				H	History							
		Туре		Author	Citation	Literature Cutoff Date						
		Full Evalua	ation N.	Nica and B. Singh	NDS 181, 1 (2022)	9-Mar-2022						
$Q(\beta^-)=895.2 6;$ S(2n)=12857.43	S(n)=52 3 12, $S(2p)$	92.20 9; S(p)= b)=15660 30 (2	:8760 <i>30</i> ; (2021Wa16)	$Q(\alpha) = 1034.7 \ 22$	2021Wa16							
				147 ₁	Nd Levels							
				Cross Refere	nce (XREF) Flags							
			A 147 B 146 C 146	$Pr \beta^{-} decay (13.44)$ $PNd(n,\gamma) E=th$ $PNd(d,p)$	min) D 148 Nd(d, E 148 Nd(31 F 238 U(12 C	t),(pol d,t) He, α) C, $x\gamma$)						
E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡	XREF		Co	omments						
0.0 ^b	5/2-	11.03 d 3	ABCDEF	$%β^-=100$ μ=0.554 10 (2019) J^{π} : J from 1957Kd and $π$ from L=: $T_{1/2}$: weighted aw γ , also 11.27 d to 0.11 d in ave about counting proportional cor- procedure); 11.0 counting); and average is 11.12 dataset, primari 9. NRM=Norm d 2 (1999Po32, provided); 11.5 with magnetic s (1951Ko01,195) integral $β$, γ cou- the values is 11 2019Br01 and 12 with reduced χ^2 Additional inform μ: from 1970PiZF 0.578 3 (2005S Q: measured by a	$k\beta^{-}=100$ t=0.554 <i>10</i> (2019StZV); Q=0.9 <i>3</i> (2016St14) π : J from 1957Ke13 by microwave paramagnetic resonance absorption technique and π from L=3 in ¹⁴⁸ Nd(d,t). $\Gamma_{1/2}$: weighted average (NRM) of 11.26 d <i>1</i> (2019Br01, decay curve for 91.1-keV γ , also 11.27 d <i>2</i> from decay curve for 120.5-keV γ , uncertainty gets increased to 0.11 d in averaging procedure, note that no details are given in the paper about counting losses and systematic uncertainties); 10.98 d <i>1</i> (1971Ba28, proportional counter, uncertainty gets increased to 0.03 d in the averaging procedure); 11.02 d <i>5</i> (1963Ho15, proportional counter); 11.14 d <i>6</i> (1960Al33, <i>β</i> counting); and 11.06 d <i>4</i> (1957Wr37, ionization chamber). Regular weighted average is 11.12 d 7, but with reduced χ^2 =100, which implies a discrepant dataset, primarily due to the value in 2019Br01. Unweighted average is 11.09 d 9. NRM=Normalized Residuals Method. Other (less precise) measurements: 11.2 d <i>2</i> (1999Po32, from decay curve for γ rays, 95% confidence level, no details provided); 11.5 d <i>5</i> (1960Wi10, proportional counter); 11.9 d <i>3</i> (1952Ru10, <i>β</i> with magnetic spectrometer); 11.1 d <i>5</i> (1951Em23, <i>β</i> spectrometer); 11.6 d <i>3</i> (1951Ko01,1952Ko27, <i>β</i> spectrometer); 11.0 d <i>3</i> (1951MaZZ, 1947Ma28, integral <i>β</i> , γ counting); 11.1 d <i>2</i> (1946Bo25). Weighted average (NRM) of all the values is 11.05 d <i>3</i> , with the same inflation of uncertainties for values from 2019Br01 and 1971Ba28 as above. Regular weighted average is 11.12 d <i>5</i> , but with reduced χ^2 =37. Unweighted average is 11.24 d <i>21</i> . Additional information 1. <i>c</i> : from 1970PiZR measured by atomic beam magnetic resonance; other value:							
49.9268 10	7/2-	1.0 ns 3	ABCDEF	$\mu/Q<0$ and $Q>0$ a J^{π} : L=3 (d,t) 1977	7St22, J=L+1/2 (pol d,	t) 1977St23. Interpreted as an f7/2						
127.9189 <i>10</i> 190.291 ^b 6	5/2 ⁻ (9/2) ⁻	0.4 ns 1	ABCDE BCDEF	neutron state. J^{π} : L=3 (d,t) 197 J^{π} : (9/2) ⁻ is consi analogous to sta	7St22, J=L-1/2 (pol d, istent with L=5 (³ He, α ates at 285 keV in ¹⁴⁹ S	t) 1977St23.) and N=87 syst. Assumed to be $vh_{9/2}$; m and at 380 keV in ¹⁵¹ Gd.						
214.5949 <i>12</i> 314.6799 <i>23</i> 463.614 <i>3</i> 516.679 <i>5</i> 581.0 <i>3</i>	1/2 ⁻ 3/2 ⁻ 3/2 ⁻ 5/2 ⁻ 7/2 ⁻	4.53 ns 6 ≤0.1 ns ≤0.1 ns	ABCD ABCD ABCD ABCDE A CDE	analogous to states at 285 keV in ¹⁴⁹ Sm and at 380 keV in ¹⁵¹ Gd. J^{π} : L=1 (d,t) 1977St22, J=L-1/2 (pol d,t) 1977St23. J^{π} : L=1 (d,t) 1977St22, J=L+1/2 (pol d,t) 1977St23. J^{π} : L=1 (d,t) 1977St22, J=L+1/2 (pol d,t) 1977St23. J^{π} : L=3 (d,t) 1977St22, J=L-1/2 (pol d,t) 1977St23. XREF: C(580)D(575). J^{π} : L=3 (d,t) 1977St22, J=L+1/2 (pol d,t) 1977St23.								

Adopted Levels, Gammas (continued)

¹⁴⁷Nd Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\ddagger}$	XREF	Comments
596.2 ^b 3	$(13/2^{-})^{\&}$		F	
604.511 4	1/2-	<0.8 ns	ABCD	J^{π} : L=1 (d,t) 1977St22, J=L-1/2 (pol d,t) 1977St23.
631.479 <i>4</i>	3/2-		ABCD	J^{π} : L=1 (d,t) 1977St22, J=L+1/2 (pol d,t) 1977St23.
656 2	9/2-,11/2-		CDE	XREF: C(665).
740.5			D	J^{n} : L=5 (d,p) 1982Ja09.
769 305 21	3/2+		ARCDE	XREF: C(778)
707.505 21	5/2		ADCDL	J^{π} : L=2 (d,t) 1977St22, J=L-1/2 (pol d,t) 1977St23.
792.522 21	3/2+		AB D	J^{π} : $1/2^+$, $3/2^+$ from E1 γ to $1/2^-$, 215 level; $1/2^+$ less likely from γ from
				$(1/2^{-}, 3/2, 5/2^{-}), 1261$ level.
809 2			D	E(level): from 1977St22. $E=814$ keV in 1980Lo06.
829.98 4	(1/2,3/2,5/2)		Α	J^{n} : γ to $1/2$, 215 level.
859 2	1/2-,3/2-@		CD	XREF: C(862).
904? 2	(12/2) + 0		D	
934 2	$(13/2)^{+}$		CDE	XREF: $C(938)$. $II_{\rm r}$ I = 6 (311a c) and N=97 syst (analogous to states at 979 keV in 1498m
				$J^*: L=0$ ("He, α) and N=87 syst (analogous to states at 878 keV in TSm
942 14 6	$(1/2^{-} 3/2 5/2)$		AR	$I_{3/2}^{\pi}$ (1/2 3/2 5/2) from log $f_{t=7}^{\pi}$ 2 from (3/2 ⁺): (1/2 ⁻ 3/2 5/2) from γ to 5/2 ⁻
912.110	(1/2 ,5/2,5/2)		nD	g.s.
957.50 4	3/2-		ABCD	XREF: C(963).
	,			J^{π} : L=1 (d,t) 1977St22, J=L+1/2 (pol d,t) 1977St23.
983 5	5/2 ⁻ ,7/2 ^{-@}		CD	XREF: C(993).
				E(level): from (d,t), 1980Lo06.
1029? 2	1/0-		D	
1041.48 4	$\frac{1}{2}$		ABCDE	$J^*: L=1 (d,t) 19//St22, J=L-1/2 (pol d,t) 19//St23.$
1111.91 0	5/2		DCDE	I^{π} : L=2 (d,t) 19778t22, J=L-1/2 (pol d,t) 19778t23.
1115 1 ^C 4	$(15/2^+)^{\&}$		F	3 · 1 2 (d,d) 1 7 7 6 1 1 1 2 (pol d,d) 1 7 7 6 2 3 .
$1154^{\#}$ 2	$(10/2^{-})^{-}$		- - CD	
$1180 0^{b} 1$	$(17/2^{-})^{\&}$		CD F	
1205.2	(17/2)		CD	YDEE: C(1212)
1205 2	5/2 ,7/2		D	AREP. C(1212).
1236 10	$(9/2^{-}.11/2^{-})$		DE	J^{π} : L=(5) (³ He, α) (1980L006) and (d,t) (1982Ja09).
1260.82 5	$(1/2^-, 3/2, 5/2^-)$		Α	J^{π} : γ 's to $1/2^{-}$, 605 level and $5/2^{-}$, g.s. respectively.
1263.95 7	3/2+		A CD	XREF: C(1269)D(1262).
	0			J^{π} : L=2 (d,t) 1977St22, J=L-1/2 (pol d,t) 1977St23.
1293 6	5/2 ⁻ ,7/2 ⁻ @		С	
1310.89 6	3/2		AB D	J^{*} : L=2 (d,t) 19//St22, J=L-1/2 (pol d,t) 19//St23.
1333 2	(9/2 ⁻ ,11/2 ⁻)		D	
1334 6	1/2-,3/2-@		C	
1351.01 6	5/2-0		A C	XREF: C(1355).
				$5/2$, $1/2$ from L=3 (d,t) 19//St22; (3/2, 5/2) from γ to 1/2, 214 level and γ to $7/2^{-}$ 50 level
1353 2	$1/2^{+}$		р	$I^{\pi} \cdot I = 0 (d t) 19778t22$ I=L+1/2 (pol d t) 19778t23
1377 2	-/-		D	
1386 6	$1/2^{-}, 3/2^{-}$		С	
1398.12 8	3/2+		AB DE	J ^π : L=2 (d,t) 1977St22, J=L-1/2 (pol d,t) 1977St23.
1444.86 8	1/2+		AB D	J^{π} : L=0 (d,t) 1977St22, J=L+1/2 (pol d,t) 1977St23.
1464 2	(11/2 ⁻)		DE	J^{π} : L=4,5,6 (d,t); (11/2 ⁻) from N=87 syst; deformed 11/2[505] state.
1499.1 ^{<i>c</i>} 4	(19/2 ⁺) ^α		F	
1503 6	5/2 ⁻ ,7/2 ⁻ @		С	2
1509 2	9/2-,11/2-		DE	J^{n} : L=5 in (³ He, α).

