History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	N. Nica and B. Singh	NDS 181, 1 (2022)	9-Mar-2022						

 $Q(\beta^{-})=224.06\ 29;\ S(n)=7659\ 4;\ S(p)=5405.0\ 6;\ Q(\alpha)=1601.3\ 15$ 2021Wa16

```
Additional information 1.
```

Mass measurement: 1975Ka25.

2011Ba04: theoretical calculation of levels, J^{π} , bands, B(M1), B(E2), spectroscopic factors for pickup and stripping reactions, electrical quadrupole and magnetic dipole moments, using neutron-proton interacting boson-fermion model (IBFM-2) for odd-A Pm isotopes.

Theoretical calculations: consult NSR database at www.nndc.bnl.gov/nsr/ for 12 references dealing with nuclear structure and 16 for radioactivity related calculations.

¹⁴⁷Pm nuclide and half-life of ¹⁴⁷Nd were evaluated by B. Singh (McMaster University; balraj@mcmaster.ca).

¹⁴⁷Pm Levels

Cross Reference (XREF) Flags

		A B C D	¹⁴⁷ Nd β^- decay ¹⁵¹ Eu α decay ¹³⁶ Xe(¹⁵ N,4n γ) ¹⁴⁶ Nd(pol p,p)	$\begin{array}{ccccccccc} 11.03 \text{ d}) & \textbf{E} & {}^{146}\text{Nd}({}^{3}\text{He},\text{d}) & \textbf{I} & {}^{148}\text{Sm}(\text{d},{}^{3}\text{He}) \\ .6 \times 10^{18} \text{ y}) & \textbf{F} & {}^{146}\text{Nd}(\alpha,\text{t}) & \textbf{J} & {}^{148}\text{Sm}(\text{t},\alpha) \\ & \textbf{G} & {}^{148}\text{Nd}(p,2n\gamma) & \textbf{K} & {}^{150}\text{Sm}(p,\alpha) \\ \textbf{AS} & \textbf{H} & {}^{148}\text{Nd}(\text{d},3n\gamma) \end{array}$	
E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments	
0.0#	7/2+	2.6234 y 4	ABC EFGHIJK	[%] β [−] =100 µ=+2.58 7 (1966Re04,2019StZV) Q=+0.74 20 (1966Re04,2016St14,2021StZZ) µ,Q: measured by optical spectroscopy (1966Re04). Q=+0.7 2 in 1 revised by 2008Py02 and adopted in 2016St14 evaluation. Corre discussed in 1964B122. Others: Q=0.59 15 (1966Re04, atomic b 3, Q=0.7 3 (1963Bu14, atomic beam); 1992A103 measured hype constants using collinear laser spectroscopy, and moment ratios: g.s.)/g(¹⁴⁷ Pm g.s.)=2.0208 51; and Q(¹⁴⁵ Pm g.s.)/Q(¹⁴⁷ Pm g.s.)= (1992A103). J ^π : spin from atomic beam (1960Ca03,1963Bu14) and optical (196 measurements, parity from L(³ He,d)=4. Configuration=fragment orbital. T _{1/2} : weighted average of 2.62346 y 27 (1999Po32, γ-decay curve confidence level, uncertainty tripled for 1σ in averaging procedu details of this measurement are provided); 2.62 y 1 (1968Re04, 2 proportional counter, 1.9 half-lives, previous value from this grous same method was 2.50 y 3 in 1961Wy01); 2.62343 y 36 (1967Joc calorimetry, ≈0.5 half-life, 95% confidence level, uncertainty dot in averaging procedure, previous value from this lab using the sat was 2.6226 y 20 in 1965Ei04); 2.620 y 5 (1965Wh04, calorimetthe half-life, previous value from this group was 2.67 y 6 in 1963Re0 7 (1965An07, 4πβ proportional counter, 0.5 half-life); 2.60 y 2 (2π proportional counter, 1.8 half-lives); 2.7 y 1 (1959Ca12); 2.64 (1957Me47, 4πβ proportional counter, 1.5 half-lives); 2.66 y 2 (proportional counter, 1.8 half-lives); 2.52 y 8 (1955Me52, mass spectrometry).	966Re04 ctions are eam); μ =3.2 rfine structure g(¹⁴⁵ Pm :0.31 6 0Kl02) of $\pi g_{7/2}$, 95% re, as no 2π up using the 07, ubled for 1 σ me method cy, \approx 0.4 20); 2.618 y 1965Fl02, 4 y 2 1956Sc87,
91.1051 10	5/2	2.51 ns 2	AB EFGHIJK	$u = +3.55 \ 10 \ (1970Ba39,2020StZV)$ Q=+0.6 3 (1970Ba39,1989Ra17) XREF: B(?).	

Continued on next page (footnotes at end of table)

S(2n)=13917.1 26, S(2p)=13994 7 (2021Wa16).

