) = 1.1$ $\alpha(K) = 0.0037.8; \alpha(L) = 0.00050.9; \alpha(M) = 0.000106.19$
								$a(\mathbf{N}) = 0.00378, a(\mathbf{L}) = 0.000009, a(\mathbf{N}) = 0.00010019$ $a(\mathbf{N}) = 2.4 \times 10^{-5} 5; a(\mathbf{O}) = 3.8 \times 10^{-6} 7; a(\mathbf{D}) = 2.7 \times 10^{-7} 7$
								$\alpha(1)=2.4\times10^{-5}$, $\alpha(0)=3.8\times10^{-7}$, $\alpha(1)=2.7\times10^{-7}$ Mult · from $\alpha(K)$ exp=0.009.2 for unresolved 800v+802v multiplet
								(1993Ma39).
808.2	1.6	1170.20	$(7/2^+)$	362.03	$(7/2^{-})$			%Iy=0.15
810.3	3.2	1172.88	$(3/2^{-}, 5/2, 7/2^{-})$	362.03	$(7/2^{-})$			%I _Y =0.29
818.22	2.7	1285.79	$(3/2^{-}, 5/2, 7/2^{-})$	467.49	$(3/2^{-}, 5/2^{-})$			%Iy=0.25
832.346	18	1194.43	$(5/2^+, 7/2^+)$	362.03	$(7/2^{-})$			%Iγ=1.7
833.5	3.8	1285.79	$(3/2^{-}, 5/2, 7/2^{-})$	452.32	$(3/2^{-}, 5/2^{-})$			%Iγ=0.35
838.62	0.8	931.57	$(3/2, 5/2, 7/2^+)$	93.29	$(5/2^+)$			%Iy=0.074
857.87	8.5	951.63	$(5/2^+, 7/2^+)$	93.29	$(5/2^+)$			$\%$ l γ =0.78
867.98	6.6	1845.92	(5/2, 1/2)	9/8.0/	(1/2)			$\%1\gamma = 0.61$
070.J 021.5	1.1	1724.03	$(1/2^{+})$ $(5/2^{+}, 7/2^{+})$	291.82	$(3/2^+)$ $(5/2^+)$			$\%1\gamma=0.10$
923 79	52	1724.93	$(3/2^{-},7/2^{-})$	362.03	$(3/2^{-})$			%Jy=0.48
931.57	5.2	931.57	$(3/2, 5/2, 7/2^+)$	0.0	$(3/2^+)$			$\%$ I γ =0.18
949.13	4	951.63	$(5/2^+, 7/2^+)$	2.67	$(5/2^+)$			%Iy=0.37
951.93 <mark>d</mark>	6 d	951.63	$(5/2^+, 7/2^+)$	0.0	$(3/2^+)$			%Iy=0.55
952.3 <mark>d</mark>	0.7 <mark>d</mark>	1045.94	$(3/2^{-}, 5/2)$	93.29	$(5/2^+)$			%Iy=0.064
965.4	1.0	1943.85	$(7/2^{-})$	978.07	$(7/2^{-})$			%Iγ=0.092
987.76	4.4	2182.85	$(7/2^{-})$	1194.43	$(5/2^+, 7/2^+)$			%Iy=0.41
1042.9		1845.92	$(5/2,7/2^{-})$	802.84	$(5/2^+)$			
1045.82	6.9	1045.94	$(3/2^{-}, 5/2)$	0.0	$(3/2^+)$			%Iy=0.64
1056.27	1.02	1058.90	$(7/2^{-}, 9/2^{+})$	2.67	$(5/2^+)$			%Iγ=0.094
1062.14	4.1	1864.94	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	802.84	$(5/2^+)$			$\%1\gamma=0.38$
1065.41	4.8	1068.05	$(1/2^{+})$	2.67	$(5/2^{+})$			$\%1\gamma = 0.44$
1008.40	1./	1008.05	$(1/2^{+})$ (5/2+7/2+)	0.0	$(3/2^+)$			$\%1\gamma = 0.10$
11100.94	0.2 3 1	172/ 02	$(5/2^+, 7/2^+)$ $(5/2^+, 7/2^+)$	95.29	$(3/2^{-})$ $(7/2^{-})$			$\frac{1}{2} \frac{1}{2} \frac{1}$
1156 77	3.1	1159 58	(3/2, 7/2) $(3/2, 5/2, 7/2^{-})$	2.67	(1/2) $(5/2^+)$			% Jy=0.25 % Jy=0.33
1166.2	3.3	1194.43	$(5/2^+, 7/2^+)$	2.07	$(7/2^+)$			%I _v =0.30
1100.2	5.5	1171.15	(0/2 ,//2)		(1-)			