Adopted Levels, Gammas (continued)

¹⁴⁷Nd Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
1523.48 8	$(1/2^{-},3/2^{-})^{@}$	BC	XREF: C(1531).
1544.50 7	$(1/2^-, 3/2, 5/2^+)$	AB	J^{π} : (1/2 ⁻ ,3/2,5/2) from γ to 5/2 ⁻ , 128 level and (1/2,3/2,5/2 ⁺) from primary γ from 1/2 ⁺
			to this level, in ${}^{146}Nd(n,\gamma)$.
1550.10 9	3/2-	BCD	XREF: $C(1558)D(1553)$.
1593 46 19	$5/2^+$	A DE	$J^*: L=1$ (d,t) 19778(22, J=L+1/2 (poi d,t) 19778(23, XREF D(1597))
10,0110 1,	0/2		$J^{\pi}: 3/2^+, 5/2^+$ from L=2 in (d,t) and γ to $7/2^-, 50$ level.
1610 6	5/2 ⁻ ,7/2 ^{-@}	С	
1617.42 14	3/2+,5/2+@	A D	XREF: D(1624).
1647 5	1/2-,3/2-@	CD	XREF: C(1660).
1671 10	(9/2-,11/2-)	E	J^{π} : L=(5) in (³ He, α).
1673 2	$1/2^+$	D	J^{π} : L=0 (d,t) 1977St22, J=L+1/2 (pol d,t) 1977St23.
1604 6	5/2, $5/25/2^{-} 7/2^{-}$	A	j^{*} : from γ s to $5/2^{\circ}$, 709 level, $5/2^{\circ}$, 515 level, and $7/2^{\circ}$, 50 level, respectively.
1694 0	3/2, $1/2$		
1098 0	(9/2, 11/2) 5/2 - 7/2 - @	C C	
1711 2	5/2, $7/25/2^{-a}$		XDEE: C(1730)
1755.51 9	5/2	r CD	J^{π} : $5/2^{-}.7/2^{-}$ from L in (d,p) or (d,t): $7/2^{-}$ excluded by log $ft=6.7$ from $(3/2^{+})$.
1759 5	$(1/2^{-},3/2^{-})^{@}$	CD	$\{(\mathbf{y}_{1}^{T}, \mathbf{y}_{2}^{T}) \in \{(\mathbf{y}_{2}^{T}), (\mathbf{y}_{2}^{T})\} \in \{(\mathbf{y}_{2}^{T}), (\mathbf{y}_{2}^{T}), (\mathbf{y}_{2}^{T})\} \in \{(\mathbf{y}_{2}^{T}), (\mathbf{y}_{2}^{T})\} \in \{(\mathbf{y}_{2}^{T})\} \in \{(\mathbf{y}_{2}^{T}), (\mathbf{y}_{2}^{T})\} \in \{(\mathbf{y}_{2}^{T})\} \in \{(\mathbf{y}$
1761.96 7	$(1/2, 3/2, 5/2^{-})$	Α	J^{π} : (1/2,3/2,5/2) from log ft=7.0; (1/2,3/2,5/2 ⁻) from γ to (1/2 ⁻), 215 level.
1770? 2	Ø	D	
1791 6	5/2-,7/2-@	C	
1824 5	$5/2^{-}, 7/2^{-}$	CD	XREF: $C(1817)$.
1841.05 /	$(1/2, 3/2, 5/2^{-})$ $2/2^{+} 5/2^{+}$	В	J [*] : primary γ from 1/2 ⁺ , and γ to 5/2 ⁺ , g.s.
1840 3	$3/2^{+}, 3/2^{+}$	U C	
1854 10	$(5/2^+)$	DE	I^{π} : L=(2), J=L+1/2 (pol d.t) 1977St23
1881 6	$5/2^{-}.7/2^{-}$	C	
1936 6	$1/2^{-}.3/2^{-}$	C	
1943 5	5/2-,7/2-@	CD	XREF: C(1953).
1979.47 <i>10</i>	$(1/2^{-}, 3/2^{-})^{@}$	BC	XREF: C(1987).
2010 6	$1/2^{-}, 3/2^{-}$	С	
2018 5	1/2+ @	D	
2030.2 [°] 4	$(23/2^+)^{\&}$	F	
2038 5	3/2+,5/2+@	DE	
2042 6	$(5/2^{-},7/2^{-})^{@}$	С	
2068 5		D	
2070.36 15	(1/2, 3/2, 5/2)	A	J^{n} : (1/2,3/2,5/2) from log ft = /.0; (1/2,3/2,5/2) from γ to (1/2), 128 level.
2086 5	1/2 , $3/2$	CD	
2110 0	$(3/2, 1/2)^{\circ}$ $(1/2, 3/2, 5/2^{-})$	A	I^{π} : γ to $1/2^{-}$ 604 level
2125.2	(1/2, 3/2, 3/2)	и П	3.701/2,0011001
2164.58 24	$(1/2^-, 3/2, 5/2^-)$	A E	XREF: E(2159).
			J^{π} : γ to $1/2^{-}$, 1310 level, and γ to $5/2^{-}$, g.s.
2177 5	3/2+,5/2	D	
2189 6	$(1/2^{-}, 3/2^{-})^{\textcircled{0}}$	С	
2204 5	5/2 ⁻ ,7/2 ⁻ @	D	
2226 6	$(5/2^{-},7/2^{-})^{\textcircled{a}}$	CDE	

Adopted Levels, Gammas (continued)

¹⁴⁷Nd Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
2250 5	$3/2^+, 5/2^+$	D	
2276 6	$(9/2^{-}, 11/2^{-})^{@}$	С	
2281 10		E	
2297 5		D	
2301 6	$1/2^{-}, 3/2^{-}$	С	
2310.21 15	$(3/2^+, 5/2^+)$ $(5/2^+)$	A A D	J [*] : $(1/2^+, 3/2^+, 5/2^+)$ from log ft=5.4 from $(3/2^+)$; γ to 5/2, g.s. $I^{\pi_+}(1/2^+, 3/2^+, 5/2^+)$ from log ft=5.5 from $(3/2^+)$; γ to 7/2 ⁻ , 581 level
$2350^{a} 5$	(3/2)	DE	$3 \cdot (1/2, 3/2, 3/2)$ from $\log (1/2, 3/2)$, for $1/2, 301$ for $1/2$.
2366 6	$(5/2^{-},7/2^{-})^{@}$	С	
2373 5		D	
2392 6	1/2 ⁻ ,3/2 ⁻ @	С	
2398 5	3/2+,5/2+@	D	
2413 10		E	
2423.2 4	1/2+ •	A D	
2425 6	$(1/2^-, 3/2^-)$	C	π , π , (5) ; (3) , (3)
2430.5	(9/2, 11/2)	DE	$J^{*}: L=(5) \ln ({}^{e}He, \alpha).$
2445 0	5/2 ,1/2	D	
2484 5	3/2+,5/2+@	D	
2484 10	$(9/2^{-}, 11/2^{-})$	Е	J^{π} : L=(5) in (³ He, α).
2486 6	5/2 ⁻ ,7/2 ^{-@}	С	
2513 5		D	
2524 6	$(1/2^{-}, 3/2^{-})^{\textcircled{0}}$	С	
2536 5	3/2+,5/2+@	D	
2541 <i>10</i>	$(9/2^{-},11/2^{-})$	E	J^{n} : L=(5) in (⁵ He, α).
2563 [#] 4	$3/2^+, 5/2^+$	CD	
2591.6	$1/2$, $3/2$ \approx	C	
2593 5	$1/2^{+} =$	D	
2022 3	$3/2^{+}, 3/2^{+} =$	U C	
2041 0	$(1/2, 3/2)^{-1}$	n n	
2033 5	$\frac{3}{2}, \frac{3}{2}$ $\frac{1}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}$	C C	
2689 5	$3/2^+$ $5/2^+$	DF	
2009 5 2711 4 ^C 4	$(27/2^+)^{\&}$	F	
2713 10	(27/2)	E	
2722 5	3/2 ⁺ ,5/2 ⁺ @	D	
2724 6	$(1/2^{-},3/2^{-})^{@}$	С	
2754 6	1/2-,3/2-@	С	
2787 5	0	D	
2805 6	1/2-,3/2-@	C	
2866 5	$5/2^{-}, 7/2^{-}$	CD	
2900.6	$5/2$, $1/2^{-5}$	C	
2928.0	$(1/2, 3/2)^{\circ}$	с 	
5195.5 ^{°°} 4	$(29/2^{+})^{22}$	r T	
$3304.3^{\circ} 4$	$(31/2^+)^{\infty}$	r E	
$3807.4^{-4} 4$	$(33/2^{+})^{22}$	r T	
4493.0° <i>3</i>	(37/2)	F	

Adopted Levels, Gammas (continued)

147Nd Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XREF	Comments
5207.2 ^{<i>d</i>} 8 (5292.20 9)	$(41/2^+)^{\&}$ 1/2 ⁺	F	Additional information 2. Additional information 3. E(level): level energy held fixed in least-squares adjustment. E(level): from 2021Wa16; others: 5292.19 <i>15</i> (1975Ro16). J ^π : from s-wave capture.

