¹⁴⁶Nd(n,γ) E=th 1976Ro03,1975Ro16

Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	N. Nica and B. Singh	NDS 181, 1 (2022)	9-Mar-2022			

1975Ro16: measured E γ <904 curved cryst, otherwise semi; $\gamma\gamma$ -coin (semi). 1976Ro03: measured ce for E γ <127 (s) via ¹⁴⁶Nd(n,ce) E=th.

147Nd Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	5/2-	11.03 d 3	$T_{1/2}$: adopted value.
49.9268 10	7/2-		J^{π} : $7/2^{-}$ from L=3 (d,t) (1977St22), J=L+1/2 (pol d,t) (1977St23).
127.9190 10	$5/2^{-}$		J^{π} : 5/2 ⁻ from L=3 (d,t) (1977St22), J=L-1/2 (pol d,t) (1977St23).
190.291? 6	(9/2-)		J^{π} : (9/2 ⁻) is consistent with L=5 (³ He, α) 1976LoZP and N=87 syst.
214.5949 12	1/2-		J^{π} : consistent with E2 γ -decay to 5/2 ⁻ state, and L=1 (d,t) (1977St22) and J=L-1/2 (pol d,t) (1977St23).
314.6794 23	3/2-		J^{π} : 3/2 ⁻ from primary γ -feeding, γ -decays to J=1/2 ⁻ ,5/2 ⁻ ,7/2 ⁻ states. Consistent with L=1 (d,t) (1977St22), J=L+1/2 (pol d,t).
463.616 <i>3</i>	3/2-		J^{π} : 3/2 ⁻ from primary γ -feeding, γ -decays to J=1/2 ⁻ ,5/2 ⁻ ,7/2 ⁻ states. Consistent with L=1 (d,t) (1977St22), J=L+1/2 (pol d,t) (1977St23).
516.671 5			J^{π} : 3/2 ⁻ assignment (1975Ro16) based on tentative primary γ -feeding is not compatible with L=3 (d,t) (1977St22).
604.514 4	1/2 ⁻ ,3/2 ^{-#}		
631.479 4	1/2 ⁻ ,3/2 ^{-#}		
769.313 21	1/2,3/2		J^{π} : 1/2 is ruled out by log ft=6.3 in ¹⁴⁷ Pr decay.
792.561 23	1/2,3/2		J^{π} : 1/2 is ruled out by log <i>ft</i> =6.2 for ¹⁴⁷ Pr decay.
942.07 10			
957.26 10			
1041.48 4			
1111.90 10			
1310.76 22	1/2 2/2		Probable $(794\gamma)(467\gamma,517\gamma)$ -coin relation supports E(level).
1398.10 13	1/2, 3/2 1/2, 3/2		
1522 40 9	1/2, 3/2 1/2 - 2/2 - #		
1525.49 8	1/2 , $3/2$		
1544.92 10	$\frac{1}{2}, \frac{3}{2}$		
1941.05.7	$\frac{3}{2}$		
1841.05 /	1/2 , $3/2$ "		
19/9.49 10	$1/2^{-}, 3/2^{-\pi}$		A dillation of the Commention of
(5292.20.9)	1/2 '		Additional information 1.
			E(1eve1). $Eve1 energy field fixed in feast-squares adjustment.E(1eve1): from 2021Wa16; others: 5202.10.15 (1075Po16)$
			E($ICVCI$). HOIII 2021 Wallo; Ollets: 5292.19 15 ($I975K010$). I^{π} from s wave capture
			J. Hom S-wave capture.

[†] Level scheme based on Ritz combination principle for levels up to 800 keV. Levels above 800 keV are derived from coincidence relationships and confirmed by presence of primary transitions. Level energies have been least-squares adjusted to best fit the transition energies. Normalized χ^2 =4.7 greater than critical χ^2 =1.5.

^{\pm} Primary feeding of levels above 700-keV limits J to values of 1/2,3/2.