¹⁴⁷Pm Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
				 μ: Mossbauer spectroscopy (1970Ba39, also 1970NoZW) using g-factor(91.1 level)/g-factor(g.s.)=1.925 4. Others: +3.22 16 (1980Ne07, TDPAC using ¹⁴⁷Nd source); 3.8 6 from IPAC and 3.4 10 from DPAC (1976Si08), 3.9 7 (1972Si49, IPAC). Q: from measured Q(91.1 level)/Q(g.s.)=0.8 4 (1970Ba39, also 1970NoZW), Mossbauer spectroscopy. Note that this value is listed in 1989Ra17 compilation, but not in 2016St14 and 2021StZZ evaluations. J^π: L(³He,d)=2; M1+E2 γ to 7/2⁺ g.s. Configuration=fragment of & πd_{5/2} orbital. T_{1/2}: from βγ(t) in ¹⁴⁷Nd β⁻ decay, weighted average of several measurements. Other: 2.6 ns 2 from γγ(t) in (p,2nγ) (1977Ko24).
340 <i>10</i> 380 <i>10</i>	3/2 ⁺ ,5/2 ⁺ 3/2 ⁺ ,5/2 ⁺		I I	J^{π} : L(d, ³ He)=2. J^{π} : L(d, ³ He)=2.
408.14 [#] 3 410.515 9	9/2 ⁺ 3/2 ⁺	0.139 ns <i>14</i>	ACG AEFGHJ	J ^{π} : M1+E2 γ to 7/2 ⁺ g.s.; E1 γ from 11/2 ⁻ , 649. J ^{π} : M1+E2 γ to 5/2 ⁺ , 91; E2 γ to 7/2 ⁺ g.s. Combined analysis of $\gamma\gamma(\theta)$ and $\gamma(\theta,H,T)$ for 276 γ and 410 γ data gives best possible choice of 3/2 for 410 level and 5/2 for 686 level in β^- decay (1977Al34).
489.259 17	7/2+		A FGHiJ	T _{1/2} : from γγ(t) in ¹⁴⁷ Nd β^- decay (1975Si01). XREF: F(?). J ^π : M1+E2 γ to 5/2 ⁺ , 91; M1(+E2) γ to 7/2 ⁺ g.s.
530.998 9	5/2+	0.093 ns 20	A GHiJ	Configuration=fragment of $\pi g_{7/2}$ orbital. J ^{π} : M1+E2 γ to 5/2 ⁺ , 91; analysis of 440 $\gamma(\theta,H,T)$ data by 1977Al34 in β^- decay. Configuration=fragment of $\pi d_{5/2}$ orbital. T _{1/2} : from $\beta\gamma(t)$ in ¹⁴⁷ Nd β^- decay, weighted average of 0.083 ns 15 (1967Ra20) and 0.133 ns 30 (1971Si20).
632.89 <i>5</i> 641.15 8	$\frac{1}{2^+}$		A eFG ij A G i	J^{π} : L(³ He,d)=0. J^{π} : Λ [=], M1(+E2) γ to (3/2) ⁺ , 411.
649.30 ^{&} 14	11/2-	27 ns 3	C eFG ijK	%IT=100 J^{π} : L=5 in ¹⁴⁶ Nd(³ He,d); M2 γ to 7/2 ⁺ g.s.; π h _{11/2} excitation in weakly deformed ¹⁴⁷ Pm; systematics of h _{11/2} isomers in odd-A Pm nuclei: 26 ns in ¹⁴³ Pm at 960 keV, 18 ns in ¹⁴⁵ Pm at 795 keV, 35 μ s in ¹⁴⁹ Pm at 496 keV. T _{1/2} : from $\gamma\gamma$ (t) in ¹³⁶ Xe(¹⁵ N,4n γ) (1995Ur01). Other: 12 ns 2 from $\gamma\gamma$ (t) in (p,2n γ) (1977Ko24).
667.15 [#] 8 680.433 20	11/2 ⁺ 7/2 ⁺		C G A Gi	J ^π : ΔJ=2, E2 γ to 7/2 ⁺ g.s.; E2+M1 γ to 9/2 ⁺ , 408. J ^π : M1+E2 γs to 7/2 ⁺ , g.s., and 9/2 ⁺ , 408; β feeding from 5/2 ⁻ parent not first-forbidden unique from log ft value.
685.900 12	5/2+	0.25 ns <i>10</i>	A EFGHiJ	J ^{π} : M1+E2 γ s to 7/2 ⁺ , g.s. and 5/2 ⁺ , 91; L(³ He,d)=(2) and possible d _{5/2} orbital. Combined analysis of $\gamma\gamma(\theta)$ and $\gamma(\theta,H,T)$ for 276 γ and 410 γ data gives best possible choice of 3/2 for 410 level and 5/2 for 686 level in β^- decay (1977Al34). Configuration=fragment of $\pi d_{5/2}$ orbital.
730.68 <i>13</i> 732 <i>4</i>	(9/2) ⁺ (3/2 ⁺ ,5/2 ⁺)		GH J EF i	$J_{1/2}^{(1)}$: from $\beta\gamma(t)$ in Fid β decay (19/13120). J^{π} : E2 γ to 5/2 ⁺ , 91; M1+E2 γ to 7/2 ⁺ , 489. E(level), J^{π} : L(³ He,d)=(2) suggests it is a different level from 730.7
806 4 807.26 13 865.11 19 882 4 932 4 940 10	3/2+,5/2+ 5/2-,7/2- (7/2-,9/2-) 3/2+,5/2+ 1/2+ 3/2+,5/2+		EF J A GH G EF IJ E I	level which from (d,3n γ) results seems to be higher spin. J ^{π} : L(³ He,d)=2. J ^{π} : E1 γ s to 5/2 ⁺ , 91, and 7/2 ⁺ , g.s. J ^{π} : possible (E1) γ to 7/2 ⁺ g.s.; γ to 9/2 ⁺ . J ^{π} : L(³ He,d)=2. J ^{π} : L(³ He,d)=0. J ^{π} : L(d, ³ He)=2.

Continued on next page (footnotes at end of table)