[†] From least-squares fit to $E\gamma$'s including primary γ 's with capture state held fixed; normalized χ^2 =8.8 is greater than critical $\chi^2 = 1.3.$

[±] From ¹⁴⁷Pr β^- decay, except where noted.

[#] Average of (d,p) and (d,t).

^(a) From L in (d,p) or (d,t). [&] From 238 U(12 C,X γ) based on systematics for N=87 isotones, (149 Sm, 151 Gd), band assignments and theoretical configurations.

^{*a*} From (d,t).

^b Band(A): Band based on 5/2⁻. Configuration= $vf_{7/2}^{-3}$ for 5/2⁻ and 7/2⁻ states. Above 9/2⁻, configuration= $vh_{9/2}$ coupled to quadrupole modes.

^c Band(B): Band based on $(15/2^+)$. Configuration= $\nu h_{9/2}$ coupled to octupole modes as suggested by interband E1 transitions.

^d Band(C): Band based on (29/2⁺). Possible configuration= $vf_{7/2}vh_{9/2}vi_{13/2}$.

$\gamma(^{147}\text{Nd})$

For unplaced γ 's see ¹⁴⁷Pr β ⁻ decay and ¹⁴⁶Nd(n, γ) datasets.

6

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\#}$	$I_{\gamma}^{@}$	E_f	\mathbf{J}_f^{π}	Mult.&	$\delta^{\ddagger\&}$	α^{\dagger}	Comments
49.9268	7/2-	49.927 1	100	0.0	5/2-	M1+E2	<0.42	12.0 16	B(M1)(W.u.)=0.012 +11-4 $\alpha(K)=8.64; \alpha(L)=2.7 14; \alpha(M)=0.59 33$ $\alpha(N)=0.129 70; \alpha(O)=0.0177 .86; \alpha(P)=0.00056.3$
127.9189	5/2-	77.9921 3	100 6	49.9268	7/2-	M1+E2	<0.48	3.13 24	$\begin{array}{l} \text{B}(M)(W.u.)=0.017 + 13-5 \\ \alpha(\text{K})=2.45 \ 4; \ \alpha(\text{L})=0.54 \ 20; \ \alpha(\text{M})=0.117 \ 45 \\ \alpha(\text{N})=0.0258 \ 96; \ \alpha(\text{O})=0.0037 \ 12; \ \alpha(\text{P})=0.000154 \ 6 \\ \text{Branching: } I\gamma(78\gamma)/I\gamma(128\gamma)=1.8 \ 3 \ (1975\text{Rol6}), \ 1.0 \ I \\ (1977\text{Rel1} \ ^{147}\text{Pr} \ 6^{-} \ \text{decay}) \end{array}$
		127.919 6	76 4	0.0	5/2-	M1(+E2)	<0.40	0.718 <i>18</i>	B(M1)(W.u.)=0.0032 +24-10 α (K)=0.597 9; α (L)=0.095 12; α (M)=0.020 3 α (N)=0.0045 6; α (O)=0.00067 8; α (P)=3.79×10 ⁻⁵ 10 L _Y : 54 5 (n, γ).
190.291	(9/2)-	140.364 6	100	49.9268	7/2-	[M1+E2]		0.60 6	$\alpha(K)=0.450\ 13;\ \alpha(L)=0.118\ 55;\ \alpha(M)=0.026\ 13$ $\alpha(N)=0.0057\ 27;\ \alpha(O)=7\ 9\times10^{-4}\ 33;\ \alpha(P)=2\ 5\times10^{-5}\ 5$
214.5949	1/2-	86.6759 6	100 6	127.9189	5/2-	E2		3.68	$\begin{array}{l} a(r)=0.0037\ 2^{-7}, \alpha(0)=7.9716^{-7}\ 5^{-7}, \alpha(1)=2.5\times10^{-7}\ 5^{-7}\\ B(E2)(W.u.)=111.8\ 20\\ \alpha(K)=1.79\ 3;\ \alpha(L)=1.468\ 21;\ \alpha(M)=0.335\ 5\\ \alpha(N)=0.0724\ 11;\ \alpha(O)=0.00926\ 13;\ \alpha(P)=7.67\times10^{-5}\ 11\\ Branching:\ I\gamma(87\gamma)/I\gamma(214\gamma)=6.7\ 3\ (1975Ro16),\ 4.0\ 3\ (av: 1^{47}\Pr\ \beta^-\ decay) \end{array}$
		214.594 6	23.9 15	0.0	5/2-	E2		0.1548	B(E2)(W.u.)=0.287 24 $\alpha(K)=0.1163 \ 17; \ \alpha(L)=0.0302 \ 5; \ \alpha(M)=0.00669 \ 10$ $\alpha(N)=0.001463 \ 21; \ \alpha(O)=0.000200 \ 3; \ \alpha(P)=6.00\times10^{-6} \ 9$ I _{γ} : 15.1 12 (n, γ). Mult., δ : E2(+M1), $\delta^2>1.0$ in ¹⁴⁷ Pr β^- decay; M1 mixing excluded from AI=2, $\Delta\pi$ =no transition
314.6799	3/2-	100.078 <i>3</i>	2.4 3	214.5949	1/2-	[M1]		1.413	$\alpha(K)=1.201 \ 17; \ \alpha(L)=0.1672 \ 24; \ \alpha(M)=0.0355 \ 5 \\ \alpha(N)=0.00795 \ 12; \ \alpha(O)=0.001206 \ 17; \ \alpha(P)=7.79\times10^{-5} \ 11 \\ \text{Branching: } I\gamma(315\gamma)/I\gamma(265\gamma)/I\gamma(187\gamma)/I\gamma(100\gamma)=100/2.0 \\ 3/4.0 \ 6/3.5 \ 5 \ (1975Ro16), \ 100/1.1 \ 1/6 \ 1/1.3 \ 2 \ (1975Do15, \ 14^{7}Pr \ \beta^{-} \ \text{decay}).$
		186.752 6	5.6 7	127.9189	5/2-	E2		0.247	$\alpha(K)=0.180 \ 3; \ \alpha(L)=0.0525 \ 8; \ \alpha(M)=0.01170 \ 17 \ \alpha(N)=0.00255 \ 4; \ \alpha(O)=0.000345 \ 5; \ \alpha(P)=9.01\times10^{-6} \ 13 \ L_{2}: \ 4.0.3 \ (n.\gamma)$
		264.70 4	1.9 5	49.9268	7/2-	[E2]		0.0779	$\alpha(K)=0.0606 \ 9; \ \alpha(L)=0.01354 \ 19; \ \alpha(M)=0.00298 \ 5$ $\alpha(N)=0.000653 \ 10; \ \alpha(O)=9.10\times10^{-5} \ 13; \ \alpha(P)=3.26\times10^{-6} \ 5$ $L_{2}: 2 \ 0 \ 2 \ (n \ 2)$
		314.675 4	100 5	0.0	5/2-	M1+E2	1.3 +9-4	0.051 4	$\alpha(K)=0.042 4; \ \alpha(L)=0.00713 \ 12; \ \alpha(M)=0.00154 \ 3 \alpha(N)=0.000341 \ 6; \ \alpha(O)=4.96 \times 10^{-5} \ 8; \ \alpha(P)=2.5 \times 10^{-6} \ 3$

