¹⁴⁸Sm(t,α) **1979St01**

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	N. Nica and B. Singh	NDS 181, 1 (2022)	9-Mar-2022	

Additional information 1.

1979St01: E(t)=17 MeV. Measured E α , cross sections at 30° and 40° with FWHM \approx 20 keV using Q3D magnetic spectrograph. 1979St01 also report data from ¹⁴⁶Nd(³He,d) and ¹⁴⁶Sm(α ,t) reactions. See separate datasets for these reactions.

¹⁴⁷Pm Levels

Relative cross sections are accurate to 10% while the absolute cross sections have uncertainties of $\approx 25\%$.

E(level) [†]	C^2S^b	Comments		
0&	4.12	C ² S: for L=4, $J^{\pi}=7/2^+$. $d\sigma/d\Omega \ (\mu b/sr)=525 \ (30^\circ), 430 \ (40^\circ).$		
90 [@] 4	1.70	C ² S: for L=2, $J^{\pi} = 5/2^+$.		
		$d\sigma/d\Omega \ (\mu b/sr) = 441 \ (30^{\circ}), \ 345 \ (40^{\circ}).$		
409 4		$d\sigma/d\Omega \ (\mu b/sr) = 16 \ (30^{\circ}), \ 16 \ (40^{\circ}).$		
492 ^{&} 4	0.29	C^2S : for $J^{\pi}=7/2^+$.		
0		$d\sigma/d\Omega \ (\mu b/sr)=35 \ (30^{\circ}), \ 30 \ (40^{\circ}).$		
530 [@] 4	0.26	C^2S : for $J^{\pi}=5/2^+$.		
		$d\sigma/d\Omega \ (\mu b/sr) = 5.5 \ (30^{\circ}), \ 7 \ (40^{\circ}).$		
645 ^{‡a} 4	< 0.97, 2.6	C ² S: for L=0+5, $J^{\pi}=1/2^+$ and $11/2^-$.		
		E(level), C ² S: 645 peak analyzed as a doublet with L=0+5, assuming the same contributions from $s_{1/2}$ and $h_{11/2}$ as in (t,α) for ¹⁴⁹ Pm. $d\sigma/d\Omega$ (μ b/sr)=308 (30°), 214 (40°).		
684 [@] 4	0.85	C ² S: for L=(2), $J^{\pi} = 5/2^+$. $d\sigma/d\Omega (\mu b/sr) = 221 (30^\circ), 205 (40^\circ).$		
736 [#] 4	0.03	$C^{2}S$: for L=(2).		
		$d\sigma/d\Omega \ (\mu b/sr) = 8.7 \ (30^{\circ}), \ 14 \ (40^{\circ}).$		
809 [#] 4	0.02	$C^{2}S$: for L=2.		
		$d\sigma/d\Omega \ (\mu b/sr) = 7.1 \ (30^{\circ}), \ 7 \ (40^{\circ}).$		
885 [#] 4	0.20	$C^{2}S$: for L=2.		
		$d\sigma/d\Omega \ (\mu b/sr) = 56 \ (30^{\circ}), \ 51 \ (40^{\circ}).$		
936 [‡] 4	0.11	C ² S: for L=0, $J^{\pi}=1/2^+$.		
		$d\sigma/d\Omega \ (\mu b/sr) = 46 \ (30^{\circ}), \ 23 \ (40^{\circ}).$		
984? 4		$d\sigma/d\Omega \ (\mu b/sr) = 9.5 \ (30^{\circ}), \ 7 \ (40^{\circ}).$		
1047 [#] 4	0.08	$C^{2}S$: for L=2.		
		$d\sigma/d\Omega \ (\mu b/sr) = 23 \ (30^{\circ}), \ 18 \ (40^{\circ}).$		
1186 4		$d\sigma/d\Omega \ (\mu b/sr) = 11 \ (30^{\circ}), \ 11 \ (40^{\circ}).$		
1325 4		$d\sigma/d\Omega$ (µb/sr)=22 (30°), 43 for 1325+1349 (40°).		
1349 " 4	0.17	C ² S: for L=2.		
1425 4		$d\sigma/d\Omega (\mu b/sr) = 47 (30^{\circ}), 43$ for 1325+1349 (40°).		
1455 4		$d\sigma/d\Omega (\mu b/sr) = 45 (50^{\circ}), 40 (40^{\circ}).$		
1505 4		$d\sigma/d\Omega (\mu b/sr) = 7 (30^{\circ}), 7 (40^{\circ}).$		
1550 4		$d\sigma/d\Omega$ (µb/sr)=7 (30°), 15 (40°).		
1591 4		$d\sigma/d\Omega$ (µb/sr)=51 (30°), 43 (40°).		
1646 4		$d\sigma/d\Omega \ (\mu b/sr) = 28 \ (30^{\circ}), \ 26 \ for \ 1646 + 1667 \ (40^{\circ}).$		
1667 4		$d\sigma/d\Omega \ (\mu b/sr)=22 \ (30^{\circ}), 26 \ for \ 1646+1667 \ (40^{\circ}).$		
1723 4		$d\sigma/d\Omega \ (\mu b/sr) = 19 \ (30^{\circ}), \ 18 \ (40^{\circ}).$		
1805 4		$d\sigma/d\Omega \ (\mu b/sr) = 31 \ (30^{\circ}), \ 29 \ (40^{\circ}).$		
1910 4		$d\sigma/d\Omega (\mu b/sr) = 22 (30^{\circ}), 16 (40^{\circ}).$		

Continued on next page (footnotes at end of table)

¹⁴⁸Sm(t, α) 1979St01 (continued)

¹⁴⁷Pm Levels (continued)

Comments

- $d\sigma/d\Omega \ (\mu b/sr) = 19 \ (30^{\circ}), \ 15 \ (40^{\circ}).$ 1938 4 2025 4
- $d\sigma/d\Omega \ (\mu b/sr) = 15 \ (30^{\circ}), \ 14 \ (40^{\circ}).$ 2112 4 $d\sigma/d\Omega \ (\mu b/sr) = 17 \ (30^{\circ}), \ 19 \ (40^{\circ}).$
- 2157 4
- $d\sigma/d\Omega \ (\mu b/sr)=11 \ (30^{\circ}), \ 10 \ (40^{\circ}).$ $d\sigma/d\Omega \ (\mu b/sr)=11 \ (30^{\circ}), \ 18 \ (40^{\circ}).$ 2201 4

 † Uncertainties are stated by 1979St01 as less than 4 keV.

[‡] Assigned as fragment of $s_{1/2}$ orbital (1979St01).

[#] Assigned as fragment of $d_{3/2}$ and/or $d_{5/2}$ orbital (1979St01).

[@] Assigned as fragment of $d_{5/2}$ orbital (1979St01).

& Assigned as fragment of $g_{7/2}$ orbital (1979St01).

^{*a*} Assigned as fragment of $h_{11/2}$ orbital (1979St01).

^b Experimental summed spectroscopic strengths for different orbitals were deduced by 1979St01 as: ≈ 0.41 for $s_{1/2}$, 2.81 for $d_{5/2}$, 0.73 for $d_{3/2}$ and/or $d_{5/2},$ (4.53) for $g_{7/2}$ and $\approx \! 1.84$ for $h_{11/2}.$