¹⁴⁷Pm Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
970.17 [@] 14	11/2-	CG	J^{π} : $\Delta J=1$, E1 γ to 9/2 ⁺ , 408; γ to 11/2 ⁺ , 667; γ from 13/2 ⁺ , 1072.
975 4	$(7/2^{-})$	E	J ^{π} : L=(3) from σ (³ He,d)/ σ (α ,t), possible f _{7/2} orbital.
984.0 3	(5/2,9/2)	G	J^{π} : $\Delta J=1 \gamma$ to $7/2^+$ g.s.; γ to $9/2^+$, 408 level.
1041.15 17	$3/2^+, 5/2^+$ (5/2 ⁺ to 9/2 ⁺)	EFG J GH	$J^{*}: L({}^{\circ}He,d)=2.$ $J^{\pi}: \gamma_{S}$ to $(5/2)^{+}$, 531 and 686 levels.
$1051.16^{\&} 15$	$(5/2^{-1})^{-1}$	CG	J^{π} : $\Delta J=2$. E2 γ to $11/2^{-}$. 649; band member.
1072.45 [#] 12	$13/2^+$	CG	J^{π} : $\Delta J=2$, E2 γ to 9/2 ⁺ , 408; $\Delta J=1$, M1+E2 γ to 11/2 ⁺ , 667.
1077.50 16	$(11/2)^+$	GH	J^{π} : M1 γ to (9/2) ⁺ , 731; γ to 7/2 ⁺ , 489.
1100 4	$1/2^+$	E	J^{π} : L(³ He,d)=0.
1119.2 4	(1/2, 9/2, 11/2) $(3/2^+ 5/2^+)$	F	J^{*} : γ to 11/2, 007, γ to 7/2, 080. I^{π} : $L(^{3}\text{He d})=(2)$
1159.36 [@] 11	13/2-	CG	J^{π} : $\Delta J=1$. E1 γ to $11/2^+$. 667: M1+E2 γ to $11/2^-$. 970.
1186 4		FJ	
1213.8 4	$(3/2, 5/2, 7/2)^{-}$	EG	J^{π} : E1 γ to $(5/2)^+$, 641.
1245.74 10	(11/2,15/2)	EF	$J^*: M1+E2 \gamma to 11/2 , 049.$
1325 4		J	
1346 4	3/2+,5/2+	EF iJ	J^{π} : L(³ He,d)=2.
1350 10	$9/2^{-},11/2^{-}$	i EE	J^{n} : L(d, ³ He)=2+5; L=2 component is assumed for 1346 level.
1382.0 5	1/2	FG	XREF: F(1387).
1392.76 [#] 14	15/2+	C G	J^{π} : $\Delta J=2$, E2 γ to $11/2^+$, 667; γ to $13/2^-$, 1159.
1406.18 [@] 14	15/2-	C G	J ^π : ΔJ=1, E1 γ to 13/2 ⁺ , 1072; ΔJ=1, M1 γ to 13/2 ⁻ 1160; γ to 11/2 ⁻ , 970.
1422 4	$(12/2^{+})$	E	I^{π} , or to $(0/2)^+$ 721; or to $(11/2)^+$ 1077
1434.2 <i>3</i> 1440 <i>4</i>	(13/2)	E	$\mathbf{J} : \mathbf{\gamma} \ \mathbf{\omega} \ (9/2) \ , \ 751, \ \mathbf{\gamma} \ \mathbf{\omega} \ (11/2) \ , \ 1077.$
1477 4	$(7/2^+)$	EF J	J ^{π} : L(³ He,d)=(4), possible $g_{7/2}$ orbital.
1505 4		J	
1540 4		E J I	
1588 4	3/2+,5/2+	E i	J^{π} : L(³ He,d)=2.
1596 4	11/2 ⁻ ,9/2 ⁻	Fi	XREF: $F(?)$.
			E(level), J : doublet at 1600 keV with L=2+5 in (d, He); L=2 is assumed for the 1588 component.
1627.75 ^{&} 16	19/2-	C G	J^{π} : $\Delta J=2$, Q γ to 15/2 ⁻ , 1051; band member.
1630 4	3/2+,5/2+	EF	$J^{\pi}: L(^{3}He,d)=2.$
1643 4	$(2/2^{+}, 5/2^{+})$	F J	$\mathbf{I}_{\mathbf{L}}$, \mathbf{I} (3) $\mathbf{I}_{\mathbf{L}}$, \mathbf{I} (2)
1000 4 $1650 45^{(0)} 14$	$(3/2^{+}, 5/2^{+})$	E 1	J [*] : L([*] He,d)=(2). I^{π_1} , AI=1, M1+E2 or to $15/2^{-1}$, 1406; AI=1, E1 or to $15/2^{+1}$, 1202; AI=(2).
1039.43 14	17/2	C	(Q) γ to 13/2 ⁻ ; band member.
1667 4	11/2-,9/2-	iJ	E(level), J^{π} : doublet at 1660 keV with L=2+5 in (d, ³ He); L=2 is assumed for
1(00.00.00	$(15)^{+}(17)^{-}$		the 1656 component. $T_{\rm T}$ = 15/2 = 1051 = (= 10/2(±) - 2070 = ((11/2) 12/2) = 1246
1699.00 22 1703 4	$(15/2^+, 1/2^-)$	C FF	J [*] : γ to 15/2 , 1051; γ from 19/2 ^(*) , 20/9; γ to (11/2,13/2) , 1246. I ^{π} : L (³ He d)=(5); possible huge orbital
1723	(11/2)	J	\mathbf{J} : L($\Pi(\mathbf{A}) = (\mathbf{J})$, possible $\Pi_{\Pi/2}$ orbital.
1788 4	3/2+,5/2+	EF	XREF: F(?).
1704 74 21	$(15/2^{-} 17/2^{-})$	C	J^{π} : L(³ He,d)=2. J^{π} : at to 19/2 ⁻¹⁶²⁸ : at to 15/2 ⁻¹⁰⁵¹ : at to (11/2 ^{-13/2⁻¹⁰⁷}) 12/6
1805	(15/2 ,17/2)	J	$\mathbf{J} : \mathbf{y} = (17/2^{-1}, 1020, \mathbf{y} = (17/2$
1831.71 [#] <i>17</i>	17/2+	С	J ^π : Δ J=(2), (Q) γ to 13/2 ⁺ , 1072; γ to 15/2 ⁻ , 1406; γ to 15/2 ⁺ , 1393; band
1922 1		р т	member.
1032 4		E I	ANEF. I(1020). E(level) J^{π} : doublet at 1820 keV with L=1+2 in (d ³ He) giving $1/2^{-} 3/2^{-}$ for
			one component and $3/2^+$, $5/2^+$ for the other.
		C	- the second second for the stand of table)

Continued on next page (footnotes at end of table)

¹⁴⁷Pm Levels (continued)