						A	Adopted Leve	els, Gammas (c	ontinued)	
							$\gamma(^{147})$	⁷ Nd) (continued)	
E _i (le	vel)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\#}$	Ι _γ @	\mathbf{E}_{f}	J_f^π	Mult. ^{&}	$\delta^{\ddagger\&}$	α^{\dagger}	Comments
463.6	514	3/2-	148.7 3	0.8 3	314.6799	3/2-	[M1+E2]		0.50 4	$\alpha(K)=0.379 \ 14; \ \alpha(L)=0.095 \ 41; \ \alpha(M)=0.0209 \ 94$ $\alpha(N)=0.0046 \ 20; \ \alpha(Q)=6.3\times10^{-4} \ 25; \ \alpha(P)=2.1\times10^{-5} \ 4$
			249.029 4	28 3	214.5949	1/2-	M1+E2	0.8 +35-9	0.105 <i>10</i>	$\begin{aligned} \alpha(\mathbf{K}) = 0.087 \ I3; \ \alpha(\mathbf{L}) = 0.0146 \ 23; \ \alpha(\mathbf{M}) = 0.0032 \ 6 \\ \alpha(\mathbf{N}) = 0.00070 \ I2; \ \alpha(\mathbf{O}) = 0.000102 \ I1; \ \alpha(\mathbf{P}) = 5.3 \times 10^{-6} \ I3 \\ \mathbf{I}_{\gamma}: \ 25 \ 2 \ (\mathbf{n}, \gamma). \end{aligned}$ Branching: $I\gamma(464\gamma)/I\gamma(414\gamma)/I\gamma(336\gamma)/I\gamma(249\gamma) = 3.2 \\ 5/22 \ 3/100/25 \ 4 \ (1975\text{Ro16}), \ -/20 \ 3/100/27 \ 3 \ (av: \ 147\text{Pr} \ \beta^{-} \ decay). \end{aligned}$
			335.700 5	100 5	127.9189	5/2-	E2(+M1)	3.6 +20-8	0.0380 8	$\alpha(K)=0.0307 \ 8; \ \alpha(L)=0.00577 \ 8; \ \alpha(M)=0.001257 \ 18 \ \alpha(N)=0.000277 \ 4; \ \alpha(O)=3.95\times10^{-5} \ 6; \ \alpha(P)=1.74\times10^{-6} \ 6$
			413.680 15	21.3 14	49.9268	7/2-	[E2]		0.0199	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01630 \ 23; \ \alpha(\mathbf{L}) = 0.00287 \ 4; \ \alpha(\mathbf{M}) = 0.000622 \ 9 \\ &\alpha(\mathbf{N}) = 0.0001374 \ 20; \ \alpha(\mathbf{O}) = 1.98 \times 10^{-5} \ 3; \\ &\alpha(\mathbf{P}) = 9.37 \times 10^{-7} \ 14 \end{aligned}$
			463.53 <i>13</i>	4.4 ^b 5	0.0	5/2-	[M1+E2]		0.018 4	α (K)=0.015 4; α (L)=0.0023 3; α (M)=0.00048 6 α (N)=0.000108 13; α (O)=1.61×10 ⁻⁵ 23; α (P)=9.5×10 ⁻⁷ 26 I _{\gamma} : ≤0.32, ¹⁴⁷ Pr β^- decay (uncertain placement for this
516.6	579	5/2-	201.926 ^d 7	8 4	314.6799	3/2-	[M1+E2]		0.194 5	α(K)=0.155 14; α(L)=0.031 8; α(M)=0.0067 19 α(N)=0.00148 39; α(O)=0.00021 5; α(P)=9.0×10-6 19 Branching: Iγ(389γ)/Iγ(467γ)/Iγ(517γ)/Iγ(202γ)=100/ 91 13/81 11/27 4 (1975Ro16), 100/86 20/53 15/- (1975Do15, ¹⁴⁷ Pr β ⁻ decay).
			388.815 ^d 12	83 5	127.9189	5/2-	M1+E2	<0.82	0.0325 23	α (K)=0.0276 21; α (L)=0.00390 12; α (M)=0.000829 21 α (N)=0.000185 5; α (O)=2.79×10 ⁻⁵ 11; α (P)=1.74×10 ⁻⁶
			466.750 12	100 18	49.9268	7/2-	[M1+E2]		0.018 4	$\alpha(K)=0.015 \ 4; \ \alpha(L)=0.0022 \ 3; \ \alpha(M)=0.00048 \ 6 \ \alpha(N)=0.000106 \ 13; \ \alpha(O)=1.58\times10^{-5} \ 22; \ \alpha(P)=9.3\times10^{-7} \ 26$
			516.78 5	78 18	0.0	5/2-	[M1+E2]		0.014 3	$\alpha(\text{K})=0.012 \ 3; \ \alpha(\text{L})=0.00168 \ 24; \ \alpha(\text{M})=0.00036 \ 5$ $\alpha(\text{N})=8.0\times10^{-5} \ 11; \ \alpha(\text{O})=1.20\times10^{-5} \ 19; \ \alpha(\text{P})=7.2\times10^{-7}$
581.0	0	7/2-	581.0 ^{<i>a</i>} 3	100	0.0	5/2-	[M1+E2]		0.0103 24	$\alpha(K)=0.0087\ 21;\ \alpha(L)=0.00123\ 20;\ \alpha(M)=0.00026\ 4$ $\alpha(N)=5.8\times10^{-5}\ 10;\ \alpha(O)=8.8\times10^{-6}\ 16;\ \alpha(P)=5.4\times10^{-7}$
596.2	2	(13/2 ⁻)	405.9 ^c 3	100	190.291	(9/2)-	[E2]		0.0211	$\alpha(K)=0.01719\ 25;\ \alpha(L)=0.00305\ 5;\ \alpha(M)=0.000661\ 10$ $\alpha(N)=0.0001461\ 21;\ \alpha(O)=2.10\times10^{-5}\ 3;$ $\alpha(P)=9.86\times10^{-7}\ 14$
604.5	511	1/2-	86.69 ^{ad} 5	20 3	516.679	5/2-	[E2]		3.67	$\alpha(K)=1.79 \ 3; \ \alpha(L)=1.467 \ 21; \ \alpha(M)=0.335 \ 5 \ \alpha(N)=0.0723 \ 11; \ \alpha(\Omega)=0.00926 \ 14; \ \alpha(P)=7 \ 66 \times 10^{-5} \ 11$
			140.898 <i>1</i>	41 4	463.614	3/2-	[M1+E2]		0.59 6	$\alpha(K) = 0.445 \ 13; \ \alpha(L) = 0.116 \ 54; \ \alpha(M) = 0.026 \ 13 \\ \alpha(N) = 0.0056 \ 27; \ \alpha(O) = 7.8 \times 10^{-4} \ 32; \ \alpha(P) = 2.5 \times 10^{-5} \ 5$

 $^{147}_{60}\mathrm{Nd}_{87}$ -7

$\gamma(^{147}\text{Nd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{@}$	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	α^{\dagger}	Comments
604.511	1/2-	389.94 6	7.3 ^b 18	214.5949	1/2-	[M1,E2]	0.029 6	α (K)=0.024 6; α (L)=0.00372 25; α (M)=0.00080 5 α (N)=0.000177 11; α (O)=2.63×10 ⁻⁵ 24; α (P)=1.49×10 ⁻⁶ 40
		476.80 ^{ad} 6	20 3	127.9189	5/2-	[E2]	0.01339	α (K)=0.01106 <i>16</i> ; α (L)=0.00184 <i>3</i> ; α (M)=0.000397 <i>6</i> α (N)=8.79×10 ⁻⁵ <i>13</i> ; α (O)=1.278×10 ⁻⁵ <i>18</i> ; α (P)=6.45×10 ⁻⁷ <i>9</i>
		604.57 <i>3</i>	100 ^b 7	0.0	5/2-	[E2]	0.00718	α (K)=0.00600 9; α (L)=0.000923 13; α (M)=0.000198 3 α (N)=4.39×10 ⁻⁵ 7; α (O)=6.48×10 ⁻⁶ 9; α (P)=3.57×10 ⁻⁷ 5
631.479	3/2-	114.781 ^d 6	9 ^b 3	516.679	5/2-	[M1+E2]	1.15 20	α (K)=0.810 <i>12</i> ; α (L)=0.26 <i>15</i> ; α (M)=0.059 <i>35</i> α (N)=0.0128 <i>75</i> ; α (O)=0.00173 <i>92</i> ; α (P)=4.4×10 ⁻⁵ <i>9</i>
		167.870 <i>3</i>	27 ^b 2	463.614	3/2-	[M1+E2]	0.342 14	$\alpha(K) = 0.266 \ 15; \ \alpha(L) = 0.060 \ 22; \ \alpha(M) = 0.0132 \ 50 \ \alpha(N) = 0.0029 \ 11; \ \alpha(O) = 4.0 \times 10^{-4} \ 13; \ \alpha(P) = 1.5 \times 10^{-5} \ 3$
		316.82 4	21 ^b 2	314.6799	3/2-	[M1+E2]	0.052 8	$\alpha(K) = 0.043 \ 8; \ \alpha(L) = 0.00695 \ 15; \ \alpha(M) = 0.00150 \ 6 \\ \alpha(N) = 0.000332 \ 9; \ \alpha(O) = 4.87 \times 10^{-5} \ 10; \ \alpha(P) = 2.6 \times 10^{-6} \ 7$
		416.88 4	6 ^b 3	214.5949	1/2-	[M1+E2]	0.024 5	α (K)=0.020 5; α (L)=0.0031 3; α (M)=0.00066 5 α (N)=0.000146 13; α (O)=2.17×10 ⁻⁵ 24; α (P)=1.25×10 ⁻⁶ 34
		503.56 3	56 ^b 6	127.9189	5/2-	[M1+E2]	0.015 4	$\alpha(K)=0.012 \ 3; \ \alpha(L)=0.00181 \ 25; \ \alpha(M)=0.00038 \ 5 \ \alpha(N)=8.6\times10^{-5} \ 12; \ \alpha(O)=1.28\times10^{-5} \ 20; \ \alpha(P)=7.7\times10^{-7} \ 21$
		631.480 <i>13</i>	100 ^b 6	0.0	5/2-	[M1+E2]	0.0083 19	$\alpha(K)=0.0071 \ 17; \ \alpha(L)=0.00099 \ 18; \ \alpha(M)=0.00021 \ 4$ $\alpha(N)=4.7\times10^{-5} \ 8; \ \alpha(O)=7.1\times10^{-6} \ 14; \ \alpha(P)=4.4\times10^{-7} \ 12$
769.305	3/2+	305.75 20	1.2 2	463.614	3/2-	[E1]	0.01292	$\alpha(\mathbf{K})=0.01106 \ 16; \ \alpha(\mathbf{L})=0.001470 \ 21; \ \alpha(\mathbf{M})=0.000310 \ 5$ $\alpha(\mathbf{N})=6.89\times10^{-5} \ 10; \ \alpha(\mathbf{O})=1.029\times10^{-5} \ 15; \ \alpha(\mathbf{P})=6.24\times10^{-7} \ 9$ $\mathbf{L}_{\alpha}: \ 10.4 \ 8 \ (\mathbf{n}, \boldsymbol{\gamma}).$
		454.8 ^{<i>a</i>} 2	0.65 5	314.6799	3/2-	[E1]	0.00490	$\alpha(K)=0.00420 \ 6; \ \alpha(L)=0.000550 \ 8; \ \alpha(M)=0.0001157 \ 17 \ \alpha(N)=2.58\times10^{-5} \ 4; \ \alpha(O)=3.88\times10^{-6} \ 6; \ \alpha(P)=2.43\times10^{-7} \ 4$
		554.77 4	36.6 19	214.5949	1/2-	E1	0.00312	$\alpha(K)=0.00268 \ 4; \ \alpha(L)=0.000347 \ 5; \ \alpha(M)=7.30\times10^{-5} \ 11 \ \alpha(N)=1.629\times10^{-5} \ 23; \ \alpha(O)=2.46\times10^{-6} \ 4; \ \alpha(P)=1.562\times10^{-7} \ 22 \ I_{\gamma}: \ 42 \ 3 \ (n,\gamma).$ Branching: $I\gamma(641\gamma)/I\gamma(555\gamma)=100/42 \ 6 \ (1975Ro16), \ 100/42 \ (1975Ro16), \ (1975Ro16),$
		641.380 25	100 5	127.9189	5/2-	E1	0.00227	$\alpha(K)=0.00196 \ 3; \ \alpha(L)=0.000252 \ 4; \ \alpha(M)=5.30\times10^{-5} \ 8 \ \alpha(N)=1.182\times10^{-5} \ 17; \ \alpha(O)=1.79\times10^{-6} \ 3; \ \alpha(P)=1.146\times10^{-7} \ 16$
		718.9 ^a 2	2.1 7	49.9268	$7/2^{-}$			
		769.3 ^{<i>a</i>} 2	2.2 2	0.0	5/2-	[E1]	1.56×10^{-3}	α (K)=0.001342 <i>19</i> ; α (L)=0.0001716 <i>24</i> ; α (M)=3.60×10 ⁻⁵ <i>5</i> α (N)=8.05×10 ⁻⁶ <i>12</i> : α (O)=1.220×10 ⁻⁶ <i>17</i> : α (P)=7.90×10 ⁻⁸ <i>11</i>
792.522	3/2+	161.1 ^{<i>a</i>} 2	3.4 27	631.479	3/2-	[E1]	0.0704	$\alpha(K) = 0.0600 \ 9; \ \alpha(L) = 0.00824 \ 12; \ \alpha(M) = 0.00174 \ 3$ $\alpha(N) = 0.000385 \ 6; \ \alpha(O) = 5.65 \times 10^{-5} \ 9; \ \alpha(P) = 3.18 \times 10^{-6} \ 5$
		328.84 5	28.6 15	463.614	3/2-	E1	0.01075	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00920 \ I3; \ \alpha(\mathbf{L}) = 0.001220 \ I7; \ \alpha(\mathbf{M}) = 0.000257 \ 4 \\ &\alpha(\mathbf{N}) = 5.72 \times 10^{-5} \ 8; \ \alpha(\mathbf{O}) = 8.56 \times 10^{-6} \ I2; \ \alpha(\mathbf{P}) = 5.22 \times 10^{-7} \ 8 \\ &\mathbf{I}_{\gamma}: \ 38 \ 3 \ (\mathbf{n}, \gamma). \end{aligned}$ Branching: $\mathbf{I}_{\gamma}(578\gamma)/\mathbf{I}_{\gamma}(478\gamma)/\mathbf{I}_{\gamma}(329\gamma) = 100/17 \ 6/38 \ 5 \\ &(1975 \mathbf{Ro16}), \ 100/34 \ 4/32 \ 5 \ (1975 \mathbf{Do15}, \ ^{147} \mathbf{Pr} \ \beta^{-} \ \text{decay}). \end{aligned}$