 ∞

 $^{147}_{59}\mathrm{Pr}_{88}\text{-}8$

L

From ENSDF

 $^{147}_{59}\mathrm{Pr}_{88}\text{-}8$

¹⁴⁷Ce $β^-$ decay 1993Ma39,1997Gr09 (continued)

 $\gamma(^{147}\text{Pr})$ (continued)

E_{γ}^{\dagger}	I_{γ} [‡] <i>b</i>	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π		Comments
1170.5	2.6	1170.20	$(7/2^+)$	0.0	$(3/2^+)$	%Iy=0.24	
1179.1	1.9	1724.93	$(5/2^+, 7/2^+)$	545.91	$(9/2^+)$	%Iy=0.18	
1193.97	1.7	1194.43	$(5/2^+, 7/2^+)$	0.0	$(3/2^+)$	$\%I\gamma = 0.56$	
1227.13	4.9	1864.94	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	638.00	$(3/2, 5/2, 7/2^{-})$	%Iy=0.45	
1257.0	3.4	1864.94	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	608.01	$(7/2^{-})$	$\%$ I γ =0.31	
1264.13	6.1	1267.30	$(5/2^+, 7/2)$	2.67	$(5/2^+)$	%Iy=0.56	
1335.93	7.1	1943.85	$(7/2^{-})$	608.01	$(7/2^{-})$	%Iy=0.65	
1378.29	2.6	1845.92	$(5/2,7/2^{-})$	467.49	$(3/2^{-}, 5/2^{-})$	%Iy=0.24	
1388.81	4.0	1856.34	$(3/2^{-}, 5/2, 7/2)$	467.49	$(3/2^{-}, 5/2^{-})$	%Iy=0.37	
1393.72	3.8	1845.92	$(5/2,7/2^{-})$	452.32	$(3/2^{-}, 5/2^{-})$	%Iy=0.35	
1397.49	3.5	1864.94	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	467.49	$(3/2^{-}, 5/2^{-})$	%Iy=0.32	
1412.52	3.2	1864.94	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	452.32	$(3/2^{-}, 5/2^{-})$	%Iy=0.29	
1452.88	2.8	2060.58	(5/2,7/2)	608.01	$(7/2^{-})$	%Iy=0.26	
1473.16	4.9	1943.85	$(7/2^{-})$	470.69	$(9/2^+)$	%Iy=0.45	
1476.60	10.7	1943.85	$(7/2^{-})$	467.49	$(3/2^{-}, 5/2^{-})$	%Iy=0.98	
1478.7	0.8	1724.93	$(5/2^+, 7/2^+)$	246.52	$(9/2^+)$	%Iy=0.074	
1483.51	3.1	1845.92	$(5/2,7/2^{-})$	362.03	$(7/2^{-})$	%Iy=0.29	
1491.84	6.9	1943.85	$(7/2^{-})$	452.32	$(3/2^{-}, 5/2^{-})$	%Iy=0.64	
1494.3	3.0	1856.34	$(3/2^{-}, 5/2, 7/2)$	362.03	$(7/2^{-})$	%Iy=0.28	
1548.08	6.2	2249.64	$(7/2^{-})$	701.32	$(5/2^{-})$	%Iy=0.57	
1564.53	0.9	1856.34	$(3/2^{-}, 5/2, 7/2)$	291.82	$(5/2^+)$	%Iy=0.083	
1572.8		1864.94	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	291.82	$(5/2^+)$		
1582.06	2.4	1943.85	$(7/2^{-})$	362.03	$(7/2^{-})$	%Iy=0.22	
1589.51	2.2	2135.32	$(7/2^{-})$	545.91	$(9/2^+)$	%Iy=0.20	
1637.2	2.3	2182.85	$(7/2^{-})$	545.91	$(9/2^+)$	%Iy=0.21	
1697.29	2.4	1943.85	$(7/2^{-})$	246.52	$(9/2^+)$	%Iy=0.22	
1725.2	0.6	1724.93	$(5/2^+, 7/2^+)$	0.0	$(3/2^+)$	%Iy=0.055	
1768.4	3.1	2060.58	(5/2,7/2)	291.82	$(5/2^+)$	%Iy=0.29	
1773.4	4.3	2135.32	$(7/2^{-})$	362.03	$(7/2^{-})$	%Iy=0.40	
1779.0	5.8	2249.64	$(7/2^{-})$	470.69	$(9/2^+)$	%Iy=0.53	
1798.0	1.3	2182.85	$(7/2^{-})$	384.76	$(11/2^{-})$	%Iy=0.12	
1843.5	1.5	2135.32	$(7/2^{-})$	291.82	$(5/2^+)$	%Iy=0.14	
1850.0	7.5	1943.85	$(7/2^{-})$	93.29	$(5/2^+)$	%Iy=0.69	
1862.3	1.3	1864.94	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	2.67	$(5/2^+)$	%Iy=0.12	
1887.8	2.1	2249.64	$(7/2^{-})$	362.03	$(7/2^{-})$	%Iy=0.19	
1915.8	1.0	1943.85	$(7/2^{-})$	27.77	$(7/2^+)$	%Iy=0.092	
1936.8	3.3	2182.85	$(7/2^{-})$	246.52	$(9/2^+)$	%Iy=0.30	
1941.5	4.4	1943.85	$(7/2^{-})$	2.67	$(5/2^+)$	$\%$ I γ =0.41	
2032.5	0.20	2060.58	(5/2,7/2)	27.77	$(7/2^+)$	$\%$ I γ =0.018	
2058.2	4.3	2060.58	(5/2,7/2)	2.67	$(5/2^+)$	$\%$ I γ =0.40	
2089.4	1.8	2182.85	$(7/2^{-})$	93.29	$(5/2^+)$	%Iy=0.17	
2107.3	3.4	2135.32	$(7/2^{-})$	27.77	$(1/2^{+})$	%lγ=0.31	