E(level) [†]	J#‡	XRE	F	Comments
1872 4		Е		
1892 4	$(1/2^+)$	EF		XREF: $F(?)$.
1910 <i>4</i>			1	J : L(11c, u) = (0).
1930 <i>4</i> 1938 <i>4</i>	1/2+	EF	J	J^{π} : L(³ He,d)=0.
$1984\ 50^{@}\ 17$	19/2-	C		I^{π} : $\Lambda I=2$ O γ to $15/2^{-}$ 1406: γ to $17/2^{-}$ 1659: γ to $17/2^{+}$ 1832
2011 4	$(3/2^+, 5/2^+)$	Ē		J^{π} : L(³ He.d)=(2).
2025 4	(0/2 ,0/2)	-	J	
2035 4		EF		XREF: F(?).
2069 4	$(7/2^+)$	EF		J ^{π} : L(³ He,d)=(4); possible g _{7/2} orbital.
2079.10 15	19/2 ⁽⁺⁾	С		J ^π : Δ J=2, Q γ to 15/2 ⁺ , 1393; Δ J=(0), dipole γ to 19/2 ⁻ , 1627; γ to 17/2 ⁻ , 1659.
2108 4	$(3/2^+, 5/2^+)$	EF	J	J^{π} : L(³ He,d)=(2).
2159 4		E	J	
2180 4		E	_	
2201 4		-	J	
2220.4	(10/0+)	E		
2250.57" 19	$(19/2^{+})$	C		J^{*} : γ to 15/2 [*] , 1393; γ to 17/2 [*] , 1659; γ to 17/2 [*] , 1832; band member.
2307.97 19	(21/2)	C		J^{*} : γ to 1//2 , 1659; γ to 19/2 , 1984; γ to (19/2), 20/9; band member.
2330.37°C 17	$23/2^{-}$	C		$J^{\pi}: \Delta J=2, Q \gamma \text{ to } 19/2^{-}, 1628; \text{ band member.}$
2405.45° 20	(23/2)	C		J [*] : $\Delta J=2 Q \gamma$ to 19/2 , 1628.
2459.54" 21	$(21/2^{+})$ $(22/2^{-})$	C		J^{π} : γ to $17/2^{\pm}$, 1832; γ to $19/2^{\pm}$, 1984; γ to $(19/2^{\pm})$, 2250; band member.
2546.92 16	(23/2) $(23/2^+)$	C		$J^{\pi}: \Delta J = 2 Q \gamma \ 10 \ 19/2 \ , \ 1026; \ \Delta J = 1, \ (M1 + E2) \gamma \ 10 \ (25/2), \ 2403.$ $I^{\pi}: \Delta J = 2 Q \gamma \ 10 \ 19/2^+ \ 2079 \ \text{level}: \ \gamma \ \text{to} \ 23/2^- \ 2330$
2685.98° 18	$(25/2^{-})$	c		J^{π} : $\Delta J=2$, $Q \neq 00 T/2$, 2079 level, $\gamma = 0.25/2$, 2550. J^{π} : $\Delta J=1$, $(M1+E2) \gamma = to 23/2^{-}$, 2330 level.
$2706\ 80^{@}\ 25$	$(23/2^{-})$	C		I^{π} : $\Lambda I=2$ $\Omega \times to 19/2^{-}$ 1984: $\chi to 21/2^{-}$ 2308: hand member
$278277^{\#}23$	$(23/2^+)$	c		I^{π} : γ to $(19/2^+)$ 2079 level: γ to $(21/2^+)$ 2459: hand member
2850.08^{d} 17	$(25/2^{-})$	c		I^{π} : $\Lambda I = 2$ O γ to $23/2^{-}$ 2330 level: $\Lambda I = 1$ (M1+E2) γ to $(25/2^{-})$ 2686
2899.35 18	$(25/2^+)$	c		J^{π} : $\Delta J=1$ dipole γ to $23/2^{-}$, 2330: γ to $(23/2^{+})$, 2603.
3051.1 [#] 4	$(25/2^+)$	C		J^{π} : γ to (21/2 ⁺), 2459; band member.
$3052.3^{@}.3$	$(25/2^{-})$	C		I^{π} : γ to $21/2^{-}$ 2308: γ to $(23/2^{-})$ 2707: hand member
$3124.49^{\&}$ 19	$(23/2)^{-}$	C		I^{π} : $\Lambda I = 2$ $\Omega \times to 23/2^{-1}$: hand member
3277.49^{a} 18	$(27/2^+)$	c		J^{π} : $\Delta J=2$, $Q \neq to (23/2^+)$, band memoer. J^{π} : $\Delta J=2$, $Q \neq to (23/2^+)$, 2623: γ to (25/2 ⁺), 2899.
$3335.8^{@}4$	$(27/2^{-})$	C		J^{π} : γ to (23/2 ⁻), 2706: band member.
3357.85 ^b 18	$(29/2^+)$	C		J ^π : M1+E2 γ to (27/2 ⁺), 3277; ΔJ=2, Q γ to (25/2 ⁺), 2899; ΔJ=1 dipole γ to 27/2 ⁻ 3124
3405.08 ^c 25	$(29/2^{-})$	С		J^{π} : $\Lambda J=2$, $\Omega \gamma$ to $(25/2^{-})$, 2686.
3463.77 ^d 19	$(31/2^{-})$	С		J^{π} : $\Delta J=2$, $O \gamma$ to $(27/2^{-})$, 2830: γ to $(29/2^{-})$, 3405.
3611.1 4	$(27/2 \text{ to } 31/2^{-})$	c		J^{π} : γ to $(27/2^{-})$, 2850.
3687.37 ^a 18	(31/2 ⁺)	С		J ^π : Δ J=2, (E2) γ to (27/2 ⁺), 3277; Δ J=1, (M1+E2) γ to (29/2 ⁺), 3358; γ to (31/2 ⁻), 3464.
3694.90 <mark>b</mark> 19	$(33/2^+)$	С		J^{π} : $\Delta J=2$, (E2) γ to (29/2 ⁺), 3358; $\Delta J=1$ dipole γ to (31/2 ⁻), 3464.
3840.3 ^c 3	(33/2-)	С		J ^{π} : γ to (29/2 ⁻), 3405; γ to (31/2 ⁻), 3464.
3949.4 <mark>&</mark> 4	(31/2 ⁻)	С		J^{π} : $\Delta J=2$, (Q) γ to 27/2 ⁻ , 3124.
$\approx 4.0 \times 10^3$	$(9/2^+)$		I	J ^{π} : L(d, ³ He)=4 with most probable $g_{9/2}$ orbital.
4133.1 4	(29/2 to 33/2 ⁺)	С		J^{π} : γ to (29/2 ⁺), 3358.
4229.1 ^d 3	(35/2 ⁻)	С		J ^π : Δ J=2, Q γ to (31/2 ⁻), 3464.
4286.98 ^{<i>a</i>} 20	$(35/2^+)$	С		J ^π : Δ J=2, Q γ to (31/2 ⁺), 3687; γ to (33/2 ⁺), 3695.
4320.51 ^b 21	$(37/2^+)$	С		J^{π} : $\Delta J=2$, Q γ to (33/2 ⁺), 3695.
4512.5° 4	$(37/2^{-})$	C		J ^{<i>n</i>} : γ to (33/2 ⁻), 3840; member of Δ J=2 sequence of levels.

¹⁴⁷Pm Levels (continued)

E(level) [†]	J#‡	XREF	Comments
4857.6 ^{<i>d</i>} 4	(39/2 ⁻)	С	J^{π} : γ to (35/2 ⁻), 4229; member of $\Delta J=2$ sequence of levels.
5013.21 ^b 24	$(41/2^+)$	С	J^{π} : $\Delta J=2$, Q γ to (37/2 ⁺), 4320.
5021.28 ^{<i>a</i>} 23	$(39/2^+)$	С	J^{π} : $\Delta J=2$, Q γ to (35/2 ⁺), 4287.
5218.2 4	$(39/2^+, 41/2^+)$	С	J^{π} : γ to (37/2 ⁺), 4320; γ from (43/2 ⁺).
5458.5 4	$(37/2 \text{ to } 41/2^+)$	С	J^{π} : γ to (37/2 ⁺), 4320.
5645.3 ^b 3	$(45/2^+)$	С	J^{π} : $\Delta J=2$, Q γ to (41/2 ⁺), 5013.
5808.2 ^{<i>a</i>} 4	$(43/2^+)$	С	J^{π} : $\Delta J=2$, (Q) γ to (39/2 ⁺), 5021.
5985.1 <i>3</i>	(43/2)	С	J^{π} : $\Delta J=1 \gamma$ to $(41/2^+)$, 5013.
6130.2 4	$(41/2 \text{ to } 45/2^+)$	С	J^{π} : γ to (41/2 ⁺), 5013.
6185.7 5	$(43/2 \text{ to } 47/2^+)$	С	J^{π} : γ to (43/2 ⁺), 3808.
6377.9 ^b 3	$(47/2^+)$	С	J^{π} : $\Delta J=1$, D+Q γ to (45/2 ⁺), 5645 ; γ to (43/2), 5985.
6687.2 <i>3</i>	$(49/2^+)$	С	J^{π} : $\Delta J=1 \gamma$ from (51/2 ⁺), 7004; $\Delta J=(2)$, (Q) γ to (45/2 ⁺), 5645.
7004.1 ^b 3	$(51/2^+)$	С	J^{π} : $\Delta J=2$, Q γ to (47/2 ⁺), 6378.
7554.2 4	$(51/2^+)$	С	J^{π} : $\Delta J=1$, D+Q γ to (49/2 ⁺), 6687.
7779.8? ^b 5		С	J^{π} : (51/2,53/2,55/2 ⁺) from possible γ to (51/2 ⁺), 7004.
7977.5? 5		С	J^{π} : (51/2,53/2,55/2 ⁺) from possible γ to (51/2 ⁺), 7004.

[†] From least-squares fit to $E\gamma$ values for levels populated in γ -ray studies. For levels populated in particle-transfer studies only, averages of available values are taken.

[‡] Assignments for high-spin (J>11/2) levels above ≈ 1.7 MeV for are essentially from 1995Ur01 in 136 Xe(15 N,4n γ) and are based on $\gamma\gamma(\theta)$ (DCO) data, treating all $\Delta J=2$ transitions as stretched quadrupole, $\Delta J=1$ pure dipole as E1 and $\Delta J=1$, mixed D+Q as M1+E2 transitions. In addition, ascending spins are assumed as the excitation energy rises, and band associations are considered.