[#] π =- determined from primary γ -radiation strengths (1975Ro16).

146 Nd(n, γ) E=th 1976Ro03,1975Ro16 (continued)													
	γ ⁽¹⁴⁷ Nd)												
${\rm E_{\gamma}}^{\dagger}$	Ι _γ ‡ <i>е</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^a	δ	α^{f}	Comments				
49.927 1	4.5 7	49.9268	7/2-	0.0	5/2-	M1+E2	0.12 1	10.83	$\alpha(K)=8.88\ 13;\ \alpha(L)=1.53\ 5;\ \alpha(M)=0.330\ 12;\ \alpha(N+)=0.084\ 3$ $\alpha(N)=0.0732\ 25;\ \alpha(O)=0.0107\ 4;\ \alpha(P)=0.00580\ 9$ Mult.: from $\alpha(L1)\exp=1.35\ 21.$ $\delta:\ from\ L1/L\ 2/L\ 3=100\ 5/20\ 4/14\ 7\ 22\ (1976R\ 003)$				
77.9921 3	9.8 10	127.9190	5/2-	49.9268	7/2-	M1+E2	0.28 4	3.08 7	$\alpha(K)=2.45 \ 4; \ \alpha(L)=0.49 \ 5; \ \alpha(M)=0.107 \ 10; \ \alpha(N+)=0.0273 \ 24 \ \alpha(N)=0.0237 \ 21; \ \alpha(O)=0.0034 \ 3; \ \alpha(P)=0.001552 \ 25 \ Mult.: \ from \ \alpha(K)exp=2.5 \ 3. \ \delta: \ 0.28 \ 4 \ from \ L1/L2/L3=100 \ 8/30 \ 6/30 \ 6, \ and \ 0.26 \ 7 \ from \ K/L=5.2 \ 6 \ (1976R003).$				
86.6759 6	4.3 4	214.5949	1/2-	127.9190	5/2-	E2		3.68	$\alpha(K)=1.79 \ 3; \ \alpha(L)=1.468 \ 21; \ \alpha(M)=0.335 \ 5; \ \alpha(N+)=0.0817 \ 12$ $\alpha(N)=0.0724 \ 11; \ \alpha(O)=0.00926 \ 13; \ \alpha(P)=7.67\times10^{-5} \ 11$ Mult.: from $\alpha(L3)\exp=0.78 \ 8$ based on I(ce(L3))=3.4 1 and from K/L1/L2/L3=100 3/6.2 \ 12/35 \ 1/42 \ 1 \ (1976Ro03).				
100.078 3	0.42 3	314.6794	3/2-	214.5949	$1/2^{-}$								
114.781 ^d 6 127.919 6	0.3 <i>1</i> 5.3 5	631.479 127.9190	1/2 ⁻ ,3/2 ⁻ 5/2 ⁻	516.671 0.0	5/2-	M1(+E2)		0.81 11	α (K)=0.590 <i>12</i> ; α (L)=0.17 <i>9</i> ; α (M)=0.038 <i>21</i> ; α (N+)=0.009 5 α (N)=0.008 5; α (O)=0.0011 6; α (P)=3.3×10 ⁻⁵ 6 Mult.: from K/L(exp)=8.0 9 and the nonobservation of L(2), L(3) lines (1976P_003)				
^x 135.15 <i>10</i> 140.364 ^g 6 140.898 <i>1</i> ^x 148.12 <i>3</i> ^x 165.02 <i>3</i>	0.10 <i>I</i> 0.38 <i>3</i> 2.2 <i>2</i> 0.15 <i>I</i> 0.21 <i>2</i>	190.291? 604.514	(9/2 ⁻) 1/2 ⁻ ,3/2 ⁻	49.9268 463.616	7/2 ⁻ 3/2 ⁻				L(3) miles (1970x003).				
167.870 <i>3</i> 186.752 <i>6</i> ^x 199.14 <i>8</i>	0.85 7 0.48 4 0.11 1	631.479 314.6794	1/2 ⁻ ,3/2 ⁻ 3/2 ⁻	463.616 127.9190	3/2 ⁻ 5/2 ⁻								
201.926 ^d 7 214.594 6 ^x 229.67 4 ^x 238.91 15	0.44 [#] 3 0.65 5 0.3 1 0.10 1	516.671 214.5949	1/2-	314.6794 0.0	3/2 ⁻ 5/2 ⁻								
249.029 <i>4</i>	1.83 15	463.616	3/2-	214.5949	$1/2^{-}$								
264.70 <i>4</i>	0.24 2	314.6794	3/2-	49.9268	7/2-								
305.75 20	0.23 2	769.313	1/2,3/2	463.616	3/2-								
x310.34 15 314.675 4 316.82 4 328.84 5 335.700 5 x346.29 20	0.3 [#] 1 11.9 10 0.68 5 0.69 6 7.2 6 0.07 1	314.6794 631.479 792.561 463.616	3/2 ⁻ 1/2 ⁻ ,3/2 ⁻ 1/2,3/2 3/2 ⁻	0.0 314.6794 463.616 127.9190	5/2 ⁻ 3/2 ⁻ 3/2 ⁻ 5/2 ⁻								