 ∞

					Adop	ted Levels, G	ammas (cont	inued)
						$\gamma(^{147}\text{Nd})$	(continued)	
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{@}$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	α^{\dagger}	Comments
792.522	3/2+	478.03 ^{<i>d</i>} 5	32.7 15	314.6799	3/2-	E1	0.00437	$\alpha(K)=0.00375\ 6;\ \alpha(L)=0.000489\ 7;\ \alpha(M)=0.0001029\ 15$ $\alpha(N)=2.29\times10^{-5}\ 4;\ \alpha(Q)=3.45\times10^{-6}\ 5;\ \alpha(P)=2.17\times10^{-7}\ 3$
		577.95 3	100 5	214.5949	1/2-	E1	0.00285	$\alpha(\mathbf{K}) = 0.00245 \ 4; \ \alpha(\mathbf{L}) = 0.000317 \ 5; \ \alpha(\mathbf{M}) = 6.66 \times 10^{-5} \ 10$ $\alpha(\mathbf{N}) = 1.487 \times 10^{-5} \ 21; \ \alpha(\mathbf{O}) = 2.24 \times 10^{-6} \ 4;$ $\alpha(\mathbf{P}) = 1.430 \times 10^{-7} \ 20$
		664.6 2	1.64 16	127.9189	5/2-	[E1]	0.00211	$\alpha(K) = 0.00181 \ 3; \ \alpha(L) = 0.000233 \ 4; \ \alpha(M) = 4.91 \times 10^{-5} \ 7$ $\alpha(N) = 1.095 \times 10^{-5} \ 16; \ \alpha(O) = 1.657 \times 10^{-6} \ 24;$ $\alpha(P) = 1.065 \times 10^{-7} \ 15$
829.98	(1/2,3/2,5/2 ⁻)	366.59 ^{ad} 5	33 4	463.614	3/2-			
		615.07 ^{ad} 6	100 10	214.5949	$1/2^{-}$			
942.14	$(1/2^-, 3/2, 5/2)$	310.7 ^{<i>a</i>} 1	5.1 7	631.479	$3/2^{-}$			
		478.51 ^{<i>a</i>} 8	28 3	463.614	3/2-			
		627.44 15	32 2	314.6799	3/2-			I _γ : 44 3 (n,γ). Branching: Iγ(627γ)/Iγ(942γ)=44 5 (1975Ro16), 30 6 (1975Do15, ¹⁴⁷ Pr $β^-$ decay)
		814.9 ^a 3	9.2 10	127.9189	$5/2^{-}$			
		942.03 12	100 7	0.0	5/2-			I_{γ} : 100 8 (n, γ).
957.50	3/2-	165.02 ^{<i>a</i>} 4	100 13	792.522	3/2+	[E1]	0.0659	$\alpha(K)=0.0562\ 8;\ \alpha(L)=0.00771\ 11;\ \alpha(M)=0.001626\ 23$ $\alpha(N)=0.000360\ 5;\ \alpha(O)=5.29\times10^{-5}\ 8;\ \alpha(P)=2.99\times10^{-6}\ 5$
		493.48 15	73 7	463.614	3/2-	[M1+E2]	0.016 4	α (K)=0.013 3; α (L)=0.0019 3; α (M)=0.00041 5 α (N)=9.1×10 ⁻⁵ 12; α (O)=1.36×10 ⁻⁵ 21; α (P)=8.1×10 ⁻⁷ 22
		642.69 20	80 7	314.6799	3/2-	[M1+E2]	0.0080 19	$\alpha(K)=0.0068 \ 17; \ \alpha(L)=0.00095 \ 17; \ \alpha(M)=0.00020 \ 4 \\ \alpha(N)=4.5\times10^{-5} \ 8; \ \alpha(O)=6.8\times10^{-6} \ 13; \ \alpha(P)=4.2\times10^{-7} \ 12$
		957.34 14	87 7	0.0	5/2-	[M1+E2]	0.0031 7	$\alpha(K)=0.0027 \ 6; \ \alpha(L)=0.00036 \ 7; \ \alpha(M)=7.5\times10^{-5} \ 14$ $\alpha(N)=1.7\times10^{-5} \ 3; \ \alpha(O)=2.5\times10^{-6} \ 5; \ \alpha(P)=1.6\times10^{-7} \ 4$
1041.48	1/2-	410.03 9	46 ^b 4	631.479	3/2-	[M1+E2]	0.025 5	α (K)=0.021 5; α (L)=0.0032 3; α (M)=0.00069 5 α (N)=0.000153 12; α (O)=2.27×10 ⁻⁵ 24; α (P)=1.31×10 ⁻⁶ 35
		436.91 6	76 ^b 6	604.511	1/2-	[M1,E2]	0.021 5	α (K)=0.018 4; α (L)=0.0027 3; α (M)=0.00057 6 α (N)=0.000128 13; α (O)=1.90×10 ⁻⁵ 24; α (P)=1.11×10 ⁻⁶ 30
		726.84 6	100 ^b 8	314.6799	3/2-	[M1+E2]	0.0059 14	$\alpha(K)=0.0050 \ 12; \ \alpha(L)=0.00069 \ 13; \ \alpha(M)=0.00015 \ 3$ $\alpha(N)=3.3\times10^{-5} \ 6; \ \alpha(O)=5.0\times10^{-6} \ 10; \ \alpha(P)=3.12\times10^{-7} \ 81$
1111.91	3/2+	595.20 20	<7.6 ^b	516.679	5/2-	[E1]	0.00267	$\alpha(K) = 0.00230 \ 4; \ \alpha(L) = 0.000297 \ 5; \ \alpha(M) = 6.24 \times 10^{-5} \ 9 \\ \alpha(N) = 1.393 \times 10^{-5} \ 20; \ \alpha(O) = 2.10 \times 10^{-6} \ 3; \\ \alpha(P) = 1.342 \times 10^{-7} \ 19$
		797.23 11	68 ^b 5	314.6799	3/2-	[E1]	1.45×10^{-3}	$\alpha(K)=0.001250 \ 18; \ \alpha(L)=0.0001595 \ 23; \ \alpha(M)=3.35\times10^{-5} 5$