[#] Band(A): $\Delta J=1$ band based on g.s. This band and the band based on $11/2^-$ exhibit alternating parity structure.

[@] Band(a): $\Delta J=1$ band based on $11/2^{-}$. This band and g.s. band exhibit alternating parity structure.

[&] Band(B): $\Delta J=2$, $\pi h_{11/2}$ band.

^{*a*} Band(C): $\Delta J=2$ band based on $(27/2^+)$.

^b Band(D): $\Delta J=2$ band based on (29/2⁺).

^c Seq.(E): $\Delta J=2 \gamma$ cascade based on (23/2⁻).

^d Seq.(F): DJ=2 γ cascade based on (27/2⁻).

Adopted Levels, Gammas (continued)											
							$\gamma(^{147}\text{Pm})$				
E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{a}	Comments		
91.1051	5/2+	91.1050 [#] 16	100	0.0	7/2+	M1+E2	+0.089 5	2.03	α (K)=1.714 24; α (L)=0.249 4; α (M)=0.0534 8 B(M1)(W.u.)=0.00378 9; B(E2)(W.u.)=2.01 23 Mult.: based on α (K)exp in ¹⁴⁷ Nd β^- decay. δ : from $\gamma(\theta,H,T)$ in ¹⁴⁷ Nd β^- decay. 91 γ probability for emission of two K-electrons in internal conversion (relative to one K-electron emission): 1.86 \times 10 ⁻³ 9 (2003Vi13)		
408.14	9/2+	408.15 5	100	0.0	7/2+	M1+E2	+0.57 3	0.0304	E _y : weighted average of 408.20 7 (p,2ny) and 408.34 $I8~(\beta^{-})$. Mult δ : based on $\alpha(K)$ exp and $\gamma(\theta)$ in ¹⁴⁸ Nd(p 2ny)		
410.515	3/2+	319.410 [#] <i>12</i>	100.0 [#] 8	91.1051	5/2+	M1+E2	-0.38 2	0.0607	B(M1)(W.u.)=0.0038 4; B(E2)(W.u.)=3.0 4 Mult.: based on α (K)exp and $\gamma(\theta)$ in β^- decay and (p,2n γ). δ : ¹⁴⁷ Nd β^- decay (1977Kr13). Other: -0.34 7 (1977Ko24) in (p,2n γ).		
		410.52 [#] 3	5.45 [#] 9	0.0	7/2+	E2		0.0212	B(E2)(W.u.)=0.37 4 Mult.: based on α (K)exp and $\gamma(\theta,H)$ in ¹⁴⁷ Nd β^- decay.		
489.259	$7/2^{+}$	81.13 [#] 8	0.08 [#] 2	408.14	9/2+	[M1+E2]		3.8 11	y.		
		398.140 [#] <i>32</i>	100.0 [#] 12	91.1051	5/2+	M1+E2	+0.30 1	0.0345 5	E _γ : weighted average of 398.130 <i>I6</i> (β^-) and 398.24 5 (p,2nγ). Mult., δ : based on α (K)exp and $\gamma(\theta)$ in ¹⁴⁸ Nd(p,2nγ). Other: +0.30 4 in β^- decay.		
		489.27 [#] 3	16.4 [#] 5	0.0	7/2+	M1+E2	-0.79 +23-45	0.0179 18	Mult.: from ce data in ¹⁴⁷ Nd β^- decay and (p,2n γ). δ : from $\gamma(\theta,H,T)$ in ¹⁴⁷ Nd β^- decay. Value is consistent with ce data.		
530.998	5/2+	120.483 [#] 9	2.81 [#] 3	410.515	3/2+	M1+E2	+0.048 21	0.911	B(M1)(W.u.)=0.0033 +9-6; B(E2)(W.u.)=0.3 +4-2 Mult.: based on α (K)exp in ¹⁴⁷ Nd β^- decay. δ : from $\gamma\gamma(\theta)$ and $\gamma(\theta, H, T)$ in ¹⁴⁷ Nd β^- decay.		
		439.875 [#] 17	9.18 [#] 8	91.1051	5/2+	M1+E2	+0.62 5	0.0247 5	B(M1)(W.u.)=0.00016 +4-3; B(E2)(W.u.)=0.19 5 Mult.: from ce data in ¹⁴⁷ Nd β^- decay. δ : from $2\alpha(\theta)$ and $\alpha(\theta + T)$ in ¹⁴⁷ Nd β^- decay.		
		531.012 [#] 18	100.0 [#] <i>10</i>	0.0	7/2+	M1+E2	-0.40 3	0.0162 3	B(M1)(W.u.)=0.00117 +33-21; B(E2)(W.u.)=0.37 + $12-8$ Mult : from ce data in ¹⁴⁷ Nd β^- decay		
									δ : from $\gamma(\theta, H, T)$ in ¹⁴⁷ Nd β^- decay.		
632.89	$1/2^{+}$	222.27 ^{#b} 6	12.3 [#] 34	410.515	3/2+	[M1+E2]		0.154 12	· · · · · · · ·		
		541.79 [#] 5	100 [#] 7	91.1051	$5/2^{+}$	[E2]		0.00994			
641.15	$(5/2)^+$	230 64 8	100	410 515	$3/2^{+}$	$M1(\pm F2)$		0 138 13	E : weighted average of 230 50 5 in 147 Nd β^- decay		