ы

 $^{147}_{60}\mathrm{Nd}_{87}$ -2

L

146 Nd(n, γ) E	=th 1976 R	o03,1975Ro16	(continued)
		/	\[

$\gamma(^{147}\text{Nd})$ (continued)

E_{γ}^{\dagger}	Ι _γ ‡ <i>е</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	E_{γ}^{\dagger}	I_{γ} [‡] <i>e</i>	E_i (level)	J_i^π	E_f	J_f^π
^x 366.99 5	0.55 4					x810.28 22	0.14 1				
x378.96 21	0.06 1					^x 819.19 25	0.12 1				
^x 384.87 14	0.11 1					840.62 11	0.55 4	1445.14	1/2,3/2	604.514	$1/2^{-}, 3/2^{-}$
388 815 ^d 12	1 65 13	516 671		127 9190	5/2-	x854.09.23	0 23 2		, , ,		, , ,
389.94 6	0.4 /	604.514	$1/2^{-}.3/2^{-}$	214.5949	$1/2^{-}$	^x 860.44 17	0.22.2				
410.03 9	0.25.2	1041.48	-/- ,0/-	631.479	$1/2^{-}.3/2^{-}$	897.57 <mark>8</mark> 11	1.31 10	1111.90		214,5949	$1/2^{-}$
413.680 15	1.6 1	463.616	3/2-	49.9268	7/2-,072	x899.05 19	0.28 3	111100		21110717	-/=
416.88 4	0.2 1	631.479	$1/2^{-},3/2^{-}$	214.5949	$1/2^{-}$	^x 903.87 8	1.24 10				
436.91 6	0.41 3	1041.48	1 7 1	604.514	$1/2^{-},3/2^{-}$	^x 906.94 13	0.37 3				
^x 447.48 7	0.3 1					^x 921.1 3	0.13 1				
^x 459.98 19	0.12 1					942.03 12	0.66 5	942.07		0.0	$5/2^{-}$
463.53 13	0.23 2	463.616	$3/2^{-}$	0.0	$5/2^{-}$	^x 944.07 11	1.53 12				
466.750 12	1.5 <i>I</i>	516.671		49.9268	7/2-	957.34 14	0.35 3	957.26		0.0	5/2-
478.03 5	0.3 1	792.561	1/2,3/2	314.6794	3/2-	^x 962.03 10	1.04 8				
493.48 15	0.4 1	957.26		463.616	3/2-	^x 977.08 12	0.65 5				
503.56 <i>3</i>	1.8 2	631.479	$1/2^{-}, 3/2^{-}$	127.9190	5/2-	996.08 22	0.20 2	1310.76		314.6794	3/2-
516.78 5	1.33 10	516.671		0.0	5/2-	^x 998.25 17	0.27 2				
^x 525.35 10	0.4 1					1033.18 14	0.29 2	1550.09	3/2-	516.671	
^x 527.97 13	0.2 1					^x 1040.56 22	0.19 2				
^x 534.74 16	0.15 2					^x 1065.02 16	0.33 2				
554.77 4	1.05 8	769.313	1/2,3/2	214.5949	1/2-	1083.43 14	0.41 3	1398.16	1/2,3/2	314.6794	3/2-