L

					Adopted	Levels, Gam	mas (continu	ed)
						γ(¹⁴⁷ Nd) (co	ntinued)	
E _i (level)	${ m J}^{\pi}_i$	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{@}$	\mathbf{E}_{f}	J_f^π	Mult. ^{&}	α^{\dagger}	Comments
					<u> </u>			$ \frac{\alpha(N)=7.48\times10^{-6} \ 11; \ \alpha(O)=1.134\times10^{-6} \ 16;}{\alpha(P)=7.36\times10^{-8} \ 11} $
1111.91	3/2+	897.57 ^e 11	100 ^b 8	214.5949	1/2-	[E1]	1.15×10^{-3}	α (K)=0.000990 <i>14</i> ; α (L)=0.0001258 <i>18</i> ; α (M)=2.64×10 ⁻⁵ 4
								$\alpha(N)=5.90\times10^{-6} \ 9; \ \alpha(O)=8.96\times10^{-7} \ 13; \ \alpha(P)=5.85\times10^{-8} \ 9$
1115.1	$(15/2^+)$	518.9 ^c 3		596.2	(13/2 ⁻)	[E1]	0.00362	α (K)=0.00311 5; α (L)=0.000404 6; α (M)=8.50×10 ⁻⁵ 12 α (N)=1.90×10 ⁻⁵ 3; α (O)=2.86×10 ⁻⁶ 4; α (P)=1.81×10 ⁻⁷ 3
1189.9	(17/2 ⁻)	593.8 ^c 3		596.2	(13/2 ⁻)	[E2]	0.00751	α (K)=0.00628 9; α (L)=0.000971 14; α (M)=0.000208 3 α (N)=4.62×10 ⁻⁵ 7; α (O)=6.81×10 ⁻⁶ 10; α (P)=3.73×10 ⁻⁷ 6
1260.82	(1/2 ⁻ ,3/2,5/2 ⁻)	468.37 ^{<i>a</i>} 5 491.4 ^{<i>a</i>} 3 656.1 ^{<i>a</i>} 2 1046.06 ^{<i>a</i>} 8	3.4 <i>4</i> 11 2 4.4 5 3.2 <i>4</i>	792.522 769.305 604.511 214.5949	3/2 ⁺ 3/2 ⁺ 1/2 ⁻ 1/2 ⁻			
1263.95	3/2+	1261.1 ^a 3 494.9 ^a 1	4.2 6	0.0 769.305	5/2 3/2 ⁺	[M1+E2]	0.015 4	α (K)=0.013 3; α (L)=0.0019 3; α (M)=0.00040 5 α (N)=9.0×10 ⁻⁵ 12; α (O)=1.35×10 ⁻⁵ 21; α (P)=8.0×10 ⁻⁷ 22
		746.9 ^{ad} 1	7.9 6	516.679	5/2-	[E1]	1.66×10 ⁻³	$\alpha(K)=0.001425\ 20;\ \alpha(L)=0.000182\ 3;\ \alpha(M)=3.83\times10^{-5}\ 6$ $\alpha(N)=8.56\times10^{-6}\ 12;\ \alpha(O)=1.296\times10^{-6}\ 19;$ $\alpha(P)=8.39\times10^{-8}\ 12$
		800.4 ^{<i>a</i>} 2	13.8 11	463.614	3/2-	[E1]	1.44×10^{-3}	$\alpha(K)=0.001240 \ 18; \ \alpha(L)=0.0001582 \ 23; \ \alpha(M)=3.32\times10^{-5} 5$
								α (N)=7.42×10 ⁻⁶ 11; α (O)=1.125×10 ⁻⁶ 16; α (P)=7.31×10 ⁻⁸ 11
		949.3 ^{<i>a</i>} 2	13.4 18	314.6799	3/2-	[E1]	1.03×10^{-3}	α (K)=0.000889 <i>13</i> ; α (L)=0.0001127 <i>16</i> ; α (M)=2.37×10 ⁻⁵ 4
								α (N)=5.29×10 ⁻⁶ 8; α (O)=8.03×10 ⁻⁷ 12; α (P)=5.26×10 ⁻⁸ 8
		1214.8 ^{<i>a</i>} 4	27 3	49.9268	7/2-		c co 10- ⁴	
		1264.2 ^a 3	100 5	0.0	5/2	[EI]	6.68×10 ⁴	$\alpha(K)=0.000526 \ 8; \ \alpha(L)=6.60\times 10^{-5} \ 10; \ \alpha(M)=1.385\times 10^{-5} \ 20$
								$a(N)=3.10\times10^{-5}$; $a(O)=4.71\times10^{-7}$; $a(P)=3.12\times10^{-5}$ 5: $a(IPF)=5.81\times10^{-5}$ 9
1310.89	3/2+	518.43 ^{<i>a</i>} 8	1.8 2	792.522	3/2+	[M1+E2]	0.014 3	$\alpha(K)=0.012 \ 3; \ \alpha(L)=0.00167 \ 24; \ \alpha(M)=0.00036 \ 5 \ \alpha(N)=7.9\times10^{-5} \ 11; \ \alpha(O)=1.19\times10^{-5} \ 19; \ \alpha(P)=7.1\times10^{-7}$
		706.8 ^{<i>a</i>} 3	12.2 9	604.511	1/2-	[E1]	0.00185	$\alpha(K)=0.001596\ 23;\ \alpha(L)=0.000205\ 3;\ \alpha(M)=4.30\times10^{-5}\ 6$ $\alpha(N)=9.61\times10^{-6}\ 14;\ \alpha(O)=1.454\times10^{-6}\ 21;$ $\alpha(P)=9.38\times10^{-8}\ 14$

						Adopte	d Levels, Gam	mas (continued)
							$\gamma(^{147}\text{Nd})$ (con	ntinued)
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{@}$	E_f	\mathbf{J}_{f}^{π}	Mult.&	α^{\dagger}	Comments
1310.89	3/2+	793.8 ^{<i>a</i>} 2	32.8 20	516.679	5/2-	[E1]	1.46×10^{-3}	α (K)=0.001260 <i>18</i> ; α (L)=0.0001609 <i>23</i> ; α (M)=3.38×10 ⁻⁵ <i>5</i> α (N)=7.55×10 ⁻⁶ <i>11</i> ; α (O)=1.144×10 ⁻⁶ <i>16</i> ; α (P)=7.43×10 ⁻⁸ <i>11</i>
		846.9 ^{<i>a</i>} 3	75	463.614	3/2-	[E1]	1.29×10^{-3}	α (K)=0.001109 <i>16</i> ; α (L)=0.0001412 <i>20</i> ; α (M)=2.96×10 ⁻⁵ <i>5</i> α (N)=6.62×10 ⁻⁶ <i>10</i> ; α (O)=1.005×10 ⁻⁶ <i>14</i> ; α (P)=6.54×10 ⁻⁸ <i>10</i>
		996.0 ^{<i>a</i>} 2	36.2 18	314.6799	3/2-	[E1]	9.42×10^{-4}	α (K)=0.000812 <i>12</i> ; α (L)=0.0001027 <i>15</i> ; α (M)=2.16×10 ⁻⁵ <i>3</i> α (N)=4.82×10 ⁻⁶ <i>7</i> ; α (O)=7.32×10 ⁻⁷ <i>11</i> ; α (P)=4.80×10 ⁻⁸ <i>7</i>
		1096.8 ^{<i>a</i>} 3	73	214.5949	$1/2^{-}$	[E1]	7.87×10^{-4}	α (K)=0.000679 <i>10</i> ; α (L)=8.56×10 ⁻⁵ <i>12</i> ; α (M)=1.80×10 ⁻⁵ <i>3</i> α (N)=4.02×10 ⁻⁶ <i>6</i> ; α (O)=6.11×10 ⁻⁷ <i>9</i> ; α (P)=4.02×10 ⁻⁸ <i>6</i>
		1182.8 ^{<i>a</i>} 3	25.0 14	127.9189	5/2-	[E1]	7.07×10 ⁻⁴	$\alpha(K)=0.000592 \ 9; \ \alpha(L)=7.45\times10^{-5} \ 11; \ \alpha(M)=1.563\times10^{-5} \ 22 \\ \alpha(N)=3.49\times10^{-6} \ 5; \ \alpha(O)=5.32\times10^{-7} \ 8; \ \alpha(P)=3.51\times10^{-8} \ 5; \\ \alpha(IPF)=2.03\times10^{-5} \ 3$
		1261.1 ^a 3	100 5	49.9268	$7/2^{-}$			
		1310.7 ^{<i>a</i>} 3	12.6 9	0.0	5/2-	[E1]	6.55×10 ⁻⁴	α (K)=0.000494 7; α (L)=6.19×10 ⁻⁵ 9; α (M)=1.298×10 ⁻⁵ 19 α (N)=2.90×10 ⁻⁶ 4; α (O)=4.42×10 ⁻⁷ 7; α (P)=2.93×10 ⁻⁸ 5; α (IPF)=8.26×10 ⁻⁵ 12
1351.01	$5/2^{-}$	239.1 ^{<i>a</i>} 1	2.0 3	1111.91	$3/2^{+}$			
	,	718.9 ^{ad} 2	18 4	631 479	3/2-			
		746.9^{a} 3	12.1	604.511	$1/2^{-}$			
		887.0 ^{<i>a</i>} 2	21.6 14	463.614	$3/2^{-}$			
		1036.6 ^{<i>a</i>} 3	8.1 20	314.6799	$3/2^{-}$			
		1136.53 ^{<i>a</i>} 7	62 3	214.5949	$1/2^{-}$			
		1300.4 ^a 3	100 8	49.9268	$7/2^{-}$			
1398.12	3/2+	881.5 ^a 3	41 4	516.679	5/2-	[E1]	1.19×10^{-3}	$\alpha(K)=0.001025 \ I5; \ \alpha(L)=0.0001303 \ I9; \ \alpha(M)=2.74\times10^{-5} \ 4$ $\alpha(N)=6.12\times10^{-6} \ 9; \ \alpha(Q)=9.28\times10^{-7} \ I3; \ \alpha(P)=6.05\times10^{-8} \ 9$
		934.45 ^a 9	11.3.9	463.614	$3/2^{-}$	[E1]	1.06×10^{-3}	$\alpha(K) = 0.000916 \ 13; \ \alpha(L) = 0.0001162 \ 17; \ \alpha(M) = 2.44 \times 10^{-5} \ 4$
					- /			$\alpha(N) = 5.45 \times 10^{-6} 8$; $\alpha(O) = 8.28 \times 10^{-7} 12$; $\alpha(P) = 5.42 \times 10^{-8} 8$
		1083.8 ^a 3	100 8	314.6799	$3/2^{-}$	[E1]	8.05×10^{-4}	$\alpha(K) = 0.000694 \ 10; \ \alpha(L) = 8.76 \times 10^{-5} \ 13; \ \alpha(M) = 1.84 \times 10^{-5} \ 3$
					- 1			$\alpha(N)=4.11\times10^{-6} 6$; $\alpha(O)=6.25\times10^{-7} 9$; $\alpha(P)=4.11\times10^{-8} 6$ E _y : 1083.43 14 (n,y).
		1398.0 ^{<i>a</i>} 4	12 3	0.0	5/2-	[E1]	6.50×10^{-4}	$\alpha(K)=0.000442$ 7; $\alpha(L)=5.53\times10^{-5}$ 8; $\alpha(M)=1.158\times10^{-5}$ 17 $\alpha(N)=2.59\times10^{-6}$ 4; $\alpha(O)=3.95\times10^{-7}$ 6; $\alpha(P)=2.62\times10^{-8}$ 4;
								α (IPF)=0.0001386 20
1444.86	$1/2^{+}$	840.62 11	100 ^b 7	604.511	$1/2^{-}$	[E1]	1.31×10^{-3}	$\alpha(K)=0.001125 \ 16; \ \alpha(L)=0.0001433 \ 20; \ \alpha(M)=3.01\times10^{-5} \ 5$ $\alpha(N)=6.72\times10^{-6} \ 10; \ \alpha(O)=1.020\times10^{-6} \ 15; \ \alpha(P)=6.64\times10^{-8} \ 10$
		981.0 ^a 1	100 9	463.614	3/2-	[E1]	9.69×10^{-4}	$\alpha(K) = 0.000835 \ 12; \ \alpha(L) = 0.0001058 \ 15; \ \alpha(M) = 2.22 \times 10^{-5} \ 4$ $\alpha(K) = 4.06 \times 10^{-6} \ 7; \ \alpha(D) = 7.54 \times 10^{-7} \ 11; \ \alpha(D) = 4.04 \times 10^{-8} \ 7;$
		1130.57 ^e 18	54 ^b 4	314.6799	3/2-	[E1]	7.51×10 ⁻⁴	$\alpha(\mathbf{K}) = 0.000643 \ 9; \ \alpha(\mathbf{L}) = 8.10 \times 10^{-5} \ 12; \ \alpha(\mathbf{M}) = 1.698 \times 10^{-5} \ 24$ $\alpha(\mathbf{N}) = 3.80 \times 10^{-6} \ 6; \ \alpha(\mathbf{O}) = 5.78 \times 10^{-7} \ 8; \ \alpha(\mathbf{P}) = 3.81 \times 10^{-8} \ 6; $ $\alpha(\mathbf{IPF}) = 5.94 \times 10^{-6} \ 9$