6

				as (continued)					
						$\gamma(^{14}$	⁴⁷ Pm) (contin	nued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{a}	Comments
									and 230.77 8 in (p,2ny).
(10, 00	11/2-	241.200.2	1000 0	400.14	0.10+			0.0240	Mult.: based on α (K)exp and $\gamma(\theta)$ in ¹⁴⁸ Nd(p,2n γ).
649.30	11/2-	241.2 2	100 9	408.14	9/2+	EI		0.0248	B(E1)(W.u.)= 5.1×10^{-7} 9 Mult : based on α (K)exp and K/L in p 2n γ)
		649.2 [@] 3	22.3 [@] 19	0.0	7/2+	M2		0.0298	$B(M2)(W.u.)=0.064 \ 11$
		0	0						Mult.: based on $\alpha(K)$ exp and K/L in (p,2n γ).
667.15	$11/2^+$	259.01 [@] 8	$20.6^{\textcircled{0}}{20}$	408.14	9/2+	E2+M1	+7.4 6	0.0868	Mult., δ : based on α (K)exp and $\gamma(\theta)$ in (p,2n γ).
		667.2 [@] 2	$100^{@}_{#}6$	0.0	7/2+	E2		0.00589	Mult.: based on $\alpha(K)$ exp and $\gamma(\theta)$ in (p,2n γ).
680.433	7/2+	149.39# 6	9.2# 10	530.998	5/2+	[M1+E2]		0.52 3	
		191.19" 6	9.5# 10	489.259	7/2+	[M1+E2]	0.10.2	0.243 9	
		272.30 4	30.4" /	408.14	9/21	M1+E2	+0.10 3	0.0962	E_{γ} : weighted average of 272.30 4 (β) and 272.2 2 (n 2n γ)
									Mult.: from ce data in ¹⁴⁷ Nd β^- decay.
									δ: from γγ(θ) in 147Nd β- decay.
		589.35 [#] 3	100.0 [#] 29	91.1051	$5/2^{+}$	(M1,E2)		0.011 3	Mult.: from ce data in ¹⁴⁷ Nd β^- decay.
		680.40 4	41.6 [#] 20	0.0	7/2+	M1+E2		0.0074 18	E_{γ} : from ¹⁴⁷ Nd β ⁻ decay. Other: 679.9 <i>3</i> in (p,2nγ). Mult.: based on α (K)exp in ¹⁴⁸ Nd(p,2nγ).
685.900	5/2+	53.1 [#] 2	0.09 [#] 5	632.89	$1/2^{+}$	[E2]		25.1 6	B(E2)(W.u.)=39 + 37 - 20
		154.91 [#] 5	0.77 [#] 6	530.998	$5/2^{+}$	[M1+E2]		0.466 18	B(M1)(W.u.)<1.3×10 ⁻⁴ ; B(E2)(W.u.)<2.9
		196.64 [#] 3	21.9 [#] 4	489.259	7/2+	M1+E2	-0.22 10	0.231	$B(M1)(W.u.)=9\times10^{-4}+6-3; B(E2)(W.u.)=0.6+9-4$
									Mult.: from ce data in ¹⁴ /Nd β^- decay.
		275 299# 15	06.0# 18	410 515	2/2+	M1 - E2	0 100 7	0.0021	
		275.588" 15	90.0 18	410.313	5/2	MIT+E2	+0.109 /	0.0931	B(M1)(W.u.)=0.0013 +10-3; $B(E2)(W.u.)=0.13 +9-4Mult : from ce data in 147Nd \beta^{-} decay$
									δ : from $\gamma\gamma(\theta)$ and $\gamma(\theta, H, T)$ in ¹⁴⁷ Nd β^- decay. Other:
									-0.21 3 in (p,2n γ), note opposite sign.
		594.796 [#] 21	29.5 [#] 3	91.1051	5/2+	E2(+M1)	≥6	0.00790 13	$B(E2)(W.u.)=0.071\ 28;\ B(M1)(W.u.)<2.0\times10^{-6}$
									Mult.: from ce data in ¹⁴⁷ Nd β^- .
									$\gamma(\theta, \mathbf{n}, 1)$ in $\gamma(\theta, 1$
									Uncertainty in B(E2)(W.u.) is mainly from 40%
		(05 000# 00	100 0# 19	0.0	7/2+	M1 - E2	0.07.20	0.0072.7	uncertainty in level half-life. $P(M1)(W_{m}) = 5.2 \times 10^{-5} \times 42 - 10$, $P(F2)(W_{m}) = 0.050$
		085.882" 28	100.0" 18	0.0	1/2	MIT+E2	-0.97 30	0.00737	$B(M1)(W.u.)=3.5\times10^{-5}+42-19$; $B(E2)(W.u.)=0.059$ +41-26
									Mult.: from ce data in ¹⁴⁷ Nd β^- decay.
		0	e						δ: from γ(θ,H,T) in 147Nd β- decay.
730.68	$(9/2)^+$	241.4 [@] 3	85 [@] 18	489.259	7/2+	M1+E2		0.121 13	α (K)=0.098 <i>16</i> ; α (L)=0.0180 <i>25</i> ; α (M)=0.0039 <i>7</i>
									$\alpha(N)=0.00088 \ I3; \ \alpha(O)=0.000125 \ I2; \ \alpha(P)=5.8\times10^{-6} \ I5$ Mult.: based on $\alpha(K)$ exp in (p,2ny) and (d,3ny).

 \neg

From ENSDF

 $^{147}_{61} Pm_{86}$ -7

				Ado	pted Lev	els, Gamm	as (continued)	
					$\gamma(^{147})$	⁷ Pm) (conti	nued)	
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{a}	Comments
730.68	$(9/2)^+$	639.60 [@] 15	100 [@] 8	91.1051	5/2+	E2	0.00653	Mult.: based on $\alpha(K)$ exp in (p,2n γ).
807.26	5/2-,7/2-	318.0 [@] 3	33 [@] 8	489.259	7/2+			Mult.: based on $\alpha(K)$ exp in (p,2n γ).
		716.2 [@] 2	100 [@] 10	91.1051	$5/2^{+}$	E1	0.00189	
		807.2 [@] 2	90 [@] 10	0.0	7/2+	E1	1.49×10^{-3}	Mult.: based on $\alpha(K)$ exp in (p,2n γ).
865.11	$(7/2^{-}, 9/2^{-})$	457.0 [@] 5	39 [@] 8	408.14	$9/2^{+}$			
		865.1 [@] 2	100 [@] 9	0.0	7/2+	(E1)	1.30×10^{-3}	Mult.: based on α (K)exp in (p,2n γ); E2 is less likely but not ruled out.
970.17	$11/2^{-}$	302.9 <i>3</i>	28 12	667.15	$11/2^{+}$			E_{γ} , I_{γ} : seen in (¹⁵ N, 4n γ) but not in (p, 2n γ).
		562.0 [@] 2	100 [@] 8	408.14	9/2+	E1	0.00317	Mult.: based on $\alpha(K)$ exp in (p,2n γ).
		970.3 ^b 5	60 12	0.0	$7/2^{+}$	[M2]	0.00986	E_{γ} , I_{γ} : seen in (p, 2n γ) but not in (¹⁵ N, 4n γ).
984.0	(5/2,9/2)	576.0 [@] 5	31 [@] 8	408.14	9/2+			
		983.9 [@] 3	100 [@] 12	0.0	7/2+	D		
1041.15	3/2+,5/2+	630.6 [@] 2	100 [@] 8	410.515	$3/2^{+}$			
		950.2 [@] 4	69 [@] 14	91.1051	$5/2^{+}$			
		1041.1 [@] 5	69 [@] 14	0.0	$7/2^{+}$			
1049.0	$(5/2^+$ to $9/2^+)$	363.1 [@] 4	$100^{@} 25$	685.900	$5/2^{+}$			
		518.1 [@] 5	80 [@] 20	530.998	$5/2^{+}$			
1051.16	$15/2^{-}$	401.85 [@] 8	100	649.30	$11/2^{-}$	E2	0.0226	
1072.45	$13/2^{+}$	102.2 3	4.4 22	970.17	$11/2^{-}$	[E1]	0.252	
		405.34 ^{@} 12	63 11	667.15	$11/2^{+}$	M1+E2	0.028 6	
		664.3 ^{^w 3}	100 11	408.14	9/2+	E2	0.00596	Mult., δ : E2+M1, δ =+2.0 3 in (p,2n γ).
1077.50	$(11/2)^+$	346.81 ^{^w} 10	100 / 10	730.68	$(9/2)^+$	M1	0.0508	Mult.: based on $\alpha(K)$ exp in (p,2n γ).
		588.1 ^w 4	63 ^w 12	489.259	7/2+			Mult.: (E2) in $(d,3n\gamma)$ is not adopted here $(\alpha(K)exp$ not given).
1119.2	$(7/2^+, 9/2^+, 11/2^+)$	438.8 [@] 4	100 [@] 25	680.433	$7/2^{+}$			
		452.0 ^{⁽⁰⁾ 5}	60 [@] 15	667.15	$11/2^{+}$			
1159.36	$13/2^{-1}$	189.0 3	19 5	970.17 667.15	$\frac{11}{2^{+}}$	M1+E2	0.252 8	
1213.8	$(3/2) 5/2) 7/2)^{-1}$	492.21	100 9	641.15	$(5/2)^+$	E1	0.00427	Mult : based on $\alpha(K)$ even in (p 2pg)
1215.0	$(3/2, 3/2, 7/2)^{-}$	$194.57^{@}5$	55 [@] 5	1051 16	(5/2) $15/2^{-}$	LI	0.00303	where $ased on a(R)exp in (p,2ny).$
1243.74	(11/2, 15/2)	$596.6^{@}.4$	$100^{@} 24$	649 30	13/2 $11/2^{-}$	M1+F2	0.010.3	
1382.0		$971.5^{@}.5$	100 24	410 515	3/2+	1411 122	0.010 5	
1392.76	$15/2^{+}$	233.4 3	13 3	1159.36	$\frac{3}{2}$ $\frac{13}{2}$			
		320.3 3	15 5	1072.45	13/2+			
		725.6 [@] 3	100 11	667.15	$11/2^+$	E2	0.00483	
1406.18	15/2-	246.8 2 333.8 2	100 <i>17</i> 83 <i>17</i>	1159.36 1072.45	13/2 ⁻ 13/2 ⁺	M1 E1	0.1252 0.01080	Mult.: from ce and DCO data in $({}^{15}N,4n\gamma)$ (1995Ur01).