577.95 3	1.80 14	792.561	1/2,3/2	214.5949	$1/2^{-}$	^x 1090.66 <i>18</i>	0.28 2				
595.20 20	<0.1	1111.90	1/2-2/2-	516.671	5/0-	×1107.42 <i>12</i>	0.81 6				
604.57 3	5.5 4	604.514	$1/2^{-},3/2^{-}$	0.0	5/2-	×1119.25 <i>13</i>	0.54 4				
*614.2 3	0.12 1					*1122.6.5	0.11 1	1445 14	1/2 2/2	214 (704	2/2-
*621.68 13	0.5 1	0.42.07		214 (704	2/2-	1130.578 18	0.30 2	1445.14	1/2,3/2	314.6794	3/2
627.44 15	0.29 2	942.07	1/2-2/2-	314.6794	3/2 5/2-	x1150.45 10	0.39 3				
031.480 13	3.2 Z	031.479	1/2 ,3/2	0.0	5/2 5/2	×1155./5 21 X1159.09.19	0.25 2				
641.580 25	2.3 2	709.313	1/2,5/2	127.9190	3/2	1138.98 18	0.52.2				
642.69 20	0.2 1	957.26		314.6794	3/2-	^x 1164.40 <i>15</i>	0.44" 3				
^x 666.8 3	0.11 1					×1183.49 1/	0.46 4				
x 608.18 21	0.16 2					[~] 1185./ 3	0.49 4	1070 40	1/2-2/2-	702 561	1/2 2/2
×600.59.6	0.13 I					1180.89 13	1.25 10	1979.49	1/2, $3/2$	792.501	1/2, 3/2
x701 02 20	1.13 9					1208.79 12 X1210 51 24	0.02 5	1323.49	1/2 ,5/2	514.0794	5/2
701.95 20	0.473	1041 48		314 6704	3/2-	1219.31 24	0.20 2	1544.02	1/2 3/2	314 6704	3/2-
x728.4.3	0.344	1041.40		514.0794	5/2	1230.30 12	0.080 0.464	1550.09	$\frac{1}{2}, \frac{3}{2}$	314.0794	$\frac{3}{2}$
730.9.3	0.11 1	1523 49	$1/2^{-} 3/2^{-}$	792 561	1/2 3/2	x1242 24 20	0.40 4	1550.07	5/2	514.0774	5/2
x747.61 16	0.23 2	1525.77	1/2 ,5/2	172.301	1/2,5/2	x1249.4.3	0.16 1				
754.36 19	0.18 2	1523.49	$1/2^{-}.3/2^{-}$	769.313	1/2.3/2	1375.5 4	0.40 3	1979.49	$1/2^{-}.3/2^{-}$	604.514	$1/2^{-}.3/2^{-}$
^x 760.6.5	0.060 6	1020119	-,- ,0,2	, 0, ,010	-/=,-/=	1377.79 17	0.83 7	1841.05	$1/2^{-}.3/2^{-}$	463.616	3/2-
^x 768.90 15	0.22 2					^x 1465.06 <i>19</i>	0.38 3	-0.1100	-, - , -, -, -		-,-
797.23 11	0.89 7	1111.90		314.6794	$3/2^{-}$	^x 1519.59 22	0.33 2				
					,						