From ENSDF

L

					Adopted	Levels, Gam	mas (continu	ed)
					,	$\gamma(^{147}\text{Nd})$ (co	ntinued)	
E _i (level)	J_i^π	${\rm E_{\gamma}}^{\#}$	Ι _γ @	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	α^{\dagger}	Comments
1499.1	(19/2+)	309.2 ^c 3		1189.9	(17/2 ⁻)	[E1]	0.01255	$\alpha(K)=0.01075 \ 16; \ \alpha(L)=0.001429 \ 21; \ \alpha(M)=0.000301 \ 5$ $\alpha(N)=6.70\times10^{-5} \ 10; \ \alpha(O)=1.000\times10^{-5} \ 15; \ \alpha(D)=6.07\times10^{-7} \ 0$
		383.9 ^c 3		1115.1	(15/2+)	[E2]	0.0248	$\alpha(\mathbf{F}) = 0.07 \times 10^{-6} \text{ g}$ $\alpha(\mathbf{K}) = 0.0201 \ 3; \ \alpha(\mathbf{L}) = 0.00366 \ 6; \ \alpha(\mathbf{M}) = 0.000795 \ 12$ $\alpha(\mathbf{N}) = 0.0001756 \ 25; \ \alpha(\mathbf{O}) = 2.52 \times 10^{-5} \ 4;$ $\alpha(\mathbf{P}) = 1.146 \times 10^{-6} \ 17$
1523.48	$(1/2^{-}, 3/2^{-})$	730.9 <i>3</i>	18 ^b 2	792.522	3/2+			
		754.36 19	29 <mark>b</mark> 3	769.305	$3/2^{+}$			
		1208.79 12	100 <mark>b</mark> 8	314.6799	$3/2^{-}$			
1544.50	$(1/2^-, 3/2, 5/2^+)$	1080.4 ^{ad} 1	39 4	463.614	$3/2^{-}$			
		1230.30 ^d 12	79 7	314.6799	3/2-			I_{γ} : 100 9 (n, γ).
		1416.4 ^a 4	100 11	127.9189	5/2-			
1550.10	3/2-	1033.18 14	63 ^b 4	516.679	5/2-	[M1+E2]	0.0026 6	α (K)=0.0022 5; α (L)=0.00030 6; α (M)=6.3×10 ⁻⁵ 12 α (N)=1.4×10 ⁻⁵ 3; α (O)=2.1×10 ⁻⁶ 4; α (P)=1.4×10 ⁻⁷ 3
		1235.47 14	100 ⁶ 9	314.6799	3/2-	[M1+E2]	0.0018 4	$\alpha(K)=0.0015 \ 3; \ \alpha(L)=0.00020 \ 4; \ \alpha(M)=4.2\times10^{-5} \ 7$ $\alpha(N)=9.3\times10^{-6} \ 16; \ \alpha(O)=1.42\times10^{-6} \ 25; \ \alpha(P)=9.3\times10^{-8}$ $19; \ \alpha(IPF)=1.057\times10^{-5} \ 22$
1593.46	5/2+	1129.9 ^{<i>a</i>} 3	83 9	463.614	3/2-	[E1]	7.52×10 ⁻⁴	$\alpha(\mathbf{K})=0.000643 \; 9; \; \alpha(\mathbf{L})=8.10\times10^{-5} \; 12; \\ \alpha(\mathbf{M})=1.700\times10^{-5} \; 24 \\ \alpha(\mathbf{N})=3.80\times10^{-6} \; 6; \; \alpha(\mathbf{O})=5.78\times10^{-7} \; 8; \; \alpha(\mathbf{P})=3.81\times10^{-8} \\ \epsilon_1 \; \alpha(\mathbf{PE})=5 \; 82\times10^{-5} \; 10 $
		1464.4 ^{<i>a</i>} 5	60 <i>43</i>	127.9189	5/2-	[E1]	6.58×10 ⁻⁴	$\alpha(K)=0.000408 \ 6; \ \alpha(L)=5.10\times10^{-5} \ 8; \alpha(M)=1.069\times10^{-5} \ 15 \alpha(N)=2.39\times10^{-6} \ 4; \ \alpha(O)=3.64\times10^{-7} \ 6; \ \alpha(P)=2.42\times10^{-8}$
		~						4; α (IPF)=0.000186 3
		1544.0 ^{<i>a</i>} 4	100 26	49.9268	7/2-	[E1]	6.77×10 ⁻⁴	$\begin{aligned} &\alpha(K) = 0.000373 \ 6; \ \alpha(L) = 4.66 \times 10^{-5} \ 7; \ \alpha(M) = 9.76 \times 10^{-6} \\ &I4 \\ &\alpha(N) = 2.18 \times 10^{-6} \ 3; \ \alpha(O) = 3.33 \times 10^{-7} \ 5; \ \alpha(P) = 2.22 \times 10^{-8} \end{aligned}$
		1502 (0 4	75 7	0.0	5/0-	[[7]1]	6.02: 10-4	4; $\alpha(\text{IPF})=0.000245$ 4 (K) 0.000254.5 (L) 4.41, 10^{-5} 7 (M) 0.25, 10^{-6}
		1593.6 ^a 4	15 /	0.0	5/2	[EI]	6.92×10 +	$\alpha(K)=0.000354 5; \alpha(L)=4.41\times10^{-5} 7; \alpha(M)=9.25\times10^{-6} 13$ $\alpha(N)=2.07\times10^{-6} 3; \alpha(O)=3.15\times10^{-7} 5; \alpha(P)=2.10\times10^{-8} 3; \alpha(PF)=0.000282 4$
1617.42	3/2+,5/2+	1101.4 ^a 3 1154.6 ^a 3 1303.4 ^a 4	100 <i>46</i> 66 <i>5</i> 83 9	516.679 463.614 314.6799	5/2 ⁻ 3/2 ⁻ 3/2 ⁻			5, a(m 1 <i>)</i> =0.000202 7
		1616.6 ^{ad} 2	26.6	0.0	5/2-			
1673.69	3/2-,5/2	903.8 ^{<i>a</i>} 2 1157.4 ^{<i>a</i>} 4	100 8 12.5 8	769.305 516.679	3/2+ 5/2 ⁻			