 ∞

From ENSDF

Adopted Levels, Gammas (continued)										
	γ ⁽¹⁴⁷ Pm) (continued)									
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f \qquad J_f^{\pi}$	Mult. [‡]	α^{a}	Comments			
1406.18	15/2-	436.1 3	33 8	970.17 11/2-						
1434.2	$(13/2^+)$	356.5 <mark>&</mark> 3	50 ^{&} 20	$1077.50 (11/2)^+$						
		703.7 ^{&} 3	100 ^{&} <i>30</i>	730.68 (9/2)+			Mult.: (E2) adopted in $(d,3n\gamma)$ is not adopted here $(\alpha(K)\exp not given)$			
1627 75	$19/2^{-}$	576.6.1	100	1051 16 15/2-	0		given).			
1659.45	$17/2^{-1}$	253.2 2	66 13	$1406.18 \ 15/2^{-1}$	× M1+E2	0.105 12				
		266.7 2	75 16	1392.76 15/2+	E1	0.0191				
		500.0 2	100 13	1159.36 13/2-	(Q)					
1699.00	$(15/2^+, 17/2^-)$	453.0 <i>3</i>	89 <i>33</i>	1245.74 (11/2,13/2)-						
		648.0 <i>3</i>	100 33	1051.16 15/2-						
1794.74	$(15/2^{-}, 17/2^{-})$	167.0 <i>3</i>	36 14	1627.75 19/2-						
		548.9 <i>3</i>	71 29	1245.74 (11/2,13/2)-						
		743.6 <i>3</i>	100 21	1051.16 15/2-						
1831.71	17/2+	425.5 3	64 18	1406.18 15/2-						
		439.0 3	18 9	1392.76 15/2+						
1004 50	10/2-	759.3 3	100 27	10/2.45 13/2+	(Q)					
1984.50	19/2	153.0 3	178	1831.71 17/2						
		325.0 3	/5 /3	1659.45 17/2	0					
2070 10	10/2(+)	378.5 2	100 17	1400.18 15/2	Q					
2079.10	19/2(*)	284.3 3	48 8	1/94./4 $(15/2, 1/2)$						
		380.0 3	10 0	$1099.00 (13/2^{\circ}, 17/2^{\circ})$ 1650.45 $17/2^{\circ}$						
		419.5 5	100 13	1639.45 17/2	D					
		68632	55 15	1392 76 15/2+	0					
2250 57	$(19/2^+)$	419.0.3	25.8	$1392.70^{-13/2}$ 1831 71 17/2 ⁺	×.					
2230.37	(1)/2)	591.0.3	75 17	$1659.45 \ 17/2^{-}$						
		857.8 3	100 25	1392.76 15/2+						
2307.97	$(21/2^{-})$	228.8.3	15.5	$2079.10 19/2^{(+)}$						
	(/-)	323.5 3	45 10	1984.50 19/2-						
		648.5 2	100 20	1659.45 17/2-						
2330.37	$23/2^{-}$	702.6 1	100	1627.75 19/2-	Q					
2405.45	$(23/2^{-})$	777.7 2	100	1627.75 19/2-	Q					
2459.54	$(21/2^+)$	209.0 3	100 29	2250.57 (19/2 ⁺)						
		475.5 <i>3</i>	86 29	1984.50 19/2-						
		627.5 <i>3</i>	43 14	1831.71 17/2+						
2548.92	$(23/2^{-})$	143.6 2	20 4	2405.45 (23/2 ⁻)	(M1+E2)	0.59 4				
		218.4 3	7.8 21	2330.37 23/2	0					
2622.80	$(22/2^{+})$	921.2 1	100.6	1027.75 19/2	Q					
2022.80	$(23/2^{\circ})$	292.4 3 542 7 1	20.3	2330.37 23/2	0					
2605 00	$(25/2^{-1})$	545./I	100 /	$2079.10 19/2^{+7}$	Q	0.60.6				
2003.98	(23/2)	137.03	5.0 9 6 2 11	2340.92 (23/2) 2405.45 (23/2)	$(\mathbf{W}\mathbf{I} + \mathbf{E}\mathbf{Z})$	0.09 0				
		200.4 2 355 6 1	100 3	2403.43 (23/2) 2330 37 23/2	$(M1\pm F2)$	0.040.8				
		555.01	100 5	2550.51 25/2	(1117122)	0.040.0				