		146 Nd(n, γ) E=th 1976Ro03,1975Ro16 (continued)										
						γ (¹⁴⁷ Nd	l) (continued	<u>l)</u>				
E_{γ}^{\dagger}	Ι _γ ‡ e	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	
1526.46 22	0.41 3	1841.05	$1/2^{-}, 3/2^{-}$	314.6794	$3/2^{-}$	x2874.98 20	0.42 3					
^x 1774.00 14	0.75 6					^x 2881.7 4	0.18 1					
^x 1782.50 19	0.49 4					^x 2911.78 22	0.44 3					
^x 1788.2 3	0.24 2					^x 2914.3 3	0.32 2					
1840.86 10	0.83 7	1841.05	$1/2^{-}, 3/2^{-}$	0.0	$5/2^{-}$	^x 2993.8 3	0.15 1					
^x 1847.6 3	0.38 3					x3003.4 5	0.13 1					
^x 1851.1 4	0.26 2					x3014.86 21	0.34 2					
*1856.05 10	0.50 4					*3040.43 21	0.33 2					
^x 1942.52 8	1.09 8					x3075.58 3	0.22 2					
×1987.84 22	0.42 3					x3081.83 21	0.30 2					
^x 2001 21 24	0.131 0.222					x2152 5 2	0.750					
x2001.21 24	0.322					x3208 71 24	0.17 I 0.18 I					
x2030.8.3	0.30 2					x3222.8.3	0.14 /					
x2041.0.3	0.27.2					x3258 198 12	$0.88^{@}$ 7					
x2096.13.24	0.59.5					x3262.8.4	0.22.2					
x2122 5 3	0.28.2					x3268 7 <mark>8</mark> 4	$0.19^{@} 2$					
x2135 22.17	0.28 2					x3283 89 18	0.19 2					
x2158.4 3	0.30 2					3312.70 13	0.66 5	(5292.20)	$1/2^{+}$	1979.49	$1/2^{-}.3/2^{-}$	
x2209.49 24	0.51 4					x3356.4 4	0.14 1	(,		1)-1	
^x 2315.4 3	0.37 3					^x 3377.5 3	0.20 2					
^x 2371.41 24	0.64 5					^x 3394.8 3	0.24 2					
^x 2374.69 17	0.94 7					^x 3430.00 20	0.25 2					
x2392.5 3	0.29 2					3451.08 <i>11</i>	1.20 10	(5292.20)	$1/2^{+}$	1841.05	1/2-,3/2-	
x2404.8 3	0.26 2					x3509.41 14	0.43 3					
x2436.9 5	0.232					x3540.2 4	0.10 I 0.12 I					
x2490.49 24	0.34 3					x3659.2.3	0.13 I 0.14 I					
x2522.1.5	0.181 0.252					x3671.09.23	0.14 I 0.17 I					
x2534.1 3	0.26 2					x3702.58 21	0.18 1					
^x 2554.5 4	0.24 2					x3721.5 4	0.09 1					
^x 2601.5 3	0.19 2					3741.69 20	0.19 2	(5292.20)	$1/2^{+}$	1550.09	3/2-	
^x 2608.87 23	0.29 2					3747.32 15	0.31 2	(5292.20)	$1/2^{+}$	1544.92	1/2,3/2	
^x 2630.4 3	0.21 2					^x 3754.9 3	0.12 1					
x2653.7 3	0.50 4					3768.72 12	0.67 5	(5292.20)	$1/2^{+}$	1523.49	$1/2^{-}, 3/2^{-}$	
^x 2664.8 3	0.29 2					3847.0 4	0.36 [#] 3	(5292.20)	$1/2^{+}$	1445.14	1/2,3/2	
^x 2696.30 19	0.53 4					3893.8 <i>3</i>	0.28 [#] 2	(5292.20)	$1/2^{+}$	1398.16	1/2,3/2	
^x 2701.21 <i>16</i>	0.68 6					^x 3950.8 5	0.07 1					
x2760.2 4	0.18 1					⁴ 4023.13 <i>15</i>	0.30 2					
~2//4.6 <i>3</i>	0.21 2					~4031.06 21 ×4054.20.19	0.16 1					
¹¹ 2/90.19 <i>11</i> x2806 51 25	1.88 13					^x 4054.29 18 ^x 4060 21 17	0.23 2					
x2837 3 5	0.302 0.222					x42237 81 25	0.24 2					
x2868.13.24	0.41.3					x4331.8 3	0.11 1					
	0					1						