From ENSDF

	¹⁴⁷ Ce β^- decay 1993Ma39,1997Gr09 (continued)								
γ ⁽¹⁴⁷ Pr) (continued)									
$E_{\gamma}^{\dagger} I_{\gamma}^{\ddagger b} E_i$ (level) $J_i^{\pi} E_f J_f^{\pi}$	Comments								
2180.3 0.56 2182.85 $(7/2^-)$ 2.67 $(5/2^+)$ 2246.9 1.7 2249.64 $(7/2^-)$ 2.67 $(5/2^+)$	$\%$ I γ =0.052 $\%$ I γ =0.16								
 [†] From 1993Ma39, except when noted. Eγ's liste expect more than one significant decimal digit f [‡] From 1993Ma39 (no uncertainties are reported) [#] Eγ is from measurements with curved crystal sp [@] From 1981ScZM based on γ-ray, conversion ele Gammas dataset). ^{&} From 1981ScZM. ^a α not known. The value shown is the average of taken large enough to overlap these values. ^b For absolute intensity per 100 decays, multiply ^c Total theoretical internal conversion coefficients assigned multipolarities, and mixing ratios, unle ^d Multiply placed with intensity suitably divided. ^e Placement of transition in the level scheme is u ^x γ ray not placed in level scheme. 	d in table are given with one, two, or three decimal digits as listed in 1993Ma39, although usually one does not or their method. pectrometers (1979Bo26). ectron studies and K/L ratios (values not given), except as noted (same values are adopted in the Adopted Levels, f the smallest and largest values for the E1, E2, and M1 multipolarities for this transition with an uncertainty by 0.092. , calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, ss otherwise specified. ncertain.								

10

L

 $^{147}_{59}{\rm Pr}_{88}$

¹⁴⁷Ce β^- decay 1993Ma39,1997Gr09

 $^{147}_{59}\mathrm{Pr}_{88}$

Decay Scheme (continued)

 $^{147}_{59}\mathrm{Pr}_{88}$

Decay Scheme (continued)

¹⁴⁷₅₉Pr₈₈

¹⁴⁷Ce β^- decay 1993Ma39,1997Gr09

Decay Scheme (continued)

