¹⁵¹Eu α decay (4.6×10¹⁸ y) 2014Ca13

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica and B. Singh	NDS 181,1 (2022)	9-Mar-2022

Parent: ¹⁵¹Eu: E=0.0; $J^{\pi}=5/2^+$; $T_{1/2}=4.6\times10^{18}$ y 12; $Q(\alpha)=1964.0$ 11; % α decay=100

¹⁵¹Eu-J^{π}: From Adopted Levels of ¹⁵¹Eu in the ENSDF database.

¹⁵¹Eu-T_{1/2}: From a total of 37.6 75 ¹⁵¹Eu α decay events determined from an unbinned, extended likelihood fit to the α energy spectrum and the isotopic composition of ¹⁵¹Eu (47.6 7%) precisely measured using high resolution inductively coupled plasma-mass spectrometry (2014Ca13). Others: ≥3.7×10¹⁸ y for decay to first excited state in ¹⁴⁷Pm at 68% confidence level (2012Da16), ≥2.4×10¹⁶ y (2007Be72); ≥6.0×10¹⁷ y (2007Be48). ENSDF database for ¹⁵¹Eu decay gives ≥1.7×10¹⁸ y.
¹⁵¹Eu-ΔT_{1/2}: 2014Ca13 give T_{1/2}=4.62×10¹⁸ y 95 (stat) 68 (syst); evaluator has compounded uncertainties in quadrature. Statistical

uncertainty results from the choice of the fitting interval and the choice of the response function.

¹⁵¹Eu-Q(α): From 2021Wa16. 2014Ca13 measured Q(α)=1948.9 keV 69 (stat) 51 (syst).

¹⁵¹Eu-% α decay: % α branch is not measured, but from the work of 2014Ca13 and 2007Be48 ¹⁵¹Eu does decay by α -decay mode. Here 100% α decay is assumed since β decay modes are blocked by the energetics of ¹⁵¹Eu, ¹⁵¹Sm and ¹⁵¹Gd.

2014Ca13: measurement of half-life and $Q(\alpha)$ of ¹⁵¹Eu decay. Li₆Eu(BO₃)₃ crystal used as a scintillating bolometer. Total crystal weight of 6.15 g. The Li₆Eu(BO₃)₃ crystal was operated in a dilution ³He/⁴He refrigerator in the Gran Sasso underground laboratory of the INFN. Measured E α , I α with FHWM=67 keV 7; deduced T_{1/2} and Q(α) value. The β and γ events were rejected by performing a selection on the heat-to-light ratio of the detector. Measured Q(α)=1948.9 *69* (stat) *51* (syst) (2014Ca13). Systematic uncertainty from a combination of the fitting interval and the response function used for fitting.

2012Da16: search for α -decay of ¹⁵¹Eu to the first excited state in ¹⁴⁷Pm. Measurement of half-life for ¹⁵¹Eu α decay. The decay of high purity europium oxide with natural isotopic abundance (¹⁵¹Eu: 47.81 % 6 and ¹⁵³Eu: 52.19 % 6) was measured at the HADES underground laboratory with 303 g of Eu₂O₃ in a polyethylene bag directly placed on a ultra-low background HPGe detector and the γ spectrum measured in the range of 10-670 keV for over 2232.8 h. In addition the background spectrum was also measured for 1654.7 h. Deduced partial T_{1/2} for α decay.

¹⁴⁷Pm Levels

E(level)	J^{π}	T _{1/2}	Comments
0.0	7/2 ⁺	2.6234 y 4	$T_{1/2}$: from the Adopted Levels.
91.1?	5/2 ⁺		Level not observed in ¹⁵¹ Eu decay (2012Da16).

[†] From the Adopted Levels.

α radiations

Εα	E(level)	HF^{\dagger}	Comments
1897.3 84	0.0	33 10	E α : measured Q(α)=1948.9 keV 69 (stat) 51 (syst) by 2014Ca13 as total α energy (i.e. in c.m. system). It is assumed that this α feeds the ground state of ¹⁴⁷ Pm. Note that Q(α)=1964.0 11 from 2021Wa16 suggests E α =1912.0 11. Measured E α =1897.3 84 in 2014Ca13 agrees with evaluated E α in 2021Wa16 within 2σ . HF: assuming 100% α branch for the g.s. to g.s. transition. Value of 33 10 suggests hindered α transition.

[†] Radius parameter $r_0=1.580$ 10 for ¹⁴⁷Pm was used, based on interpolation of $r_0=1.586$ 12 for ¹⁴⁴Nd daughter and $r_0=1.5741$ 45 for ¹⁴⁸Sm taken from 2020Si16.

From ENSDF

¹⁵¹Eu α decay (4.6×10¹⁸ y) 2014Ca13 (continued)

$\gamma(^{147}\text{Pm})$

Eγ	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
91.1 [†]	91.1?	5/2+	0.0 7/2+	E_{γ} : no γ -ray peak was observed in 2012Da16. The measured energy spectrum was fitted within the energy range 88-95 keV to set the limit for partial $T_{1/2}$ for α decay of ¹⁵¹ Eu to the first excited level.

[†] Placement of transition in the level scheme is uncertain.