4

L

					¹⁴⁶ Nd(n,	y) E=th 1976 R	003,1975Ro	016 (continue	ed)					
				γ ⁽¹⁴⁷ Nd) (continued)										
E_{γ}^{\dagger}	I_{γ} ‡ e	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^π	E_{γ}^{\dagger}	Ι _γ ‡ <i>e</i>	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_{f}^{π}			
x4339.8 6 x4396.9 4 x4484.23 21	0.05 <i>1</i> 0.09 <i>1</i> 0.13 <i>1</i>					x4962.18 4 4977.40 11 x4997.13 ^{cg} 22	0.05 ^{&} 1 1.31 10 0.13 2	(5292.20)	1/2+	314.6794	3/2-			
4500.2 4	0.14 1	(5292.20)	$1/2^{+}$	792.561	1/2,3/2	^x 5005.7 ^g 3	0.10 ^{&} 1							
4523.6 <i>3</i>	0.07 1	(5292.20)	$1/2^{+}$	769.313	1/2,3/2	^x 5031.1 ^g 5	0.04 0.04							
^x 4582.4 5	0.05 1					^x 5039.3 ^g 4	0.06 2 1							
^x 4618.7 7	0.12 1					5077.56 ^b 12	0.46 4	(5292.20)	$1/2^{+}$	214.5949	$1/2^{-}$			
4660.53 11	3.34 25	(5292.20)	$1/2^{+}$	631.479	1/2-,3/2-	^x 5130.1 ^g 4	0.10 ^{&} 1							
4687.78 20	3.20 25	(5292.20)	$1/2^{+}$	604.514	$1/2^{-}, 3/2^{-}$	^x 5150.7 ^g 4	0.05 ^{&} 1							
^x 4695.3 ^g 6	0.08 ^{&} 1					^x 5162.2 ^g 5	0.03 ^{&} 1							
^x 4769.83 21	0.21 2					^x 5176.55 ^g 18	0.14 ^{&} 1							
4774.55 ^d 21	0.18 [#] 2	(5292.20)	$1/2^{+}$	516.671		^x 5184.5 ⁸ 3	0.06 ^{&} 1							
4828.61 12	0.60 5	(5292.20)	$1/2^{+}$	463.616	3/2-	^x 5212.7 ^g 6	0.04 ^{&} 1							
^x 4848.5 4	0.05 1					^x 5253.5 ^g 4	0.06 ^{&} 1							

[‡] Absolute $I(\gamma)$ for both primary and secondary spectra given as percent/capture are normalized to $I\gamma(91\gamma, ^{147}Pm)$ via ¹⁴⁷Nd decay.

[#] Partially due to another isotope.

[@] Possibly a background line.

[&] May be a transition in another Nd isotope.

^{*a*} The absolute internal conversion coefficients are from 1976Ro03 based on relative I(ce) and I γ data normalized so that α (L12)exp(91 γ in ¹⁴⁷Nd β ⁻ decay)=0.246 (1967Ba21).

^b Authors indicate this primary transition to the 215 level may be a transition in another Nd isotope, but since they use it as part of their J^{π} assignment to this level, the evaluator assumes their footnote on this level is an error.

^c Possible transition in Sm.

^d Differs by 3σ or more from $\Delta E(\text{level})$.

^e Intensity per 100 neutron captures.

f Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^g Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

From ENSDF

 $^{147}_{60}\rm{Nd}_{87}$

 $^{147}_{60}\mathrm{Nd}_{87}$ -7

From ENSDF

-