9

From ENSDF

 $^{147}_{61} Pm_{86}$ -9

$\gamma(^{147}\text{Pm})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [‡]	α^{a}
2706.80	$(23/2^{-})$	398.8 <i>3</i>	64 21	2307.97 ($(21/2^{-})$		
		722.4 3	100 21	1984.50	19/2-	Q	
2782.77	$(23/2^+)$	323.4 <i>3</i>	100 25	2459.54 ($(21/2^+)$	-	
		532.2 <i>3</i>	88 <i>38</i>	2250.57 ($(19/2^+)$		
		703.5 <i>3</i>	100 25	2079.10	19/2 ⁽⁺⁾		
2850.08	$(27/2^{-})$	164.1 <i>1</i>	100.0 25	2685.98 ($(25/2^{-})$	(M1+E2)	0.389 9
		301.2 <i>1</i>	26.0 12	2548.92 ($(23/2^{-})$	(E2)	0.0536
		519.7 <i>1</i>	14.3 15	2330.37 2	23/2-	Q	
2899.35	$(25/2^+)$	276.4 3	15 4	2622.80 ($(23/2^+)$		
		569.0 <i>1</i>	100 9	2330.37 2	23/2-	D	
3051.1	$(25/2^+)$	591.6 <i>3</i>	100	2459.54 ($(21/2^+)$		
3052.3	$(25/2^{-})$	345.6 3	32 11	2706.80 ($(23/2^{-})$		
0104.40	25/2-	744.3 3	100 21	2307.97 ($(21/2^{-})$	0	
3124.49	$27/2^{-}$	794.1 1	100	2330.37 2	$23/2^{-}$	Q	
3277.49	$(27/2^{+})$	3/8.1 3	42	2899.35 ($(25/2^+)$	0	
2225.9	(07/0-)	654./ 1	100 16	2622.80 ($(23/2^+)$	Q	
3335.8	(21/2)	629.0 3	100	2706.80 ((23/2)	M1 . F2	40.11
3357.85	$(29/2^{+})$	80.3 3	13 3	3277.49 ($(21/2^{\circ})$	MI+E2	4.0 11
		233.3 Z 459 5 1	40 4	3124.49 2	$(25/2^{+})$	D	
		438.31	475	2899.33 ((23/2)	Q D	
3405.08	$(20/2^{-})$	718 0 2	100 /	2630.08 ((21/2) $(25/2^{-})$	D	
3463 77	$(29/2^{-})$	(58.9)	100	2005.98 ($(29/2^{-})$	Q [M1+F2]	11 9 48
5405.77	(31/2)	(30.7)	100	2850.08 ($(27/2^{-})$	0	11.7 40
3611.1	$(27/2 \text{ to } 31/2^{-})$	761.0.3	100	2850.08	$(27/2^{-})$	X	
3687.37	$(31/2^+)$	223.6.3	21.5	3463.77 ($(31/2^{-})$		
2007127	(01/=)	329.5 1	100.9	3357.85 ($(29/2^+)$	(M1+E2)	0.049 9
		409.9 1	88 18	3277.49	$(27/2^+)$	(E2)	0.0213
3694.90	$(33/2^+)$	231.1 <i>I</i>	100 <i>3</i>	3463.77 ($(31/2^{-})$	D	
		337.1 <i>I</i>	30.9 16	3357.85 ($(29/2^+)$	(E2)	0.0379
3840.3	$(33/2^{-})$	377.0 <i>3</i>	12 4	3463.77 ($(31/2^{-})$		
		435.0 2	100 20	3405.08 ($(29/2^{-})$		
3949.4	$(31/2^{-})$	824.9 <i>3</i>	100	3124.49 2	27/2-	(Q)	
4133.1	$(29/2 \text{ to } 33/2^+)$	775.3 <i>3</i>	100	3357.85 ($(29/2^+)$		
4229.1	$(35/2^{-})$	765.3 2	100	3463.77 ($(31/2^{-})$	Q	
4286.98	$(35/2^+)$	592.2 <i>3</i>	13 <i>3</i>	3694.90 ($(33/2^+)$		
		599.6 <i>1</i>	100 16	3687.37 ($(31/2^+)$	Q	
4320.51	$(37/2^{+})$	625.6 1	100	3694.90 ($(33/2^+)$	Q	
4512.5	$(37/2^{-})$	672.2 2	100	3840.3 ($(33/2^{-})$		
4857.6	$(39/2^{-})$	628.5 2	100	4229.1 ($(35/2^{-})$	0	
5013.21	$(41/2^{+})$	692.7 1	100	4320.51 ($(3^{-}/2^{+})$	Q	
5021.28	$(39/2^{+})$	/34.3 1	100	4286.98 ($(33/2^{+})$	Q	
5218.2	(39/2 ',41/2 ')	891.63	100	4320.51 ((37/2')		

10

 $\gamma(^{147}\text{Pm})$ (continued)

					_	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]
5458.5	$(37/2 \text{ to } 41/2^+)$	1138.0 3	100	4320.51	$(37/2^+)$	
5645.3	$(45/2^+)$	632.1 <i>I</i>	100	5013.21	$(41/2^+)$	Q
5808.2	$(43/2^+)$	590.0 <i>3</i>	33 16	5218.2	$(39/2^+, 41/2^+)$	
		787.0 <i>3</i>	100 33	5021.28	$(39/2^+)$	(Q)
5985.1	(43/2)	972.0 2	100	5013.21	$(41/2^+)$	D
6130.2	$(41/2 \text{ to } 45/2^+)$	1117.0 <i>3</i>	100	5013.21	$(41/2^+)$	
6185.7	$(43/2 \text{ to } 47/2^+)$	377.5 <i>3</i>	100	5808.2	$(43/2^+)$	
6377.9	$(47/2^+)$	393.0 <i>3</i>	8 <i>3</i>	5985.1	(43/2)	
		732.5 1	100 10	5645.3	$(45/2^+)$	D+Q
6687.2	$(49/2^+)$	1041.8 <i>1</i>	100	5645.3	$(45/2^+)$	(Q)
7004.1	$(51/2^+)$	316.9 2	55 <i>13</i>	6687.2	$(49/2^+)$	D
		626.3 2	100 25	6377.9	$(47/2^+)$	Q
7554.2	$(51/2^+)$	550.0 ^b 3	50 <i>30</i>	7004.1	$(51/2^+)$	
		867.0 <i>3</i>	100 30	6687.2	$(49/2^+)$	D+Q
7779.8?		775.7 <i>3</i>	100	7004.1	$(51/2^+)$	
7977.5?		973.4 <i>3</i>	100	7004.1	$(51/2^+)$	

[†] For gamma rays from high-spin (J>13/2) levels, values are from 136 Xe(15 N,4n γ), unless otherwise noted. [‡] Based on ce data in 147 Nd β^- decay, 148 Nd(p,2n γ) and 148 Nd(d,3n γ); $\gamma(\theta)$ data in (p,2n γ) and $\gamma\gamma(\theta)$ (DCO) ratios in 136 Xe(15 N,4n γ). Exceptions are noted. # From ¹⁴⁷Nd β^- decay. @ From ¹⁴⁸Nd(p,2n γ). & From ¹⁴⁸Nd(d,3n γ).

11

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Placement of transition in the level scheme is uncertain.

¹⁴⁷₆₁Pm₈₆

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁴⁷₆₁Pm₈₆

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁴⁷₆₁Pm₈₆

15

¹⁴⁷₆₁Pm₈₆-15

 $^{147}_{61}\mathrm{Pm}_{86}$ -15

From ENSDF

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁴⁷₆₁Pm₈₆

 $^{147}_{61} Pm_{86}$

¹⁴⁷₆₁Pm₈₆