From ENSDF

L

					Adopted	Levels, Gam	mas (continu	ed)
				ntinued)				
E _i (level)	J^π_i	${\rm E_{\gamma}}^{\#}$	Ι _γ @	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	α^{\dagger}	Comments
1673.69	3/2-,5/2	1358.7 ^{<i>a</i>} 4	22.7 25	314.6799	3/2-			
		1547.7 ^{ad} 4	36 4	127.9189	5/2-			
		1623.8 ^{<i>a</i>} 4	28.6 25	49.9268	7/2-			
1733 51	5/2-	$16/3.9^{a}$ 4	10.3	0.0 631 470	5/2 3/2-			
1755.51	5/2	1217.0^{a} 4	89.8	516.679	$5/2^{-}$			
		1605.9^a 5	32 23	127.9189	$5/2^{-}$			
		1683.3 ^a 4	82 18	49.9268	7/2-			
		1733.8 ^{<i>a</i>} 4	100 14	0.0	5/2-			
1761.96	$(1/2, 3/2, 5/2^{-})$	$1130.2^{ae} 2$	26 4	631.479	$3/2^{-}$			
		1298.5^{-1} 1 1547.2 ^{<i>a</i>} 1	579 1009	405.014	$\frac{3}{2}$ $\frac{1}{2}^{-}$			
1841.05	$(1/2^{-} 3/2 5/2^{+})$	1377 79 17	$100^{b} 8$	463 614	$3/2^{-}$			
1011.05	(1/2 ,5/2,5/2)	1576.46.22	$_{49}^{b}$	314 6799	3/2-			
		1840.86 10	$100^{b} 8$	0.0	5/2-			
1979 47	$(1/2^{-} 3/2^{-})$	1186 89 75	$100^{b} 8$	792.522	3/2+			
17777.17	(1/2 ,5/2)	1375 5 4	$32^{b} 2$	604 511	$1/2^{-}$			
2030.2	$(23/2^+)$	531.1 [°] 3	32 2	1499.1	$(19/2^+)$	[E2]	0.01002	$\alpha(K)=0.00833$ 12; $\alpha(L)=0.001334$ 19; $\alpha(M)=0.000287$ 4
								$\alpha(N)=6.36\times10^{-5}$ 9; $\alpha(O)=9.31\times10^{-6}$ 14;
2070.26	$(1/2) 2/2 5/2^{-})$	1755 6 2	12 8	214 6700	2/2-			$\alpha(P)=4.91\times10^{-7}$
2070.30	(1/2,3/2,3/2)	1753.0 2 1942.5 ^{<i>a</i>} 2	100 8	127.9189	$5/2^{-}$			
2123.2	$(1/2, 3/2, 5/2^{-})$	1518.8 ^{<i>a</i>} 4	100 20	604.511	$1/2^{-}$			
		1808.4 ^a 5	34 20	314.6799	3/2-			
2164.58	$(1/2^-, 3/2, 5/2^-)$	853.7 ^a 3	100 16	1310.89	3/2+			
		1559.9^{a} 5	68 27	604.511	$1/2^{-}$			
2310 21	(3/2 + 5/2 +)	2164.7^{a} 5 1518.0 ^a 2	88 20 60 8	0.0	5/2 3/2+			
2310.21	(3/2,3/2)	1793.5^{a} 4	100.9	516.679	$5/2^{-}$			
		1846.2^a 5	23 4	463.614	$3/2^{-}$			
		1995.9 ^a 4	64 11	314.6799	3/2-			
		2308.8 ^{ad} 4	33 7	0.0	5/2-			
2335.7	$(5/2^+)$	1754.8 ^{<i>a</i>} 4	63 22	581.0	7/2-			
		$2207.2^{\circ}5$	10 4	127.9189	5/2- 5/2-			
2422.2	1/2+	$2330.1^{\circ\circ}$ 3	100 30	0.0	3/2 2/2+	[M1 E2]	0.0022.5	$\alpha(K) = 0.0010.4$; $\alpha(L) = 0.00025.5$; $\alpha(M) = 5.2 \times 10^{-5}.10$
2423.2	1/2	1112.1. 4	100 33	1310.89	5/2	[WI1+E2]	0.0022 3	$\alpha(\mathbf{N}) = 0.0019 \ 4; \ \alpha(\mathbf{L}) = 0.00025 \ 5; \ \alpha(\mathbf{M}) = 5.5 \times 10^{-5} \ 10$ $\alpha(\mathbf{N}) = 1.19 \times 10^{-5} \ 21; \ \alpha(\mathbf{O}) = 1.8 \times 10^{-6} \ 4;$ $\alpha(\mathbf{P}) = 1.18 \times 10^{-7} \ 25; \ \alpha(\mathbf{IPE}) = 5.44 \times 10^{-7} \ 13$
		2208.8 ^{<i>a</i>} 5	16 6	214.5949	1/2-	[E1]	9.70×10 ⁻⁴	$\alpha(K) = 0.000210 \ 3; \ \alpha(L) = 2.59 \times 10^{-5} \ 4; \ \alpha(M) = 5.43 \times 10^{-6} \ 8$

 $^{147}_{60}\mathrm{Nd}_{87}$ -13

From ENSDF

 $^{147}_{60}\mathrm{Nd}_{87}$ -13

				d)										
γ ⁽¹⁴⁷ Nd) (continued)														
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\#}$	$I_{\gamma}^{@}$	E_f	\mathbf{J}_{f}^{π}	Mult. ^{&}	α^{\dagger}	Comments						
2711.4	(27/2+)	681.2 ^c 3		2030.2	(23/2+)	[E2]	0.00535	$\alpha(N)=1.214\times10^{-6} \ 17; \ \alpha(O)=1.85\times10^{-7} \ 3; \ \alpha(P)=1.246\times10^{-8} \ 18; \ \alpha(IPF)=0.000728 \ 11 \ \alpha(K)=0.00450 \ 7; \ \alpha(L)=0.000669 \ 10; \ \alpha(M)=0.0001429 \ 20 \ \alpha(N)=3 \ 18\times10^{-5} \ 5; \ \alpha(O)=4 \ 72\times10^{-6} \ 7; \ \alpha(D)=2 \ 60\times10^{-7} \ 4$						
3195.5	(29/2+)	484.1 ^c 3		2711.4	(27/2 ⁺)	[M1+E2]	0.016 4	$\alpha(N)=3.18\times10^{-5}$ <i>J</i> , $\alpha(O)=4.72\times10^{-7}$ <i>J</i> , $\alpha(P)=2.09\times10^{-7}$ <i>4</i> $\alpha(K)=0.014$ <i>4</i> ; $\alpha(L)=0.0020$ <i>J</i> ; $\alpha(M)=0.00043$ <i>5</i> $\alpha(N)=9.6\times10^{-5}$ <i>J</i> 2; $\alpha(Q)=1.43\times10^{-5}$ <i>2J</i> ; $\alpha(P)=8.5\times10^{-7}$ <i>23</i>						
3504.5	$(31/2^+)$	793.2 ^c 3		2711.4	(27/2+)	[E2]	0.00374	$\alpha(K) = 0.003165; \alpha(L) = 0.0004547; \alpha(M) = 9.66 \times 10^{-5} 14$ $\alpha(K) = 2.15 \times 10^{-5} 3; \alpha(O) = 3.21 \times 10^{-6} 5; \alpha(P) = 1.90 \times 10^{-7} 3$						
3807.4	(33/2 ⁺)	302.9 ^c 3 611.8 ^c 3		3504.5 3195.5	(31/2 ⁺) (29/2 ⁺)	[E2]	0.00696	$\alpha(K)=0.00583 \ 9; \ \alpha(L)=0.000894 \ 13; \ \alpha(M)=0.000191 \ 3$ $\alpha(N)=4.25\times10^{-5} \ 6; \ \alpha(Q)=6.27\times10^{-6} \ 9; \ \alpha(R)=3.47\times10^{-7} \ 5$						
4493.6	(37/2+)	686.2 ^c 3		3807.4	(33/2+)	[E2]	0.00525	$\alpha(K) = 0.004427; \ \alpha(L) = 0.00065710; \ \alpha(M) = 0.000140220$ $\alpha(K) = 3.12 \times 10^{-5}5; \ \alpha(Q) = 4.63 \times 10^{-6}7; \ \alpha(P) = 2.65 \times 10^{-7}4$						
5207.2	$(41/2^+)$	713.6 ^c 3		4493.6	(37/2 ⁺)	[E2]	0.00478	$\alpha(K)=0.00403\ 6;\ \alpha(L)=0.000593\ 9;\ \alpha(M)=0.0001265\ 18$ $\alpha(N)=2.81\times10^{-5}\ 4;\ \alpha(O)=4.18\times10^{-6}\ 6;\ \alpha(P)=2.42\times10^{-7}\ 4$						
(5292.20)	$1/2^{+}$	3312.70 <i>13</i>	19.8 ^b 15	1979.47	$(1/2^-, 3/2^-)$									
		3451.08 11	36 ^b 3	1841.05	$(1/2^-, 3/2, 5/2^+)$									
		3741.69 20	5.7 <mark>6</mark> 6	1550.10	3/2-									
		3747.32 15	9.3 <mark>b</mark> 6	1544.50	$(1/2^-, 3/2, 5/2^+)$									
		3768.72 12	20.1 ^b 15	1523.48	$(1/2^{-}, 3/2^{-})$									
		3847.0 4	10.8 <mark>b</mark> 9	1444.86	$1/2^{+}$			I_{γ} : partially due to another isotope.						
		3893.8 <i>3</i>	8.4 <mark>b</mark> 6	1398.12	3/2+			I_{γ} : partially due to another isotope.						
		4500.2 4	4.2 ^b 3	792.522	3/2+									
		4523.6 <i>3</i>	2.1 ^b 3	769.305	$3/2^{+}$									
		4660.53 11	100 ^b 7	631.479	3/2-									
		4687.78 20	96 <mark>b</mark> 8	604.511	$1/2^{-}$									
		4774.55 ^d 21	5.4 ^b 6	516.679	5/2-			I_{γ} : partially due to another isotope.						
		4828.61 12	18.0 <mark>b</mark> 15	463.614	3/2-			,						
		4977.40 11	39 <mark>b</mark> 3	314.6799	3/2-									
		5077.56 12	13.8 ^b 12	214.5949	1/2-									

[†] Additional information 4.
[‡] Additional information 5.
[#] From (n,γ) (1975Ro16), unless noted otherwise.
[@] From ¹⁴⁷Pr β⁻ decay (1993Sh33), unless noted otherwise.
[&] From α(exp), α(K)exp, α(L)exp, and K/L ratios (x-γ and conversion electron measurements) in ¹⁴⁷Pr β⁻ decay (1993Sh33).

Adopted Levels, Gammas (continued)

 $\gamma(^{147}\text{Nd})$ (continued)

^{*a*} From ¹⁴⁷Pr β^- decay.

^b From (n,γ) .

^c γ 's reported with no uncertainties in ²³⁸U(¹²C,X γ); Δ E γ =0.3 keV assumed by evaluator.

^d Differs by 3σ or more from $\Delta E(\text{levels})$.

^e Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \sim \gamma$ Decay (Uncertain)

 $^{147}_{60}\text{Nd}_{87}$

 $^{147}_{60}\mathrm{Nd}_{87}$

 $^{147}_{60}\mathrm{Nd}_{87}$ -19

From ENSDF

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{147}_{60}\mathrm{Nd}_{87}$

¹⁴⁷₆₀Nd₈₇